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A Finite Difference Method for Studying Thermal Deformation in 3D
Double-Layered Micro-Structures Exposed to Ultrashort-Pulsed Lasers

Suyang Zhang, Pan Wang and Weizhong Dai*

Mathematics & Statistics, College of Engineering & Science, Louisiana Tech University, Ruston, LA 71272, USA

Abstract: Ultrashort-pulsed lasers have been attracting worldwide interest in science and engineering. Studying the ther-
mal deformation induced by ultrashort-pulsed lasers is important for preventing thermal damage. This article presents a
new numerical method for studying thermal deformation in 3D double-layered film micro-structures exposed to ultras-
hort-pulsed lasers. The method is demonstrated by investigating thermal deformations in a 3D double-layered thin film

and a 3D double-layered sphere, respectively.

INTRODUCTION

Ultrashort-pulsed lasers have been attracting worldwide
interest in science and engineering, because their pulse dura-
tions are of the order of sub-picoseconds to femtoseconds
and because they possess exclusive capabilities of limiting
the undesirable spread of the thermal process zone in the
heated sample [1]. The success of using high-energy ultras-
hort-pulsed lasers in real applications relies on three factors
[1]: (1) well characterized pulse width, intensity and experi-
mental techniques; (2) reliable microscale heat transfer mo-
dels; and (3) prevention of thermal damage. Up to date, a
number of models that focus on heat transfer in the context
of ultrashort-pulsed lasers have been developed. However,
only a few mathematical models for studying thermal defor-
mation induced by ultrashort-pulsed lasers have been deve-
loped [1-7]. Tzou and his colleagues [1] presented a one-
dimensional model in a double-layered thin film. The model
was solved using a differential-difference approach. Chen
and his colleagues [5] considered a two-dimensional axi-
symmetric cylindrical thin film and proposed an explicit fi-
nite difference method by adding an artificial viscosity term
to eliminate numerical oscillations. Dai and his colleagues
[2, 4] developed a new method for studying thermal defor-
mation in 2D thin films exposed to ultrashort-pulsed lasers.
The method was obtained based on the parabolic two-step
heat transport equations and implicit finite difference sche-
mes on a staggered grid. It accounts for the coupling effect
between lattice temperature and strain rate, as well as for the
hot-electron blast effect in momentum transfer. Numerical
results show that there are no numerical oscillations in the
solution. Unfortunately, when applied to a 3D thin film case,
they found that the nonphysical oscillations appeared again
in the normal stress in the thickness direction. Recently, Dai
and his colleagues [8, 9] have improved their previous me-
thod by developing a fourth order compact finite difference
scheme for solving the dynamic equations of motion. Results
show that the non-physical oscillations disappear. In this
article, we extend this method to study thermal deformation
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in 3D double-layered metal thin films and micro spheres
exposed to ultrashort-pulsed lasers. Layered metal thin films
are considered because they are widely used in engineering
applications due to the fact that a single metal layer often
cannot satisfy all mechanical, thermal and electronic requi-
rements, while micro spheres are of interest related to micro
resonators in optical applications, such as ultra-low-
threshold lasing, sensing, optoelectronic microdevices, cavi-
ty quantum electrodynamics and their potential in quantum
information processing. This research provides a numerical
method for studying thermal deformations induced by ul-
trashort-pulsed lasers when layered micro-structures are
considered.

MATHMATICAL MODEL

Consider a 3D double-layered thin film in Cartesian
coordinates, which is exposed to an ultrashort-pulsed laser,
as shown in Fig. (1a). The governing equations for studying
thermal deformation in the thin film can be expressed as fol-
lows:

(1) Dynamic Equations of Motion [1, 2, 5, 9]
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Fig. (1a). A 3D thin film and (b) a 3D micro sphere irradiated by ultrashort-pulsed lasers.
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A (:K(’”)—zy(’”) [10]) and u“™are Lame’s coeffi-
3

cients; and a(m) is the thermal expansion coefficient.

(2) Energy Equations [1, 2, 5, 11]
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where the heat source introduced by [5] is extended for a

Gaussian laser beam focusing at (x,,y,)on the top surface
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the electron-lattice coupling factor, Cl(m) is the lattice heat
capacity, respectively; Q is the energy absorption rate; J is

is the la-

the laser fluence; R is the surface reflectivity; 7,

ser pulse duration; z is the optical penetration depth; 7, is
the spatial profile parameter. In addition, 0.94 and 2.77 in
Eq. (7) are given in [11, 12]. Egs. (5) and (6) are often re-
ferred to as parabolic two-step heat transport equations
[13]. It should be pointed out that the term

GA™ 124"y (M, %(si’”) + g;’") +e)is added in

Eq. (6) to consider the coupling effect between lattice tempe-
rature and strain rate. However, from our experience the
strain rate effect is insignificant.

The boundary conditions are assumed to be stress free [1,
5] and no heat losses from the surface in the short time res-
ponse [12]:
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where 7 is the unit outward normal vector on the boundary.
The interfacial conditions are assumed to be perfect

thermal contact at 7 = L (the continuity of temperature and
2

heat flux across the interface),
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It should be pointed out that the laser beam is applied on
the top surface (z=0) at #=0and the peak intensity occurs
when 7=2¢,

For micro spheres as shown in Fig. (1b), the above go-

verning equations may be transformed to the equations under
spherical coordinates

((r,0,0); 0<0<2m, 0<@<m) as follows:

(1’) Dynamic Equations of Motion [8, 4]
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where the heat source term, which is obtained based on that
in Eq. (7) under spherical coordinates, is given by
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Here, L is the radius of the micro-sphere and { is the opti-
cal penetration depth.

FINITE DIFFERENCE METHOD

Following the approach in [2-4, 9], we introduce three
velocity componentsv,, v, andv; into the model and re-
write the dynamic equations of motion, Eqs. (1)-(4), as fol-
lows:
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To develop a finite difference scheme, we first construct

(m

a staggered grid as shown in Fig. (2), where v, ) is placed
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Fig. (2A). 3D staggered mesh for a thin film and locations of variables.
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tively, where Ar is the time increment. Similar notations are
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difference operators, A_, and §,, as follows:

(x 1,y 1.2:),7" and o™ are placed at
it— -
2 2 n _..n -l
(m) (m) AU g =Ui g —Uijks
(x 1,52 1), Yy. and 0, are placed at
i+— k+— S.u” _ . n .
2 2 Mije =W 1 T 1
- (m) (m) (m) Tt T
(x;,y 152, 1) while g, €y, e,
AT 0, and 6, are defined similar to &, .
o )(cm),o')(,m),o' i’"),T e(m) and T, l(m) are at  (x;,y;.z;). To avoid non-physical oscillations in the solution, we

further follow the approach in [2-4, 9] and employ a fourth-

Here,i, j and kare indices with 1<i<N_ +1, ‘ ; 8
order compact finite difference scheme for obtaining stress

I<j<N,+l, and 1<k<N,+1, such thatN Ax=L,,

: 90, do,. :
N,Ay=L,and N,Az=L,, where Ax,Ay and Azare spa- derivatives, axx Y azx the etc. in Egs. (19)-(21).
tial step sizes. We denote (v™)” {myn d do
1l Siep sizes ¢ denote (v )i+l, e o )i, j+%,k an For example, —= can be obtained by solving the following
(vgm))" ! as numerical approximations of tridiagonal linear system (indices j and k are omitted).
i,jk+—

1
vfm><<f+5)Ax, Ay, KAz, nAt),



A Finite Difference Method for Studying Thermal Deformation

1@y 1130, 1 30"
24 ox 12 ox 24 ox

@) =)
z+§ z—E 1 ] 1
= ,2+—<i<N, ——,
Ax 2 2
where
(o) 2 m ”
@) @™, -,
ox Ax ’
A(c™) . .
N’f+% _ (G)(f ))N',(-%-l _(O-J(C ))Nx
ox Ax

(23)

(24)

As such, the implicit finite difference schemes for sol-
ving Eqs. (18)-(21) coupled with Eqgs. (4a)-(4f) can be writ-

ten as follows:

1
(m) —A m) n+l
p A Vi ) L

a(o_)(cm))fq+} ‘ a( (m))n+1 a( (m))n+1
i+—,j.k 2,],k 2

J.k

= I+ +
ox dy oz

1
+A(m)—5 T(m) n+l 2’
Ax x(( e )i+%,j,k)
1
(m)_A v(m) n+l
vER )i,j%,k
d o_(m) n+l
©y )i,/%,k

= + +

a(o_(m))nH a(o_(m))nﬂ
+2,k j+l,k

oy ox oz

1
+A(m) 6 T(m) n+l 2,
Ay 7 (2. )i,_/%,k)

1
(m) A V(m) n+l
Vel

i ],k+5

a(o'gm))}.ﬁl 1
i, k+—

a(o_(m))n+1
j,k+*

a O_(m) n+l
(0):7) ]
= + 2 +

oz ox dy

1
+A(m) S T(m) n+l 2.
A z(( e )i,j,k+%)

1 My 1 (m) \ 1
A_A—z( ) _55)((‘}1 )i,j,k,

1 |
— A (g =

At i,j.k>

1 m n
A_y5y("§ Hi

! P! |
AL @ = 8 08

(25)

(26)

27

(28a)

(28b)

(28¢)

The Open Applied Mathematics Journal, 2008, Volume 2 109

1
—A_,(y“”’)”“ L =—8,0{"Yy"

At l/+5,k Ay 7 otk
1
+—35 (ng))nﬂ
Ax 7j+ k
2
1
A (m)n+l 5 (m) n+l
At _t( ) — k+7 (1 )7 k+l
2 2 2 2
1
+—35 v(m) n+l ,
Ax x( 3 )i+l,j,k 1
2
1 (Y ))W+1 _L5 (v(m))n+1
A yz 1= 22 )11
A 2,k+5 Az l,]+5,k+5
1 1
oy O
Y AT
(G(m))n+1 ;t(m) (8(m));1;r_1k +(8(m))l(z;r_1k
+ (e(m))nJrl + 2#(1n)(8(m))n+1
_ (31(’”) + 2/.1(m))(x7(~m)
1
[T =T,
(O-(m))”"'1 :A’(M)[(E(m))?-;lk+(8(m));1-;lk
+(8(M))n+1 ]+2.u(m)(8(m))n+l
(31(*?!) + 2ﬂ(m))a(m)[(7}(m))7jlk T,
(o.(m))n+1 — (m)[(e(m))n-ﬂ +(8(m));4-;1k
+(g(m))l(l';lk]+2‘u(m)(8(m))n+1
(3l(m)+2Iu(m))a(M)[(T(m))n+l _To],
1 1
@™ 1 =)
+—, j+—k i+, j+— k
2 2 2 2’
(G(m))nﬂ _‘u(m) (y(m))nJr} e
i+ ,j,k+ i, j k+—
2 2 2 2
(G(m))nfl . _‘u(m) (y(m))}’l“jl -
,j+5,k+2 l,j+5,k+5
1
A @Myt =yt
At s )i+l,j,k 01 )i+l,j,k
2 2
1
ALY =y
At i,j+—k i, j+—k
2 2
1
— A W(”’) n+l (m)\n+l
At -+ )i,j, =03 ) k+l

(292)

(29b)

(29¢)

(30a)

(30b)

(30¢)

(31a)

(31b)

(31c)

(32a)

(32b)

(32¢)

On the other hand, the energy equations, Egs. (15)-(16),
are solved using the Crank-Nicholson finite difference me-

thod [16]:



110 The Open Applied Mathematics Journal, 2008, Volume 2

(m) (Te(m))z-;—lk +(T(m))l s k 1

1
— k(m) n+l 5 T(m) n+1
2Ax2 e )i+1 j ( )l 5] k
=)™ ST )
i—E ,J.k 1—5 ,J.k

1 m n m n
+— (k)" S (T
i+—,j,k i+—,j,k

2 2

(k&N ST )

i——,J,k i——, .k
7/ >/

n+l . 5y (Te(m))rH—l .
i,j+5,k i,j+—k

1 1
_(k‘gm))”‘*' 1 6y(Te(m))n+ 1 )
l,]—z,k i,j——k

1 m n m n
P (k) S, (T
1,]+5,k

i,j+—.k
J 2

—(kM) 0 8@ )
I,j*z,k l,j*E,k

+L((kém))n+l 6 (T(m))n+l .
2Az2 ke okt

=M™ 8 @)™ )
1,_1,k—5 l’]’k_E

P )Y
iJj, k+f
2
_ (1. (m)\n (’")
(k! ),-,,-,k_l 0,(T, )l_,j 1) (33)
2 2
- (Te(m) )Z-;—lk + (T (m) )z ik
elNt
2
T+ T e
- 5 )+ Qi,j,% )
cm LA (T
1 At -t 1 i,j.k
- G(M>((Te(m))z;lk + (")
2
(m)\n+1 (m)\n
_(Tl ik T4 (34)
5 )

(m)
— (34 42 T (A (e
( ‘lt )At 0( —t( x )

i,j.k

( 1 )yn+l
+A (&) A+ AEM)D,

The interfacial conditions for the velocity components

v, ng) , and ng) are obtained based on Eq. (9a)
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It should be pointed out that Egs. (25)-(27) are nonlinear
since the terms & (7)™ )2, J, (™)™ )2 and
=)k i, j=k

8.((T™)™ )2 are nonlinear. Also, it can be seen that
i)k

Eq. (33) is nonlinear. Therefore, the above scheme must be
solved iteratively. An iterative method for solving the above
scheme at time level n + 1 is developed as follows:

Step 1. Set the initial values for (g, (m) )"+1 (e }(J’") ym
(8 (m))n+1 (,}/(m))n+l (,}/(m))n+1 and (,}/(m))n+l, solve itera-

tively Egs. (33) and (34) coupled with the interfacial condi-

tions, Egs. (35¢)-(35f), for (7)™ and (T,(m))"+1 .
Step 2. Solve for (c™)"*, (g;’”))nﬂ’ (G My,

@)™, (o)™ and (o”)"*" using Egs. (30)-(31).

Step 3. Solve for the derivatives of (o))",
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(G(m) )" using Eqs. (23)-(24) or similar equations.

(m) )n+l

Step 4. Solve for (v("™)"*, and (v}

using Eqs. (25)-(27).
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Step 5.

Update (S;m))n-%—l, (ggm))nﬂ ,

Given the required accuracy &, (for temperature) and &,

(for strain), repeat the above steps until a convergent solution
is obtained based on the following criteria.
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Table 1. Thermophysical Properties
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Properties Unit Gold Chromium Others
P kg/m’ 19300 7190
A J/(m’K?) 70 1933
A Pa 199.0x10° 83.3x10°
u Pa 27.0x10° 115.0x10°
o 1/K 142x107° 4.9x107°
C.o J(m*K) 2.1x10* 5.8x10%
o T/(m’K) 2.5%10° 3.3x10°
G W/(m’K) 2.6x10'° 42x10'°
k, W/(mK) 315 94
R 0.93
t) s 0.1x107"
z,¢ m 153x107°
7y m 1.0x107°
J J/m? 500, 1000, 2000

(Te(m) )n+1(new) _ (Te(m) )n+1(u/d) < 61 ,

(362) respectively. Three different values of laser fluences (J =500

i,j.k i,j.k
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y Jijk Yy Jijk =52
1 1(old
€M) =Myl <,
(m) \ n+l(new) (m) \n+l(old) < (360)
(ny )i,j,k _(yxy )i,j,k = 529
1 1(old
D = | <
(m) \ n+l(new) (m) \n+l(old) < (36d)
(’}/yz )j,j,k _(sz. )i,j,k = 52'

Using a similar argument, a numerical method can be
obtained for studying thermal deformation in a double-
layered micro sphere induced by an ultrashort-pulsed laser.

NUMERICAL EXAMPLES

To test the applicability of the developed numerical
scheme, we investigated the temperature rises and thermal
deformations in a 3D double-layered thin film consisting of a
gold layer on a chromium padding layer with dimensions
100umx100umx0.1um , and in a 3D double-layered micro

sphere consisting of a gold layer on a chromium padding
layer with a radius of 0.05um for each layer, respectively.

The thermophysical properties for gold and chromium are
listed in Table 1 [1, 5, 17]. We assumed that the laser was
focused on the center of the top surface of the thin film and

that it irradiated the top surface (0<¢@ S%) of the sphere,

J/m?, 1000 J/m* and 2000 J/m*) were chosen to study
the hot electron blast force. Three  meshes
0f20x20x 60, 20x20x80, 20x20x100 for each layer in
(x,y,z) for the thin film and three meshes of
60x20x20, 80x20x20, 100x20x20 for each layer in
(r,0, @) for the micro sphere were chosen in order to test the
convergence of the scheme. The time increment was chosen
to be 0.005ps and T, was set to be 300K . The convergence

criteria were chosen to be &, =10"% for temperature and

& =107"° for deformation.

Fig. (3a) shows the changes in electron temperature
(AT, /(AT,) at the center (X, =50 um,

max )

=50um and z =O0um) of the thin film and at the top

ycenter

point (L,0,0) of the sphere with a laser fluence of

J =500J/m?, respectively. The maximum temperature rise
of Te (i.e., (AT,) .y ) 1s about 3765 K, which is close to the
3727 K obtained by Tzou ef al. [1]. It can be seen from this
figure that there is a slight difference between the thin film
and the sphere. This is probably because of the different
geometries. Fig. (3b) shows the displacement (w) at the cen-

0)of the thin film and the displace-
ment (u,.) at the top point (L, 0, 0) of the sphere versus time,

ter (xcenter > ycenter >
respectively. The negative value of displacement (w)indica-
tes that the thin film at the center (x

ding along the negative z direction, while the positive value
of displacement (u, ) implies that the sphere at the top point

center » Y center ’0) 1s expan-
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(L,0,0) is expanding along the positive r direction. It can

be seen from both figures that the mesh size had no signifi-
cant effect on the solution and hence the solution is conver-
gent.

Figs. (4 and 5) show electron temperature and lattice

temperature of the thin film along z at (X, > Veener ) With

three different laser fluences (J =500 J/m?, 1000 J/m® and
2000 J/m?) at different times (a) t = 0.25 ps, (b) t=0.5 ps, (c)
t =10 ps, and (d) t = 20ps, respectively. It can be seen from
Fig. (4) that the electron temperature is in maximum at t =
0.25 ps, then it decays with time and it is almost uniform at t
= 20 ps along the thickness direction. On the other hand, Fig.
(5) shows that the lattice temperature increases gradually
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with time in both gold and chromium layers, due to constant was obtained in [1, 11]. The difference of electron and lattice
heating of acoustic phonons by electrons. Since the heat is temperatures in Figs. (4 and 5) gives a strong flavor of non-
transferred from the gold layer to the chromium layer and the equilibrium heating during the picosecond transient.
Con'ductivity of chrpmium is sma'ller than that of gold, the Fig. (6) shows the displacement (w)of the thin film
lattice temperature increases drastically across the interface.

A clear discontinuity of the temperature gradient at the inter- along z at (Xcener > Vcener ) at different times (a) t =5 ps, (b)

face can be seen in Fig. (5), which is the same prediction as
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t =10 ps, (c) t = 15 ps, and (d) t = 20 ps with a mesh of
20x20x80 and three different laser fluences

(J =500 J/m?, 1000 J/m* and 2000 J/m?). It can been seen
that the displacement w, particularly at t = 20 ps, changes
from negative to positive for each layer along the thickness
direction. The negative value indicates that the displacement
moves in the negative z direction, while the positive value
implies that it moves in the positive z direction. From this
figure, one may see that the film is expanding. At t = 10 ps
and 20 ps, the displacement shows a clear alteration across

the interface, implying that both layers push each other and
the bond between these two layers could be damaged under
high intensity laser irradiation.

Fig. (7) shows the normal stress o, along z at
(X center » YV center ) at different times (a) t =5 ps, (b) t = 10 ps,
(¢) t = 15 ps, and (d) t = 20 ps with a mesh of
20x20x80 and three different laser fluences (J =500 J/m?,
1000 J/m* and 2000 J/m?). In our experience, the conventio-
nal finite difference method produces local oscillations in the
normal stress o, (see Fig. (5) in [2]). It can be seen from
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Fig. (7) that the curve of o, is smooth and does not appear
to have local oscillations, implying that our method prevents
the appearance of non-physical oscillations in the solution.

Figs. (8-12) were plotted based on the results obtained
with a mesh of 20x20x80and with a laser fluence
of J =1000J/m?> . Figs. (8 and 9) show contours of the elec-
tron temperature distribution and the lattice temperature dis-
tribution in the cross section of y =y, atdifferent times
(a)t=0.25ps, (b)t=0.5ps, (c) t=1 ps, (d) t =10 ps, and

(e) t = 20 ps, respectively. It can be seen from both figures
that the heat is mainly transferred along the z direction.
This result confirms the fact that the femtosecond lasers are
an ideal candidate for precise thermal processing of functio-
nal nanophase materials. Fig. (9) also shows that there is a
clear difference between the lattice temperatures in these two
layers, because of the different conductivities. Figs. (10-12)
show contours of displacements (u, v, w) in the cross section
of ¥ =Y, .mer at different times (a) t=15 ps, (b) t =10 ps, (c)
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t=15 ps, and (d) t = 20 ps, respectively. It can be seen from
Figs. (10-12) that the central part of the film is expanding
because displacements change from negative to positive
along the center line in the z direction, and along the x and
y directions, respectively.

We now turn our attention to the sphere. Figs. (13) and
(14) show profiles of the electron temperature and the lattice

temperature along the diameter at ¢ =0 and ¢ =7 with
three different laser (J =500 J/m?, 1000 J/m* and 2000 J/m?)
at different times(a) t = 0.25 ps, (b) t=0.5 ps, (¢) t =10 ps,
and (d) t = 20 ps, respectively. Again, it can be seen from
Fig. (13) that the heat is transferred from the gold layer to
the chromium layer, and the lattice temperature increases
drastically across the interface. A clear discontinuity of the
temperature gradient at the interface is also seen in Fig. (14).
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10 ps, and (d) ¢ =20 ps with a mesh of 80 X 20X 20 and three different laser fluences (J) of 500 J/m?, 1000 J/m* and 2000 J/m?.

Fig. (15) shows the displacement u, along the diameter at 80x20x20and three different laser fluences (J =500 J/m?,
¢ =0 and ¢ = at different times (a) t =15 ps, (b) t =10 ps, 1000 J/m* and 2000 J/m®). It can be seen that the displace-
(c) t = 15 ps, and (d) t = 20 ps with a mesh of ment u, moves in the positive » direction, implying the
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Fig. (14). Lattice temperature profiles along the diameter at (0 = 0 and (¢ =T at different times (a)  =0.25ps, (b)  =0.5ps, (¢) =
10 ps, and (d) ¢ =20 ps with a mesh of 80 X 20X 20 and three different laser fluences (J) of 500 J/m?, 1000 J/m? and 2000 J/m?.

sphere is expanding. However, the displacement gradient Figs. (16) and (17) show contours of the electron tempe-
shows a clear difference across the interface, implying that rature distribution and the lattice temperature distribution in
the bond between these two layers could be damaged under the cross section of 8 =0 and 6 =7 at different times (a) t

high intensity laser irradiation. =025 ps, (b) t =0.5 ps, (c) t = 10 ps, and (d) t = 20 ps,
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Fig. (15). Displacement (,.) profiles along the diameter at (0 = 0 and (=T at different times (a)  =5ps, (b) £ =10ps, (¢) =15
ps, and (d) # =20 ps with a mesh of 80X20X 20 and three different laser fluences (J) of 500 J/m?, 1000 J/m? and 2000 J/m>.

respectively. Again, both figures show that the heat is trans- Fig. (18) shows contours of the displacement u, in the
ferred from the upper hemisphere to the lower hemisphere cross section of 6 =0 and 6 =7 at different times (a) t=5
and also from the gold layer to the chromium layer. ps, (b) t=10 ps, (c) t= 15 ps, and (d) t = 20 ps, respectively.

It can be seen that the sphere is expanding and further the
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Fig. (18). Contours of displacement (#, ) distributions in the cross section of @ =0 and 0 = 7 at different times (a) # =5 ps, (b) # =10

ps, (¢) ¢ =15 ps, and (d) ¢ =20 ps with a mesh of 80X20X 20 and a laser fluence (J) of 1000 J/m?.

upper hemisphere expands more than the lower hemisphere
because the laser irradiates the upper hemisphere.

CONCLUSION

We have developed a finite difference method for stu-
dying thermal deformation in 3D double-layered thin films
and micro spheres exposed to ultrashort-pulsed lasers. The
method, based on the parabolic two-step heat transport equa-
tions, accounts for the coupling effect between lattice tempe-
rature and strain rate, as well as for the hot-electron blast
effect in momentum transfer. By replacing the displacement
components in the dynamic equations of motion using the
velocity components, developing a fourth-order compact
method for evaluating stress derivatives in the dynamic
equations of motion, and employing a staggered grid, we
have developed a numerical method that allows us to avoid
non-physical oscillations in the solution. Numerical results
show that the central part of the thin film and the micro
sphere expand and the bond between these two layers could
be damaged under high intensity laser irradiation.

NOMENCLATURE

C,.C electron and lattice heat capacity,

respectively

STASQ

S
X
~

=

<
X
~

Q= 3

—
u\
)
S
~

electron - lattice coupling factor
laser fluence

bulk modulus

thermal conductivity

radius of sphere

dimension of thin film

index for layer
surface reflectivity
energy absorption rate

spherical coordinates

spatial profile parameter of laser
electron temperature and lattice
temperature

time

laser pulse duration
displacements in the x, y and z

directions, respectively
displacements in the »,6 and ¢

directions, respectively
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n
Ui jk
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A u

o
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O-xy 0 xz 7O-yz

O5 O'r(p > Ge(p

numerical solution of

u(x;, ¥, 2x,1,)

velocity components in the x,

y and z directions, respectively
Cartesian coordinates

optical penetration depth

thermal expansion coefficient
time increment and spatial step
sizes,

respectively

finite difference operators

normal strains in the x, yand z
directions, respectively

normal strains in the »,0 and ¢

directions, respectively
electron - blast coefficient
shear strains in Cartesian coordi-

nates
shear strains in spherical coordi-

nates
Lame’s coefficients

density
normal stresses in the x, y and

z directions, respectively
normal stresses in the 7,0 and ¢

directions, respectively
shear stresses in the x, y and z

directions, respectively
shear stresses in the »,0 and ¢

directions, respectively
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