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We describe a connection between the identification problem for matrices with sparse
representations in given matrix dictionaries and the problem of sparse signal recov-
ery. This allows the application of novel compressed sensing techniques to operator
identification problems such as the channel measurement problem in communica-
tions engineering.
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The goal in sparse signal recovery is the reconstruction of signals in n–dimensional real or complex
space from m measurements, m < n, on the basis that the signal has a representation involving
only k ≤ m elements from a given dictionary (see [2, 1] and references within). In detail, we let
D = {gr}r=1,...,N ⊆ Cn be a dictionary of N vectors in Cn. For all k ≤ m, n,N , set

ΣD
k = {f =

N∑
r=1

αrgr ∈ Cn : with at most k coefficients αr being nonzero} ⊆ Cn.

The standard approach to recover a signal with a sparse representation in D is to design a measure-
ment matrix ΦD ∈ Cm×n which allows the recovery of any f ∈ ΣD

k from the measurement vector ΦDf
whenever k is sufficiently small. While a minimal requirement for the recovery of any f ∈ ΣD

k is that
the constructed map ΦD : ΣD

k −→ Cm, f 7→ ΦDf is injective, the recent literature on sparse signal
recovery focuses mainly on numerically robust recovery methods whose application require that ΦD is
not only injective but well conditioned on its domain.

Note that the Euclidean basis E = {ej} is commonly used as a dictionary. Then N = n and f ∈ ΣD
k

if f has at most k nonzero entries.

The identification of operators from a single input/output pair is another standard problem
in applied sciences. For linear operators acting on finite dimensional spaces, we say that a class of
operators, that is, matrices Σ ⊆ Cm×n, is identifiable if there is an h ∈ Cn such that the induced map
ϕh : Σ −→ Cm, M 7→ Mh is injective.

Clearly, for Σ = Cm×n, the problem is ill posed. Following the sparse signal recovery notation used
above, we let M = {Mr}r=1,...,N ⊆ Cm×n be a dictionary of N matrices, and for k ≤ m,mn, N , we set

ΣM
k = {M =

N∑
r=1

αrMr ∈ Cm×n : with at most k coefficients αr being nonzero} ⊆ Cm×n.

The analogy of the problems described above is apparent: In sparse signal recovery, we design
ΦD ∈ Cm×n which allows us to detect f ∈ ΣD

k from the measurements ΦDf whenever k is sufficiently
small, that is,
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 a11 · · · a1n
...

...
am1 · · · amn




f1

...

fn


=

 y1
...

ym

 .

for D, k, design ΦD ............................................................................. ...........
.....

to recover “k–sparse” ...............................
............................................

................

from
............

............
............

............
........................................

The goal in the identification problem for matrices with sparse representations on the other hand can
be phrased similarly to the sparse signal recovery problem, namely by

 a11 · · · a1n
...

...
am1 · · · amn




h1

...

hn


=

 y1
...

ym

 .

for M, k, design h ............................................................................................................................................................................................................. ................

to recover “k–sparse”
........
........
........
........
.................
................

from
............

............
............

............
........................................

The interconnection between sparsity in signal recovery and matrix identification is easily exposed.
The recovery of M =

∑N
r=1 αrMr ∈ ΣM

k from Mh can be achieved by determining the coefficients αr

from

Mh =
( k∑

r=1

αrMr

)
h =

k∑
r=1

αr(Mrh) ∈ Cm.

Therefore, for Mh = {Mrh}r, we observe that the sparse matrix recovery problem for the matrix
dictionary M translates into a sparse signal recovery problem in the vector dictionary Mh. Its solution
can be sought using the same methods as used for sparse signal recovery, that is, a matrix ΦMh ∈ Cm′×m,
m′ ≤ m, for Mh has to be designed.

The central difference between matrix identification and sparse signal recovery is the following:
solving a matrix identification problem requires first the choice of a so–called identifier h, which then
allows the design of a matrix ΦMh. For example, for the canonical basis {Eij} of Cm×n not even h

exists with ϕh : Σ
{Eij}
2 −→ Cm injective. Also, the more restrictive nature of matrix identification

is well–illustrated by a comparison of the degrees of freedom in the corresponding design processes. If
the dictionary D in the signal recovery problem is a basis for Cn, then N = n and we can choose freely
the mn entries of the matrix ΦD. On the other hand, if M is a matrix basis for Cm×n, then N = mn
and our design freedom encompasses “only” n parameters for h and m′m ≤ m2 parameters for ΦMh.

We conclude that operator identification of matrices with sparse representations in matrix dictio-
naries can be solved using recent techniques such as Basis Pursuit and Orthogonal Matching Pursuit
from the theories of compressed sensing and sparse signal recovery. This approach is expected to supply
novel and powerful identification strategies in applications such as the channel measurement problem
in wireless and/or mobile communications (see [4, 7] for background and [3, 5, 6, 8] for initial work in
this direction).
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