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Abstract: Disruption of tight junction (TJ) integrity can occur from loss of TJ protein expression and/or disorganization. 

Consequently, epithelial/endothelial barriers lose their barrier functions in the control over paracellular transport, leading 

to the compromised defense mechanism of the organ. The TJ disruption has been related to multiple signal transduction 

pathways including mitogen-activated protein kinases (MAPK). Quercetin is one of the most widely studied flavonoids 

with broad spectrum of pharmacological activities. In addition to antioxidant capability, quercetin may exert its actions 

via the alteration of protein kinase activities and the sequential signaling processes. This may enable quercetin to prevent 

the disintegration of TJ structure and to enhance the expression, localization and interaction of TJ proteins. This review 

presents the information to corroborate the potential benefit of quercetin in preserving integrity and function of TJ  

complexes. The involvement of protein kinase C (PKC) and MAPK signaling pathway is emphasized.  
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INTRODUCTION  

 Epithelial and endothelial tissues, which line up the cavi-
ties and surfaces of organ throughout our body, act as strong 
protective barriers against pathogens and chemical invasion. 
In these tissues, the epithelial/ endothelial cells are tightly 
connected with special intercellular bonding including gap 
junctions, desmosomes, adherence junctions and tight junc-
tions (TJ) to seal the gap between them [1, 2]. The extracel-
lular TJ architecture at the apical site regulates the paracellu-
lar movement of ions, solutes and immune cells across the 
epithelia and endothelia (barrier function). In addition, the TJ 
structure assists the cells in holding together as well as cre-
ates cell polarity to block the movement of integral mem-
brane proteins between the apical and the basolateral sites 
(fence function) [3-6]. Disruption of TJ structure and func-
tion results in hyperpermeability and leakage of epithelial 
and endothelial barriers, which is a condition involved in a 
number of pathologic states such as inflammatory bowel 
disease (IBD), renal failure, edema jaundice, diarrhea, and 
blood-borne metastasis [7, 8]. Although the mechanisms of 
TJ assembly, maintenance and disruption are not fully eluci-
dated, the potential benefits of several food components and 
compounds including quercetin, glutamine, epidermal 
growth factor (EGF) in enhancing and preserving TJ integ-
rity have been identified [8-10].  
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THE TIGHT JUNCTION: ITS COMPONENTS AND 

THE ROLES OF MAPKS  

 TJ complex is formed through interactions between a 

number of integral membrane proteins (e.g., occludin, 

claudin, junctional adhesion molecule or JAM), peripheral 
proteins (the zonular occludens (ZO) family including ZO-1, 

ZO-2, and ZO-3) and other junction-associated proteins 

(e.g., cingulin) [3, 4, 6, 11, 12]. Occludin and claudin are 
structural junction proteins that connect to the actin cy-

toskeleton through cytoplasmic ZO linkers [3, 4, 13]. The 

interactions between JAM, ZO-1, and other proteins such as 
cingulin provide the tightness of the junction.  

 Assembly, maintenance and function of TJ complexes 

involve TJ protein expression, phosphorylation, and protein-
protein interactions [3, 14, 15]. These processes are related 

to multiple signaling transduction pathways including en-

zymes in the protein kinase C (PKC) and MAPKs families 
(e.g., extracellular signal-regulated kinase 1/2 or ERK1/2, 

and p38) [16-23]. In addition, a number of signaling mole-

cules such as cyclic GMP (cGMP) [24, 25], calcium [23, 26, 
27], NF- B [28], nitric oxide (NO) [5, 29] and vascular en-

dothelial growth factor (VEGF) [30, 31] also render their 

influence on the assembly and stability of the structure of TJ 
complexes.  

 The MAPK signaling pathway has been linked to a broad 
spectrum of cellular responses to extracellular stimuli such 
as growth factors and stress [32, 33]. In addition to the roles 
in cellular function, growth and survival, MAPK proteins 
have been linked to formation and structural integrity of the 
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TJ [10, 17, 18, 20, 21]. However, there are discrepancies 
among scientific reports on MAPK activities, which may be 
related to the cell culture system, the culture conditions and 
the timing of experimentation. For example, ERK1 has been 
found to interact with occludin in epithelial cells and is re-
quired for proper distribution and organization of the TJ pro-
teins and actin cytoskeleton [10, 17]. Inhibition of MEK-1/2 
(MAPK/ERK-1/2) can prevent barrier formation and upregu-
lation of the TJ protein claudin-2 in epithelial cells [34]. By 
contrast, activation of ERK1/2 in the transfected MDCK 
cells with an activated Ras mutant has been reported to  
increase in the transepithelial permeability of mannitol by 
six-fold, along with a disappearance of occludin from cell-
cell contact sites [17]. In addition, the ERK1/2 inhibitor 
PD98059 could prevent the disruption in barrier function  
that was induced by cyclosporine A via activation of 
ERK1/2 MAP signaling cascade in the MDCK monolayers 
[35]. Thus, the roles of MAPK activities in TJ regulation are 
quite complicated and need further elucidation. 

DISRUPTION OF TIGHT JUNCTIONS  

 Disruption of TJ assembly and function can be resulted 
from a number of conditions such as oxidative stress, in-
flammation and alcohol exposure [7, 8, 10, 35-38]. Oxidative 
stress interferes with several cellular homeostasis and func-
tions, leading to the pathological stress such as increase in 
intracellular Ca

2+ 
and activation of the protein kinase family 

[18, 20, 27, 39]. Hence, oxidative stress has been linked to 
several degenerative diseases and pathological states such as 
Alzheimer’s disease, Parkinson’s disease, ischemia/reperfusion 
injuries, inflammation, seizures, stroke, and trauma. In 
epithelial and endothelial tissues, oxidative stress destabi-
lizes the TJ complexes, leading to an increase in paracellular 
permeability and barrier leakage [17, 18, 20, 21, 40, 41]. For 
example, H2O2 increases the permeability of several epithe-
lial and endothelial barrier models through disruption of the 
TJ structure [18, 42-44]. The mechanisms of oxidative 
stress-induced barrier disruption are still incompletely under-
stood. However, several lines of evidence indicate that oxi-
dative damages affect the expression, localization and orga-
nization of TJ regulatory proteins, in particular occludin, 
ZO-1 and claudins [14, 15, 30, 34, 38, 45]. It was demon-
strated that a decrease in occludin protein was responsible 
for a barrier leakage and loss of transepithelial resistant 
(TER) values in bovine pulmonary artery endothelial cells 
treated with H2O2 [18, 46]. H2O2-induced hyperpermeability 
of epithelial monolayers has been linked to a decrease in 
expression and localization of occludin and ZO-1 proteins. 
This was evidenced by a reduction in their amounts from the 
western blot analysis along with the discontinuous pattern at 
the circumferential cell border from immunofluorescent 
staining of these two junctional proteins [44].  

 Oxidative stress is able to trigger signaling pathways in 
TJs regulation involving MAPKs (especially ERK1/2, p38, 
and c-Jun NH2-terminal kinase or JNK), PKC, phosphodi-
esterase, small G protein Rho, and intracellular Ca

2+ 
[17, 19-

21, 26, 37, 38, 47, 48]. Oxidative stress-induced hyperper-
meability is related to phosphorylation of occludin and ZO-1 
at the tyrosine residues, downregulation of occludin and ac-
tivation of MAPK signaling pathways [17, 18]. Conse-
quently, the dissociation of these junctional proteins from the 
actin cytoskeleton along with redistribution from the junc-

tional area takes place [14, 15]. These processes can be pro-
tected with VEGF and EGF through the alteration of ERK 
and ERK1/2 activity [10]. Kevil et al. (2000) demonstrated 
that HUVEC treated with H2O2 at the concentration of 500 
μM for 3 hrs resulted in hyperpermeability corresponding to 
ERK1/2 activation and disorganization of occludin and ZO-1 
at the cell-cell contact sites [18]. Huot et al. (1997) also 
showed that H2O2 administration caused an early increase in 
ERK1/2 activity, and a more prolonged increase in p38 
MAPK activity [49]. Application of the specific ERK1/2 
inhibitor (PD98059) can inhibit the oxidative stress-induced 
hyperpermeability and affects the redistribution of occludin 
[18]. Treatment with the p38 inhibitor (SB202190) attenu-
ates an increase in solute permeability in the model of human 
endothelial cells exposed to H2O2 [50]. Furthermore, the 
permeability increasing effects of H2O2 may be related to an 
activation of PKC along with a rising of intracellular Ca

2+ 

[48, 51]. The increase in intracellular Ca
2+ 

activates Ca
2+

/ 
calmudulin kinases, which subsequently activates all three 
MAPKs (ERK, JNK, and p38) [52].  

QUERCETIN AND ITS POTENTIAL TO MAINTAIN 
THE INTEGRITY OF TIGHT JUNCTION  

 Recently, there are a number of investigations searching 
for compounds with barrier protective activities. Growing 
evidence suggests that certain food components such as glu-
tamine, polyunsaturated fatty acid (PUFA) and flavonoids 
may be TJ modulators that maintain or enhance TJ integrity 
and function [8, 9].  

 Quercetin is one of the most widely distributed flavon-
oids in plants. This polyphenolic compound is found abun-

dantly in fruits and vegetables including apples, onions, ber-

ries, beans as well as in food products and beverages derived 
from plants such as olive oil, tea, and red wine [53-55]. It is 

also found as a major component in several herbal medicines 

including Ginkgo biloba, Hypericum perforatum (St. John's 
Wort), Sambucus canadensis (elder), Vaccinium macrocarpon 

(cranberry) and Oenothera biennis (evening primrose).  

Similar to other flavonoids, quercetin contains a broad spec-
trum of pharmacological and clinically relevant activities 

including carcinostatic, anti-inflammatory, and antioxidant 

actions [53, 55-57]. It has been found to suppress cell prolif-
eration, modify eicosanoid synthesis, prevent platelet aggre-

gation, stabilize immune cells, and promote relaxation of 

vascular smooth muscle [55]. As an antioxidant, quercetin is 
reported to protect oxidative injuries as well as inflamma-

tory-related injuries [58-60]. The action of quercetin has 

been linked to a number of enzymes involved in proliferation 
and signal transduction pathways including PKC, tyrosine 

kinase, PI-3 kinase, NF- B, and the MAPK family [55, 61-

64]. As abovementioned, alteration in the activity of these 
kinases (PKC and MAPKs in particular) and their sequential 

signaling pathways significantly influence the assembly and 

integrity of TJ structure. Thus, it can be hypothesized that 
quercetin can be a barrier protective agent through its capa-

bility to preserve TJ integrity and function.  

 Although the reported actions of quercetin on barrier 
functions are quite limited, a growing body of evidence sug-
gests that quercetin can influence the epithelial barrier integ-
rity and function via modulation of structural TJ proteins 
[44, 65, 66]. Treatment of Caco-2 monolayers, which is a 
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known model of the intestinal epithelium, with quercetin for 
48 hrs enhanced barrier functions, as evidenced by an in-
crease in TER values [65]. These findings are related to an 
increase in claudin-4 expression [65, 66]. The study of Su-
zuki and Hara (2009) further demonstrated that the influence 
of quercetin during the 48-hr exposure on TJ assembly was 
biphasic and time-dependent. In the early phase, quercetin 
promotes TJ assembly and interaction with actin cytoskele-
ton through distribution of TJ proteins (ZO-2, claudin-1, and 
occludin) [66]. During the later phase, expression of claudin-
4 increases [66]. This promotive effect of quercetin on TJ 
assembly and barrier functions may be related to the inhibi-
tory action on PKC and its signal transduction pathway, but 
not to the antioxidant action [65]. Myricetin, which is a more 
potent antioxidant than quercetin, does not have intestinal 
barrier enhancing effect in the model of Caco-2 monolayers 
[65].  

 Our laboratory is interested in the protective ability of 

quercetin against oxidative stress-induced breakdown of 

epithelial and endothelial barriers. Recently, we demon-
strated that quercetin was able to prevent the breakdown of 

barrier functions and the disintegration of TJ complexes in 

the ECV304 monolayers upon exposure to non-lethal con-
centrations of H2O2 (100 μM; 4 hrs) [44]. Pretreatment the 

cells with quercetin (10 μM; 30 min) prior to H2O2 could 

preserve the normal levels of ZO-1 and occludin expression 
as well as their localization at the cell border. The integrity 

of TJ complexes in the quercetin pretreated group was also 

maintained as evidenced by an increase in TER values and a 
decrease in phenol red permeability in comparison with the 

group treated with only H2O2. In addition, quercetin could 

suppress H2O2–mediated activation of p38 MAPK whereas  
it potentiated the effect of H2O2 on ERK1/2 activities.  

Although the molecular targets of quercetin were not yet 

identified, our findings suggested that the protective effects 
of quercetin might involve the altered MAPK activities, in 

particular the decrease in p38 MAP signaling.  

CONCLUSION  

 Endothelium/epithelium barriers can be primary targets 

of oxidative assaults, leading to functional abnormalities 

associated with the collapse of TJ structure. As a result, 
changes in paracellular solute permeability can be observed 

in correlation with the loss of expression and disorganization 

of TJ proteins. Quercetin, an edible flavonoid, has been 
demonstrated its benefit in enhancing TJ assembly and in 

preserving TJ integrity and function against H2O2-mediated 

TJ disruption that leads to hyperpermeability of epithelial 
barriers. The TJ modulating effects of quercetin involves 

with PKC and MAPK activities and their subsequent signal-

ing cascades. The TJ protective activities of quercetin might 
be clinically beneficial in reducing the potential threat to the 

organ system and to preserve a normal physiological state of 

the blood-organ barrier.  
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