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Abstract. For Motzkin paths with up- and down-steps of heights 1 and 2, the minimal
recursion is of order 6, not of order 4, as conjectured by Schork.
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The classical Motzkin numbers count the numbers
of Motzkin paths: We consider in the Cartesian plane
Z×Z those lattice paths starting at (0, 0) that use an
up-step (1, 1), a down-step (1,−1), and a level-step
(1, 0). Motzkin paths of length n are built of these,
lead to (n, 0) and never go below the x-axis.

Now we consider higher rank Motzkin numbers, as
suggested by Schork [2]: There are up-steps (1, 1),
(1, 2), . . . , (1, r) with respective weights a1, . . . , ar,
down-steps (1,−1), (1,−2), . . . , (1,−r) with respec-
tive weights c1, . . . , cr, and a level-step (1, 0) with
weight b.

Let us first consider the classical case r = 1. The
generating function M(z) of these paths satisfies the
equation

M = 1 + bzM + azMczM,

whence
1− bz −

√
1− 2bz + b2z2 − 4az2c

2az2c
.

This equation is obtained by a decomposition of the
Motzkin paths with respect to the first return to the
x-axis.

Schork’s first problem is to find a recursion for the
numbers mn = [zn]M(z). (The coefficient of zn in
the power series expansion of M(z), i.e., the number
of (weighted) Motzkin paths of length n.)

This can be automatically solved with Maple’s pro-
gram gfun (written by Salvy et al.): The procedure

algeqtodiffeq translates the (algebraic) equation for
M(z) into an equivalent differential equation:

2 + (3bz − b2z2 + 4az2c− 2)M

+ (−z + 2bz2 − z3b2 + 4z3ac)M ′ = 0.

The procedure diffeqtorec translates the differential
equation into a recursion:

(−b2 + 4ac)(n + 1)mn

+ (5b + 2bn)mn+1 − (n + 4)mn+2 = 0,

which solves already this first problem.1

Now let us move to the instance r = 2. Let us
assume that the weights are all 1, so that we are
just interested to count the number of (generalized)
Motzkin paths. In the paper [1] we find the equation
for the generating function:

z4M4 − z2(1 + z)M3

+ z(2 + z)M2 − (1 + z)M + 1 = 0.

Thus (again with gfun)

− 4− 100z2 + 56z

+ (3750z6 − 5000z5 + 250z4

+ 700z3 + 160z2 − 92z + 4)M

+ (−328z2 + 32z − 15250z6 − 20z3

+ 4750z4 + 11250z7 − 650z5)M ′
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1After sending a draft of this note to M. Schork, he informed me that he could now also establish this recurrence together

with Mansour and Sun.
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+ (5625z8 − 7750z7 − 1200z6 + 3880z5

− 395z4 − 186z3 + 26z2)M ′′

+ (625z9 − 875z8 − 250z7

+ 610z6 − 91z5 − 23z4 + 4z3)M ′′′ = 0

and

625(n + 3)(n + 2)(n + 1)mn

− 125(n + 3)(n + 2)(7n + 27)mn+1

− 50(n + 3)(5n2 + 24n + 23)mn+2

+ (41890 + 30860n + 7540n2 + 610n3)mn+3

+ (−6844− 5151n− 1214n2 − 91n3)mn+4

− (n + 7)(23n2 + 301n + 976)mn+5

+ 2(2n + 13)(n + 8)(n + 7)mn+6 = 0.

(This recursion also appears in [1].)
Bruno Salvy has kindly informed me that this re-

cursion of order 6 is minimal.
Schork [2] conjectured that there should be a

(2r + 1)-term recursion (=order 2r). Thus, the con-
jecture does not hold.
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