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Abstract: On the unbounded knapsack problem, dominance relations play a crucial role to reduce items
to be considered in a given instance. This article picks up two topics in dominance relations. One is
a connection between dominance relations and polynomially solvable special cases, and the other is on
unusual dominance relations.
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INTRODUCTION Broughan [5], Andonov et al [6] and [7]. Dominance
relations allow to replace a given instance with an equiv-

This article deals with the unbounded knapsack problegient smaller-sized one. To take an examplg; it px

(UKP), in which given a knapsack of capacityandn andw; < w hold in an instance of (1), then tfjeh item

types of items of profit and weight we pack the itemgominates theth. In this case, th&th item is redun-

into the knapsack so that the total profit of packed iterdant because a solution &f > 0 does not degenerate

is maximised without the total weight of those exceedy replacing all thekth items packed with thgth. As

ing c. The UKP is formulated as follows: for (2) in the same case, conversely, ke dominates

the jth given the same argument. Furthermore, on UKP,

Z Wixi < c: polynomially solvable special cases have also been stud-
7= ied by, e.g., Magazine et al [8], Hu and Lenard [9] and

Zukerman et al [10].

xj€No, jeN}, (1) In the remainder of this article, Section 1 connects

) : : dominance relations with polynomially solvable special

whereN := {1,2,....n}, and each elemerjt € N in- cases, and Subsection 1.1 discusses the extendability of

dicates an item of profipj and weightw;. Differing tttne polynomially solvable special cases treated in Sec-

from the conventional O._l knapsack p“’b'e’.“ (KP) 9on 1. In Section 2 we present three dominance rela-
X;j € {0,1}, UKP (1) provides unbounded copies of ev:

ery item asxj € No := {0,1,2,...}. As seenin, e.g., tions unusual in some sense.
Nemhauser and Wolsey [1, p.433] UKP is ordinarily
formulated as a maximisation problem whilst there alsb  Dominance Relations and Polynomially

exists a minimisation formulation: Solvable Special Cases

n
Zmin> = mxin{z; PjX;
J:

anwj Xj > C; As sta_tted i.n Intrpductiqq we may assume that there is

= no pair of itemsj, k fulfiling p; > pc andw; < w.
Therefore in this section we assumpg< pz < --- < pn

@) andw; < Wy < - -+ < Wp.

It was shown in [10] that the condition

Xj € No, jeN}.

We discuss both versions of UKP. To make it simple,
throughout the article we assume tipatw; andc are all
positive integers regardless of the formulation of UKP.

Moreover, only for (1), to exclude useless items we &gqpies that the minimisation problem (2) can be solved
sumew; < cforall j. Also, letx := (X, X,....%). py a polynomial algorithm. In fact, as in [3, p.18] (3)
Then such am-vector is called a solution, and one safz (for eachj fixed) a dominance relation for the max-
isfying the constraint is said to be feasible. For the safgisation problem (1), callechultiple dominancén [6,
of brevity we sometimes employ notation like > 0, p.396]. We are going to show that a condition
representing; > O for all j.

Besides the periodicity (see, e.g., [1, Chapter 11.6] Pjs1 > [Wi1/Wjlpj, for j=1,2,...,n-1 (4)
or Kellerer et al [2, Section 8.2]) UKP possesses
one more property viz dominance relations studied nalogous to (3), which is (also for eagfixed) a dom-
e.g., Martello and Toth [3], Dudaski [4], Zhu and inance relation for (2), implies that (1) can be solved

Pj+1 < [Wjsa/Wjlpj, forj=1,2,...,n-1 (3)
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by a greedy algorithm. The following corresponds tdheorem 1. (Hu and Lenard, 1976) SupposeH;(y) =
Lemma 3.2 in [10], and is proved in a similar way. F;(y) for all positive integery and some fixed. If

] ) wj,1 > wj andm andy are the unique integers for
Lemma 1. If (4) holds then there exists an optimal so-  \yhich Wj,1 = mw; —y and 0< y < w;, then the

lution x* = (X}, X5,...,X;) for the maximisation following are equivalent.
problem (1) withx;, = [¢/wy].
. . N . (&) Hisa(y) < Hj(y) for all positive integery,

proof. There is an optimal solutionx” of x; < (@) H;+1(y) _ Fj]+1(y) for all positive integers.

[wij.1/wj] for all j € N\ {n} because by (4) the () Hipa(mw) = Froa(mw)

(j+1)-st item is at least not worse théw;,1/w;] ©) " N H-l( ) <Jr;1 Sn

copies of thejth. Suppose that Lemma 1 does Pj+1 ily) < mp;.

not hold, which gives¢, < [c/w,] as well as a

solution (Q...,0,[c/w,]) being not optimal, i.e.,

LC/Wn]pn < pX'. Then, we have

Hu and Lenard [9] added ‘(ato the one in [8], which
simplified the proof. Notice that (c) of = 1 always
holds because it is reducedpg/w, < p;/w;, supported
n by (6). For the same reason; | wj,1, denoting thatv;
LC/Walpn < Y PX; divideswj,  evenly, validates (c).

=1 Owing to no restriction on the sign gfs in [8, 9], (5)
n-1 admits an operation such that we first add a minus sign
= Z (rWi+1/Wj1pj - pj) to all p;s in (5) so as to make (5) a maximisation form,
=1 next replace-p; with p; for all j, and last assign O to
+ [C/Wn]pPn — Pn p:. Hence, Theorem 1 still holds for the resulting (1)
< C/Wn)pn — P1, except that the operation causes bathih (a’) and (c)

to be >’, and (6) also to be reversed as
reading a contradictiop; < O.
P1/Wi1 < P2/Wz < -+ < Pn/Wh. (7)

Then, using (4) recursively, a greedy algorithm process-
ing items from thenth to the 1st solves (1) with (4).Concerning the resultant (1% > 0 and (7) ofp; = 0
The algorithm actually produces theéhaving appearedgive p > 0; thus we haved; > 0, which leads to
in the proof. Indeed, in a stage where thh item is (4)=(c). Consequently Theorem 1 proves that a greedy
packed, residual capacity for the stage is less thanalgorithm solves (1) with (4). Incidentally, this can
Wit1 thenx}‘ = [¢'/w;] < [wj.1/w;]. In fact, the result also be drawn from applying the operation aspis
obtained here can be drawn from the preceding work tyyCorollary 1 in [9, p.195]. Specifically, the condition
Magazine et al [8]. In what follows we will elaborate itpj.1 < mp; — yp, shown therein is directly reduced to

Magazine et al [8] revealed necessary anflicient (4).
conditions for a greedy algorithm solving the equality-

constrained minimisation UKP formulated as: 1.1 Onthe Extendability of the Polynomi-
n ally Solvable Special Cases
Zin= = Min Z PjX;
=1

n
]Z;W’ X =c Regarding Theorem 1 a remark is that it is not applica-
] ble to all greedily-solvable instances. On the equality-
Xj € No, ] € N}’ () constrained minimisation UKP (5), the following in-
stance is greedily solvable:

P1/Wy > P2/Wo > -+ > Pn/Wh, (6)
l=wi<wj,2<j<n

8

Before stating the conditions, we introduce two func-
tions. One isFj(y) (1 < j < n, 0 <y < ¢) tradi-
tionally called aknapsack functionwhich is restricted However (8) does not satisfy (c) @ + H2(3) = 12 £

in (5) so that only the firsf items are available and9 = [wz/w,]p,. Thus Theorem 1 argues that an instance
the capacity isy, where znin- = Fn(c). Under the of p;,w; fulfilling (c) for all j € N\ {n} is irrespective
same restrictions as those 61(y), the otherH;(y) is of c solved by a greedy algorithm. In another view, The-
a profit gained greedily, being formulated Hg(y) := orem 1 excludes an instance whose greedily-solvability
Ly/w;lpj + Hj_a(y — Ly/wjlw;) for j > 1; otherwise, is on the value oft. This will also be shown by the

Hai(y) := ypr. physical evidence of (c) not including the capadity
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In addition, on the maximisation problem (1), the folvalue is €/w,)pn because by (6) for any feasiblewe
lowing instance is a counterpart to (8): have €/Wn)pn < (Pn/Wa)WX < pX. To take an example,
the following instance satisfieg, | c:

9)
(10)

An optimal solution (11) is greedily obtained whereas
(9) does not satisfy (c) ap, + H1(1) = 3 # 4 = Here we would like to add three points. First, the con-
M'wo/Wi]p:. In this regard it may seem challenginglition w, | ¢ is indeed not a special case of (3) because
to extend Theorem 1 as far as being applicable to &ll(10) p> £ [wz/wi]p;. Second, (10) witlc = 4 re-
greedily-solvable instances of (5) (or (1)), yet it iplaced is not solved by the algorithm in [10]; thus, it
known that determining whether a greedy algorithmill be inevitable that a necessary andistient condi-
solves the change-making problem (CMP, arising tion to define a class solvable by the algorithm in [10]
addingp = 1 to (5)) of some specific is NP-hard as includes the capacity, fiering from (c) in Theorem 1.
stated in Pearson [11, p.232]. Hence, on account of tk@st, wherw; | c andc < wj,; for somej, the instance
ing an extension of CMP, unles3 = NP we could also is solved by the algorithm in [10].
not expect a polynomial algorithm which determines To the best of our knowledge, a necessary arffi-su
whether a greedy algorithm solves (5) (most probabdyent condition under which the algorithm in [10] deliv-
(1) either) of some specific ers an optimal solution to (2) is not yet found out. To
On the other hand how about (3)? In the rest of thigvestigate (2), taking account of the transformation of
section, on the minimisation problem (2) we assume (€%) into (1), one might consider an equality-constrained
which is implied by (3). Here we will briefly mentionmaximisation UKP; however, it shall involwe; = -1
the work in [10]. A point is that the condition (3) impliesbeyond the scope of this article having assumesl 0
that there is an optimal solution with x, > [c/w,]. SO far.
Then, using (3) recursively, an algorithm proposed in

[10] gives profitGy(c) computed as 2 Unusual Dominance Relations
G.(V) = mm{MWﬂpJ’Ly/V_V'JP' . Any dominance relation proposed hitherto is to our
J(y) = +Gjoaly - Ly/wjlwy)), > 1, K led d | ith lati
ry/wylpa, =1 knowledge concerned only with a relation amongst
items, and does not involve the capacity. This section
The polynomially solvable special case for the magresents three dominance relations each of which in-
imisation problem (1) defined by (4) is that a greedy atolves the capacity. Following [2}min andwmax hence-
gorithm works whilst the case by (3) is not so, whicforth denote miny wj and maxn w; respectively. In
will reflect the property of an inequality-constraineavhat follows we formulate three unusual dominance re-
minimisation problem; that is, we can make an infeéations as Lemmas 2—4.
T A2 st o ocking more eMBemma 2. For (1), s | (e s s veny)
tal weight of a solution has exceeded the, capacity, the an(_j the 1st item is of maximum ratio (?f profit to
' weight (p;/w;) amongst all, then the 1stitem dom-

solution remains !nfeasmle even by_domg So. inates the others with optimal valugc/w;.
In respect of this we note in passing why the proof of

Theorem 1 is not suitable for (2). First of all, for (2)Whilst we can examine this relation i@(n) time, it
it will be natural to defineH;(y) := [y/w;j1p;. Showing appears not to be worthwhile to apply this relation
the contrapositive of (¢ (&), for example, we assumeto a given instance because in that case, even crude
y > wj.1 wherey denotes the smallest integer for whiclipper | psc/w1| and lowerp;|c/w1] bounds coincide,
(&) fails. The assumption is valid to UKPs ef c or and therefore an algorithm based on branch-and-bound
< ¢, one reason for which is thétj.1(y) = Hj(y) forany could terminate forthwith, only visiting the root node. In
y < wj.1; however, it is not valid to that ot ¢ because addition, supposing that the 2nd item is of second max-
the (j+1)-st item can be packed agaiyst wj,1 due to imum ratio of profit to weight, ifw, | (c — [c/wy |w1)
Hj.1(-) defined for (2). then (c/wa], (c — [c/wilwy)/W», 0, ..., 0) is an optimal

In fact, (3) is not a necessary condition either, arablution. In this case we could say that the pair of the
therefore we can consider anotheiffiient condition 1stand 2nd items dominate the others, and so on. Need-
for the case solvable by the algorithm in [10]. Althoughess to say an argument similar to that for the first one is
trivial, w, | cis one of what we want, where optimakuitable for (2).
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