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Strong Convergence Rates of Wavelet Estimators in Semiparametric
Regression Models with Censored Data*
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Abstract: The paper studies a semiparametric regression model

Y, =X,p+9(T)+e.i=12,L,n.
where ; is censored on the right by another random variable C, with known or unknown distribution G . Firstly, the wavelet estima-

tors of parameter g and nonparameter g(t) are given by wavelet smoothing and the synthetic data methods. Secondly, under general

conditions, the laws of the iterated logarithm for the wavelet estimators of parameter and strong uniform convergence rates for the
wavelet estimators of nonparameter are investigated. Lastly, the validity of method is illuminated by the simulation example.
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1. INTRODUCTION

Consider the semiparametric regression model
Y, =X;B+a(M)+e,

where Y,’s are scalar response variables, X,’s and T.’s are
explanatory variables, g is a one- -dimensional unknown
parameter, g(-)is an unknown regression function on [0,1],
and € ’s are independent and identically distributed random
errors with zero mean and finite variance o?.

i=12,L,n. 1)

Following Speckman (See [1]), denote
xi:f(Ti)+ni,15isn. (2)

where f(-) is some unknown smooth function on [o,1], n,’s
are independent and identically distributed random errors
with zero mean and finite variance O': and independent of

Y,’s and T’s.

Since the introductory work by Engle et al. (See [2]), the
model (1) has been widely studied (See [1,3-6] and refer-
ences therein) and put into use in many fields of applied sta-
tistics. A partial list of estimation methods for g and ¢ (')

includes penalized least squares method (See [7]), smoothing
splines method (See [8]), piecewise polynomial method (See
[3]), near neighbor method (See [9]) and wavelet method
(See [10-13)), etc.

In practice, particularly in medical studies, v, may be
censored randomly on the right by some censoring vari-
ablec,,i=12,L_,n, and hence cannot be observed com-
pletely. One only observes {xi ,Ti,zi,(si} ,i=1,2,L,n, where
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Z,=min(Y,,C,)» 8, =1(Y,=<C))>

C, are assumed to be independent of Y, ’sand p.’s . For right
censored data, the model (1) has been'studied by Wang and
Li [14] and Wang and Zheng [15], and the model (1)-(2) has
been investigated by Qin and Cai [16], Qin and Jing [17],
Pan and Fu [18] and Liang and Zhou [19].

With wavelet method, the paper discusses the model (1)-
(2). The organization of the paper is as follows. In section 2
the wavelet estimators of parameter § and nonparameter
g(t) are given by wavelet smoothing and the synthetic data
methods. Under general conditions, the laws of the iterated
logarithm for the wavelet estimators of parameter and strong
uniform convergence rates for the wavelet estimators of
nonparameter are investigated in section 3. The main proofs
are presented in section 4, with the simulation example in
section 5.

2. ESTIMATION METHOD

Let F () and G () denote the distributions for Y, and Cl,
respectively. Assume that G() is continuous and known at

the moment. Using the synthetic data method (See
[16,17,20], and references therein), we transform the cen-
sored data {(zi,ai),i =1 2,|_,n}into the following synthetic

data
Y =¢,(2,;G)8 +9,(2,;G)(1-96,) 3)
where (4)1, ¢2) are continuous functions which satisfy
(1) @-6(")(¥:6)+[ 4 (tG)dG([X)=Y
(i i) ¢, and ¢, donotdependonF .
The class of all pairs (g,,¢,) of such functions will be

denoted by K. It can be easily showed that, if(¢1,¢2)eK,
then
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E(Y[XT)=E(v[x.T) and E(Y")=E(Y) 4)
where X :{xl,|_, Xn}7T:{T1’L7Tn}' The class K includes
many interesting cases (See [19-20]).

If G(.)is unknown, we use a modified version dén (t) of
the Kaplan-Meier estimator of G (t) defined by

6. ()= Aén(t),if t<Z, or &, =0
' G, (Zw)if t>Z, and 5, =1
Where

& O=-T10 @Y @)
N*(t)= 2 1(z,>t)

Ziy= max{Z.} and § . is the corresponding §. . It is easily
(O i (m i

<i=n

showed that
G, (t)=1-(h+1)" <1

for all 1. Substituting dén ) for G() in (3), we obtain the
following synthetic data:

Y= (2:8, )0+, (2:8,)-5) ()

Suppose that there exists a scaling function ¢(x) in the

Schwartz space S, and a multiresolution analysis {v_} in the
concomitant Hilbert space |.2(R), with its reproducing kernel

E, t s) given by

E.(t,s)=2"E, (2mt,2’“s) —om E ¢(2mt _ k)¢(2ms _ k)

kez

where Z denotes the collection of integers. Let A =[s, ;,s;]
be intervals that partition [0,1] with t, eA and l<i=<n.
The estimate method will be introduced as following:

Firstly, suppose that g is known, we define estimator of

() by
g, (t.B)= 2 (v - xiﬁ)fA E, (t,s)ds-
In succession, we define wavelet estimator g* by mini-
mizing

B, =arg mﬁin{z [Yi* -Xif - g"(ti:ﬁ)]z} = Z %.%*/2 X?

where

X =X, - ZIA E, (t,s)dsX ¥ =Y, - 2fA E, (t,,s)dsy,”-

Finally, we define linear wavelet estimator of g(-) by
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g,0=9,(t.5)= 2 (- X8, En (t5)ds

Using the similar procedure, if G (-)is unknown, then
we define estimators of 8 and g(*) by

F=SAE 3R 50=3 0 -xA Y, B 0

whre =33, [, €. 1o
j=1 '

To obtain our results, the following conditions are suffi-
cient.

(A1) g()and f (-) belong to the Sobolev space with order
a>1/2.

(A2) g() and f(-) satisfy the Lipschitz condition with
order y >0.

(As) gi)() is in the Schwartz space with order 1= «, satis-

fies the Lipschitz condition with order 1 and has a compact
support. Furthemore, d}(g)_q =0() as& -0, where ¢ is the

Fourier transform of ¢ .

(As) max(s -s) = O(n) and2m=0(n**).

(As) F (-)andG(~) are continuous functions. In the case
G (z; ) <1, assume that

[T @-F(s-)) de(s)<=,

where 7, :inf{t; F(t):l}- In the case G(rF):l, assume
that

(@-G()) =0(@-F(u-))asutz,
for some g€ (0,1)-

In the following discussion, we shall confine ourselves to
some more restricted classes of (g,,¢,) than the class K.lIn
particular, we define

K* :{(¢1,¢2)E K : for each s <z, there exists a constant
0 <C” <o such that

StLSJSp|¢j (tG)=C"j=12}
and
K :{(¢1,¢2)E K™ : there exist constants 0 <L = L(s) < and
§ >0such that

S[li?‘qu (t;dé)ﬂi’j (t;G)‘s LStlisp|@1 (t)—G(t)|, i=12
for all d.f. & with sup|6 (1)-G (1) <5}

For ease of exposition, we shall introduce the following
notations which will be used later in the paper. Define
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E :n12>°é5 [¥

€& =Y

Xlﬁr;Y - g: (TI )]2 !

=Yi*_Xi/3_g(Ti)’

é;,*:n—lg%iz [V
F(T)=1 (Ti)—g £ 1,)f, B (615)ds.
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Xfr-6:(1)]

@(Ti)zg(Ti)_Zg(Tj)fAj E. (ti,S)dS, 8 =e:_23:fAj E. (ti’s)ds’

= inij E, (t.s)ds.
1= ]

3. STATEMENT OF THE RESULTS

Theorem 3.1. Suppose that conditions (A;) -
(As) hold. |5|el|3<oo,E|;71|3 <oo and (g,,¢,)EK". Then for

everyy 21/3 o >3/2,
=a;’ (E (e )/2 as.

J=0(*logn) &s.  (7)

limsup [n (2loglog n)’l]

Theorem 3.2. Suppose that conditions (A -
(As) hold. |5|el|3<oo,E|;71|3 <oo and (g,,¢,)EK". Then for

everyy =21/3 o >3/2,

(E(mel))/ as.

)|—O(n % og n) as. 9)

limsup [n (2loglog n)

n—soo

4. PROOFS OF THEOREMS

Throughout this paper, let C denote a generic positive
constant which could take different value at each occurrence.
Before the proofs of the theorems, we introduce some pre-
liminary results.

Lemma 4.1. (Antoniads et al. [21]). If condition (A3)
holds, then

[g, (t.s)=C,/@+[t-s)* and |E, (t,s) < 2"C,/@+2" [t-s])*
for keN , where C, is a real constant depending on k

only.
() sup|E,, (t.s) =O@m)-

(11) SlthJ:‘Em(t,S}dSSC'

Lemma 4.2. (Hu and Hu [22]). Let ¢
when1/2<a<3/2, 7, =/m-2" when ¢=3/2, ¢ =27
when ¢ >3/2. If conditions (A;)—(A) hold, then

f(t)- 2% E, (L5)ds) f (T,) =0 (n )+O(r,)
n =o(n”)+0(r,)

— 2—m(a -1/2)

sup
t

sup
t

Lemma 4.3. (Qian and Cai [13]). If conditions (A;)—
(A4) hold, and E|e1|3/2+é < forsomes >0, then

n
limn™* Y X7 =07 as
bt

Lemma 4.4. (Qian and Cai [13]). If conditions (A;)—
(A4) hold, and Epp/ < o0, then

;nijj E, (t,s)ds

Lemma 4.5. (Xue [11]). If conditions (A;)—(A,) hold,

then
if‘\ E, (t,.s)ds

Lemma 4.6. (Gu and Lai [23]). Assume condition (As)
holds. If G(TF)<1, let

T, :sup{t 1-F(t) = n’(“)},
where 1/3<k <1/2, then

- 16 1l S.
sup =0(n""log¥*n) as

max =0(1) as
]

limsup [n (210glog n)’l]l/2

If G(TF)Il,then

-1 (t)] a.s

Iimsup[n(Z log log n)'l]y2 3,
n—sow t=t,

=sup[s (t)o™ (t)] a.s

where

$(1)=1-6(t).0* (1)= (-G (s))* @-F (5)) " dG (s)-
Lemma 4.7. Under the conditions of theorem 1, we have

0@ - 5; )=o) @s.
The proof is similar to that of lemma 1 in [17] and hence
omitted here.
Lemma 4.8. (Hardle, Liang and Gao [24])
Let{gi,i :1,2,L,n} be independent random variables with
EE =0 and finite variances, and sup E|§i|' <C<w (r > 2).

1<i=n

Assume that {a..,i, j=12L n}is a sequence of real num-

bers such that gyp

1s<i,j=n

gaij =0(n™) forp, =max{0,2/r - p} . Then

a|—O n pl) for some 0<p, <1 and
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iaijgi

Lemma 4.9. Let{gi,i :1,2,L,n} be independent random

max
1<jsn

:O(n‘slogn) for s:(pl_ pz)/z as.

variables  with EE =0 and finite variances,
and syp E|§i|' <C <o (r=3)- Assume that conditions (A;)—
1<i=n

(A4) hold. Then
i ] , En (t;.5)dsg,

Proof Let r=3,p =2/3,p,=0 and a :fa Em(tj,s)ds-

The lemma follows from lemma 4.1, lemma 4.5 and lemma
4.8.

Proof of Theorem 3.1 Note that

B -p= (2%) (1,+1,) (10)

max
1<jsn

= O(n‘l/3 log n) as.

where
=30, (- ()

=S -3 (a- 3 8o

3OS PO Gk e -3 S e

Sl +l,+l,+l, (11)

=500 =3 H080) 580 F 00 B 5)s
(12)
Leté =¢/l (e[ <22 ). ¢ =¢ -6 .h =E(§
=-h.V, =a, (ei —hi)and

a, = JP‘J(Ti)—i %(TJ)L\ = (tj,s)ds.Then foranye >0,
2v+2 a, (8 -f)=L+L, (13)

ByE(ei*) < (See lemma 2 in [16]) and three series

theorem, we can easily obtain that 2|@|| < ,a.s. By Bern-

stein’s inequality and Bore-Cantelli lemma,
2|l%,|s en’?logn.»as.
Hence from lemma 4.2 and 4.5, we obtain that
(e BLE 6]

=0(n)+0(z,)

sCsupH‘](t)
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e Sl (e el | e+ 3 (15)
= (O (n“/)+0(rm))0 (en*1ogn)=0(n"?) as.
By Bernstein’s inequality and Bore-Cantelli lemma,
EM <en??,as. (16)

From (13) (15) and (16), we have that
I, =o(n"?).as. (17)

Using the similar argument as above, by lemma 4.2, 4.4
and 4.5, we obtain that

I, =o(n?).as.. I, =0(n").as.. 1, =
From lemma 4.2, it follows that
21_nsup|?‘3(t)||@(t)| o(n*)+o(mw2)=o(n"?) (19)

From (10)-(12) and (17)-(19),

n¥? (ﬁn - /3’)= n(g X2 )l(nwgnief +o(1)) as. (20

Hence, the (6) follows immediately from lemma 4.3 and
LIL of Hartman-Winter.

Note that

o(n“) ,as. (18)

)| =Ssup
Ost=l

(/3-/3;)2 )%iff\ E, (t,s)ds
2g(T)f E, (t.s)ds-g(t) 2 f E, (t.s)ds

0[5 - g @

By lemma 4.1, lemma 4.2 and lemma 4.4, we have that
I, =Cn” ]/Z(Iog log n) sup

[<12 Jiﬁ( )f/\ E, (t,s)ds

Eﬂ/yf E (t s)ds
fr)

+sup
Ost<l

+sup

Y
+nV? (Iog log n) ?prl

<Cn¥? (Iog log n) max

1<i=n

supf|E ts|ds

Ost<l

Enf E (t s)
+Cn™? (log log n)l/2 sup

sup JZ(miax (fA. E, (ti,s)ds)(gﬁ\ E. (¢, s)ds))m

=0 (n”/z’V (Iog log n)w) +0 (n’”zr (Iog log n)l/z)

+O( 2“Iog“n(loglogn ) O( n"#*log*? n (log log n)* )(22)

+Cn¥? (Iog log n) sup

0st=<1

By lemma 4.2, we have that

1,=0(n")+0(z,) (23)
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From E|91|3 <o and lemma 2 in [16], we have
that g |ei*|3 < o . Hence, by lemma 4.9,
1,=0(n"logn) as. (24)

Thus (7) follows from (21)-(24). We therefore complete
the proof of Theorem 3.1.

Proof of Theorem 3.2 Note that
n’? (B, -B)=n" (B, - B,) +n** (B, - B)

The (8) follows immediately from lemma 4.7 and theo-
rem 3.1.

Write
6,0 -9() = 1-9 1)+ (e 1)-s®)=n+1. 25
=S E G0 (-3 X, B s 1,1, PO)
1, = 2 [ Ent9)ds (% )1z, =7,)
+2fA E, (ts)ds (7 -v )1z, >7,)
2R +R, (27)
By lemma 4.1 and 4.6, we have that

|R1| < f01| E (t,s)|dssup G, (t) —G(t)|

t<t,

<C (n‘1 log log n)l/2 = o(n‘l/3 log n) as. (28)

In the case G(TF)=1, max Z, <7, as.- By lemma 4.1 and
4.6, P

sup|R,| = sup
t t

Zf’* E, (t,s)ds rp:§>2<‘¢j (Zi,én )—:pj (Zi,G){
< Sltjpj:|Em (t,s)|dsitig G, (t)-G (t)‘
=C (n‘1 log log n)u2 =0 (n‘”3 log n) as.

In the case G (r,)<1. Letg =1(z,>7,)-E(1(Z, >7,)):
g’s are independent random variables with zero mean.
Since (p,,¢,)ER”, (3) and (5), max|\fi*_yi*|<c a.s.. Hence

(29)

from lemma 4.9, we have that

s?p| R2| < miax|\fi* —Yi*|
$ 1, E.9J5(1(2.27) Pz} p(2 o)
2; [, Ent5)as +Cw|S [, €, (ts)asP(z,> )

<C (n‘l/3 logn + n’(H)) =0 (n‘l/3 log n) as. (30)

sup
t

= Csup +Csup
t t

i=1

Therefore the desired conclusion (9) follows from (25)-
(30) and theorem 3.1.
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5. NUMERICAL EXAMPLE

We will simulate a simple semiparametric regression
model

Y, = X8 +cos (2T, ) +e,i =1,2,L,64

where g =1,T, =i/64, X, =5T" +n;.n, N (0,0.25),
e N(O,l)- The right-censored random variables c, are
function

independent and  identically  distribution

G(u)=1-exp(-2.4u) (u=0).

Choose ¢, (u;G)=u,¢, (U;G)=u+G(u)/G'(u) and Dau-
bechies scaling ‘function2¢(t). By calculation, we have
B, =1.0158. It closely approximates the true value of pa-
rameter 8. It can be seen that our method is successful, espe-

cial in estimating the parameter. However, a further discus-
sion of the choices the scaling function and (¢,,¢, ) is needed

so that we can find a good method to use in practical applica-
tions.
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