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The Bifurcation of Cycle Length and Global Asymptotic Stability in a
Rational Difference Equation with Higher Order

Dongmei Chen and Xianyi Li*

College of Mathematics and Computational Science,Shenzhen University, Shenzhen, Guangdong 518060, P. R. China

Abstract: A new bifurcation case for the cycle length is found in this paper for rational difference equations, which is
shown out from the following fifth order rational difference equation

XX XX, XX, ta n=012.--
= 9 99~y 2

xn+]

X

n—1

xn72xn74 + xnfl + xn72 + xnf4 +a

where a € [0,°0) and the initial values x_,, X _5,X_,,X_, X, € (0,00) . Mainly, the perturbation of the initial values may
lead to the essential variation of the cycle length rule for the nontrivial solutions of the equation. That is, with the change
of the initial values, the successive lengths of positive and negative semicycles for nontrivial solutions of this equation is
found to periodically occur with multiple different prime periods, respectively, 4,12 . Furthermore, in any one fixed
period, the successive occurring order of positive and negative semicycles is completely inverse, i.e., for the period 4 , the
order is either 3" ,17 or 37,17 in a period, and for the period 12, the order is either 5*,27,17,17, 17,27 or
57,2%,1",17,1",2"% in a period. This rule is different from the known one we have obtained for various rational
difference equations. By the use of the rule its positive equilibrium point is verified to be globally asymptotically stable.

Keywords: Rational difference equation, bifurcation of cycle length, perturbation, global asymptotic stability, semicycle,

periodicity.

1. INTRODUCTION

The qualitative properties of rational difference equations
have been the object studied in the recent years. For the
systematical investigation of rational difference equations,
one can refer to the monographs [1, 2] and [3-10], especially,
the papers published in the two international journals
“Advances in Difference Equations” and “Journal of
Difference Equations and Applications” and the references
cited therein.

Generally speaking, given a difference equation
Xp+l = f(xn,,u),n = 0,1,2,"',

where x e R",ueR",fe C(R"™*,R"),m,k €{1,2,---} and the
initial value x,€ R", its solution is a continuous function
with respect to the initial value x, and the parameter U,
denoted by x, = x(n,x,, ). If the change of the initial value
X, or the parameter ¢ around a value leads to the essential

change of the trajectory structure rule of its solution, then it
is called that a bifurcation of this equation occurs.
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Correspondingly, the critical value is called to be a
bifurcation value. This is similar to the definition of the
bifurcation of ordinary differential equation.

Certainly, it should be pointed out that the essential
change of the trajectory structure rule of a difference
equation contains many cases, such as, a solution from the
stability to the unstability, from the boundedness to the
unboundedness, from one period to another period, or the
cycle length from one period to another period, etc.
Therefore, it is meaningful to investigate the bifurcation
theory of difference equation according to its own right.

In this paper, we study the rule of cycle length and global
asymptotic stability of the fifth order rational difference
equation

Xp1Xn2 + Xn-1Xn-a + Xn—2Xn-a t1l+a

= ,n=0,12,--- (1)

xnfl'xn72xn74 + xnfl + xn72 + x»174 +a

X

n+l1

where ae [0,00) and the initial values x_,,x_;,x_,,x,
X, € (0,00) .

According to our recent work [6-10], some bifurcation
cases are found for the lengths of positive and negative
semicycles of nontrivial solutions of some rational difference
equations to successively occur. The rule, generally
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speaking, is that the length of semicycle occurs periodically
with the following three cases.

(1) The period is fixed; and, moreover, in the fixed period,
the order for the lengths of positive and negative semicycles
to successively occur is also fixed [6,7, 8];

(i) The period is fixed; however, in the fixed period, the
order for the lengths of positive and negative semicycles to
successively occur is changeable [9];

(iii) The period is changeable, i,e, possessing multi--
different prime periods; whereas, in any one period, the order
for the lengths of positive and negative semicycles to
successively occur is fixed [10].

In this note, we find a new case for the rule of the cycle
length, which is also our main aim to write this paper for
Eq.(1), that is the following case (iv).

(iv) The period is changeable, ie,. possessing different
periods; Furthermore, in any one period, the order for the
lengths of positive and negative semicycles to successively
occur is also changeable, furthermore completely inverse.

Mainly we find the following bifurcation phenomenon: if
we fix some four of the five initial values
X 4sX 3,%X 5,% %€ (0.)U(1,00) and let the residual one
perturb around the equilibrium point of equation (1), then the
essential variation will take place for the rule for the
trajectory structure of solutions of the equation. In detail,
with the perturbation of the initial values, the successive
length of positive and negative semicycles of nontrivial
solutions of equation (1) is found to periodically occur with
multiple different prime periods, respectively, 4 , 12 .
Furthermore, in any one fixed period, the successive
occuring order of positive and negative semicycles is
completely inverse, i.e., for the period 4, the order is either
30, T, 3 1, 30 1T 3 ) 1T, or
~37,17,37,1%,37,1%,37,1%,---, and for the period 12, the
order is either 5%,27,1%,17,1*,27 or 57,2%,17,17,1% 2%
in a period. By utilizing the rule, we show the positive
equilibrium point of equation (1) to be globally
asymptotically stable.

The positive equilibrium x of equation (1) satisfies

_ 3%’ +l+a . _
¥ =————, which shows x=1.
X +3x+a

The following definitions will be used in this paper.
DEFINITION 1.1.

A positive semicycle of a solution {x,},_, of equation

(1) consists of a“string”of terms {x,,x,,,,"-*,x,} , all greater

than or equal to the equilibrium X , with />4 and m <o
such that

either /=—4 or />-4 and x,, <X

and

either m=o or m<o and x,,, <Xx.
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A negative semicycle of a solution {x,},_, of equation

(1) consists of a“string”of terms {x,,x,,,,--*,x,,} , all less than

X, with / >—4 and m < such that
either /=—4 or />-4 and x,, 2%
and

either m=o or m<o and x,,, 2x.

The length of a semicycle is the number of the total terms
contained in it.

DEFINITION 1.2.

A solution {x,},_, of equation (1) is said to be eventually
trivial if X, is eventually equal to x=1; Otherwise, the
solution is said to be nontrivial.

For the other concepts in this paper, see [1, 2].

2. TWO LEMMAS

We first establish two lemmas which will play a key role
in the proof of main results in the sequel.

LEMMA 2.1.

A positive solution {x,},_, of equation (1) is eventually
equal to 1 if and only if
(x4 =D =D(x, =Dx =D(xg =D =0.(2)

Proof. Assume that (2) holds. Then according to
equation (1), it is easy to see that the following conclusions
hold.

)If x, =1,then x,=1 forn>3;
i) If x;=1,then x,=1 for n>4;
iii) If x_, =1, then x,=1 for n>3;
iv) If x, =1,then x, =1 for n>1;
v)If x, =1, then x, =1 for n22.
Conversely, assume that
(x_y =D(x3 =D, =D =Dxg =1 # 0. (3)
Then one can show that
x,#1 forany n>1.
Assume the contrary that for some N >1,
xy =1 and that x, #1 for -4<n<N-1.(4)
It is easy to see that
Xy oXy_3 T Xy Xy s T Xy Xy s t1+a

l=x, = ,
XyoaXy3Xys tXy Xy 3 +Xy s +a

which implies
(xy_s =Dy =Dxy_s —1)=0.
Obviously, this contradicts (4).
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REMARK 2.1.

If the initial conditions do not satisfy equality (2), then,
for any solution {x,} of equation (1), x,#1 for n>—4.

Hence, the solution is actually a nontrivial one.

LEMMA 2.2.

Let {x,},_, be a nontrivial positive solution of equation
(1). Then the following conclusions are true:

(@) (x,0 —D(x,, —1)(x, , —1)(x, , —1)<0 for n>0;
(b) (x4 —*,)(x,, ~1)<0 for n>0;
(©) (x4 —%,2)(x,,—1)<0 for n=0;
(d) (xp0 —X,_a)(x,s —D <0 for n=0.
Proof In view of equation (1), we have that

(%1 =D(x, = D(x,4 =1

X1 -1= s

X1 Xyn Xy T X T X, 5+ X, 4 +1+a
n=0,2,--- and

_ (l_xnfl)[xn—an—4 (1+xn—l)+(1+xn—l)+a]
xn+l _xnfl -

Xy XpoXy g +X, +X, 5 +Xx, 4+1+a

n=0,12,---, from which inequalities (a) and (b) follow. The
proofs for inequalities (c) and (d) are similar to the one for
inequality (b).

3. MAIN RESULTS AND THEIR PROOFS

In this section, we mainly investigate the properties of
nontrivial solutions of equation (1). First, we study the
oscillation of nontrivial solutions of equation (1). We have
the result as follows.

THEOREM 3.1.

Any one nontrivial solution of equation (1) is strictly
oscillatory. Furthermore, regardless of positive semicycle or
negative semicycle, the cycle length is at most five.

Proof Let {x,},_, be any one nontrivial solution of
equation (1). It follows from Remark 2.1 that x, #1 for any
n=—4. For some nonnegative intege p , if x, , >1, x,;>1,
x,,>1, x,,>1and x, >1, then, from Lemma 2.2 (a), one
can see x,, <l. Conversely, if x, , <1, x,;<I, x,, <1,
x,,<land x, <1, then, Lemma 2.2 (a) implies x,,, >1.
So, from those, we know the conclusion of Theorem 3.1 is

true.

Theorem 3.1 tells us that every nontrivial solution of
equation (1) is strictly oscillatory. Then, a problem naturally
rises: How does equation (1) oscillate ? This need further
studying the rule of the cycle length of equation (1).
Therefore, next, we consider the rule for the cycle lengths of
positive and negative semeicycles of nontrivial solutions of
equation (1) to occur successively.
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THEOREM 3.2.

Let {x,},_, be a nontrivial solution of equation (1).

Then, the bifurcation of cycle length with respect to the
initial values happens and the bifurcations value is
(X_gsX_3,%_5,X_;,%9) = (LLLLD) Namely, with the
perturbation of the initial values, the successive lengths of
positive and negative semicycles of the solution will
periodically occur with multi-different prime periods,
respectively, 4, 12. Furthermore, in any one of the fixed
periods, the successive order of positive and negative
semicycles is completely converse. In detail, for the period 4,
the order is either ---,3", 17, 3*, 17, 3*, 17, 3%, 17,--- or
37, 17,37, 17,37, 17,37,17,-++, and for the period 12,
the order is either 5%, 27,1, 17, 1,27 or 57, 2%, 1", 17,
1*, 2% in a period.
Proof It follows from Theorem 3.1 that every nontrivial
solution of equation (1) is strictly oscillatory and the length
of a negative semicycle or a positive semicycle is at most 5.
From remark 2.1, we see that the initial values satisfy

(s =D(x_3 =D(x_, =D(x_; =D(xy =1) 20,

which leads to that, for some integer p>0, one of the
following eight cases must occur:

Casel: x, 4 >1, x,3<1,x,,>1, x,, >l and x, >1;

p-1

Case2: x, 4 >1, x,3<1, x,,>1, x,, >l and x, <1;

p-1

Case3: x, 4 >1, x,3<1, x,,>1, x,, <l and x, >1;

p-1

Cased: x, 4, >1, x,3<1, x,,>1, x,, <l and x, <1;

p-1

Case5: x, 4 >1, x,3<1, x,,<1, x,, >l and x, >1;

p-1

Case 6: x, 4 >1, x, ;<1, x,,<1, x,, >l and x, <1;

p-1

Case7: x, 4>1, x,3<1, x,,<1, x,,<land x,>1;

p-1
Case8: x, 4, >1, x,;<1, x,,<1, x,,<land x, <I.

If Case 1 occurs, it follows from Lemma 2.2 (a) that
Xpu <1, X, >1, x,5>1, x,4>1, x,5<l, x,,6>1,
Xpr 21, x>, x,0 <L, x,00>1, X, >1, x,,>1,
Xpas <1y Xpua >1, X0 >1, X0 >1, x4, <1y x5 >1,
Xparg > 1y X 00 > 1, X0 <1y X000 > 1, X003 > 1, X000 >1,
Xpis <Ly Xpu06 > 1, Xpu0 >1, X 00 >1, X9 <1, This

shows that the rule for the lengths of positive and negative
semicycles of the solution of equation (1) to successively

occuris ---,3%, 17, 3%, 17, 3%, 17,3%*,17,3%, 17 37, 17,---.

If Case 2 comes up, then Lemma 2.2 (a) implies that
Xpu <1, x,pn<l, x,5<l, x,,4<l, x,5>1,x,¢>1,
Xpr <L, x>0, x,0<l,x,40>1, X >1, x,,, <1,
Xpas <1y X0y <1, x5 <1, X406 <1, xp07 >0, x5 >1,
Xparg <o X000 > 15 X0 <1, X000 > 1, X003 > 1, x5, <1,

Xpaas <1y X 06 <1, X009 <1, X0 <1, X009 > 1, x50 > 1,
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, which
indicates the rule for the numbers of terms of positive and
negative semicycles of the solution of equation (1) to
successively occur is ---,57, 2%, 17, 1%, 17, 2% 57, 2*
17,10, 17,24, 57, 27, 1,17, 17,2,

Xpaar <Ly X > 1, X003 <1y x50 > 1, X055 > 1,0

When Case 3 happens, a similar deduction leads to that

>l X<l x, <l x,, <1, x,5<1l, x,6<l,
Xpr 21, x>, X0 <l, x,00>1, X, <1, x,,>1,
Yoz > 1y X0y <1, x5 <1, X0 <1, X057 <1, x5 <1,

xp+19>1 s xp+20>1 s xp+21<1 s xp+22>1 s xp+23<l s

X 04 >1,xp+25 >1, X426 <1, X7 <1, X408 <1, X429 <1,

Xpa30 <1y Xpua >0, X0 > 1, X053 <1, X0 > 1, x5 <1,

X436 > 1, X437 >1,--- which displays the rule for the
numbers of terms of positive and negative semicycles of the
57,27,
17, 1, 1, 20, 5, 2t 1, 1, L2t s, 2t 1, 1
17,2,

solution of equation (1) to successively occur is -

>

If Case 4 arrives at, then Lemma 2.2 (a) tells us that
Xpu>1, x, >0, x,5>1, x>, x,5>1, x,,,<l,

xp+7<1 s xp+8>1, xp+9<1, xp+10>1, xp+“<1, xp+12<1 s

Xpas > 1y X >, xp05>1, x,06>1, X, >1, x5 <1,

xp+19<1 s xp+20>1 s xp+21<1 s xp+22>1 s xp+23<l s

X 04 <1,xp+25 >1, X426 >1, X7 >1, X408 >1, X429 >1,

xp+30 <1 b xp+34 >1’ xp+35 <1’

This shows the rule for the cycle length of the

xp+31<1, X3 >1, xp+33<l,

Xpize <1y
55+’ 2_’
| S I R A A LA A L - A R L
R

solution of equation (1) to successively occur is -

>

If Case 5 occurs, it follows still from Lemma 2.2 (a) that

Xpu>1, x>0, x>0, x,<l, x,5<l, x,,6>1,
Xpr <L, x>, X0 <L, x,0<l, X, >1, x,p,>1,
Xz > 1y Xpua >1, X0 >1, X0 <D, x5 <1, x5 >1,
Xparg <Ly Xpi00 > 1, X0 <1, X000 <1, X003 > 1, X000 >1,
Xpaas > 1o X6 > 1 X007 > 1, X008 <1, X000 <1, x50 > 1,

Xpaar <y Xm0 > 15 X053 <1, X050 <1, X055 > 1, x50 > 1,

Xpaa7 > 1y Xpuag > 1, X050 > 1, X000 <1, x,00 <1, X, >1,
Xppqs <1, X004 >1, X045 <1, X4 <1,---, Which manifests

the rule for the cycle length of the solution is still ---,5%, 27,
[ RS U R S S I U RS R S S S A b
oo

>

When Case 6 appears, a similar deduction gives rise to

that xp+1>1 s <1l , <1 >1

>1,x

p+2 p+3

>1, x

s p+4

X s pie > 1, X, >1, <1, x,,,<1,

>1, x

p+7

<l, x

p+8
>1, x

p+9
<l, x

p+10

<1,

p+ll p+12 p+13 p+l4 p+15

X pi16 >1, X7 >1, X418 >1, X pi19 >1, X pi20 >1,
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X pi21 <1l Xpi22 <1 >1 X 104 <1l ,

<1,

H p+23

>1,x <1,---, which displays that the

X p42s X p127
regulation for the lengths of positive and negative semicycles
which occur successively is ---,57, 27, 1", 17, 1%, 27, 5%,

27 1T, 1, 1, 27, 5, 2 1, T, 1, 2

p+26

1+

When Case 7 occurs, one can see from Lemma 2.2 (a)

that x,,, <1, x,,, <1, x,5<l, x,4,>1, x,5<1, x,¢<I,
per <Ly X, >l x,0 <1, X0 <1, X, <1, x,p>1,
Xpaz <Ly Xpa <L, X005 <1, X6 >1, X007 <1, Xx,45>1,

xp+19<1 s xp+20>1 s xp+21<1 s xp+22<1 s xp+23<l s

X424 >1,-++ This proves the rule for the numbers of terms of

positive and negative semicycles of the solution of equation
(1) to successively occur still is ---,37, 1%, 37, 1, 371",
37,17, 37,17F

When Case 8 appears, similarly, according to Lemma 2.2

(a), we obtain that x,, <1, x,,>1, x,3>1, x,,<1,

Xpys >, X,6<l, X0 >1, x,6>1, X, <1, x,,<1,

X3 <1, X414 >1, X s >1, X 416 <l,

o>1,

xp+12<1,
g <1,

Xy < 1,

,>1, X il xp+20>1, xp+21<1, xp+22<1,

s <1, x

p+l p+1

Xpay <1, X, pras <Ly X006 >1, X007 > 1, x5 <1,

X429 >1, X430 <1, X pi31 >1, X3 >1, X33 <1, X34 <1,

X435 <1, X436 <1, X437 <1, X 38 >1, X439 >1, X pia0 <1,

Xpeq > 1, X, <1,---, which proves that the rule for the
lengths of positive and negative semicycles which occur
successively is ---,57, 27, 1%, 17,17, 27, 5%, 27,17, 17,
17, 27,5, 27,17, 17, 1", 27,

Therefore, the proof is complete.

Since we have been clear for the rule for the cycle length
of trajectory structure of nontrivial solution of equation (1),
we'd like to know whether the unique positive equilibrium of
equation(1) is globally asymptotically stable. The question is
positively answered in the following, which is the third main
result in this note.

THEOREM 3.3.

Assume that ae [0,e) . Then the positive equilibrium of
equation (1) is globally asymptotically stable.

Proof We must prove that the positive equilibrium point
x of equation (1) is both locally asymptotically stable and

globally attractive. The linearized equation of equation (1)
about the positive equilibrium x =1 is

Y+l =O'yn +0‘yn—1 +O'yn—2 +0.yn—3+0‘yn—4’ n =091’.“
By virtue of [2, Remark 1. 3. 1], is locally
asymptotically stable. It remains to verify that every positive

solution {x,}._, of equation (1) converges to 1 as n —oo.
Namely, we want to prove

limx, =x=1.(5)
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If the initial values of the solution satisfy (2), then
Lemma 1 says the solution is eventually equal to 1 (i.e.,
trivial solution) and of course, (5) holds. Therefore, we
assume in the following that the initial values of the solution
do not satisfy (2). Then, by remark 2.1, we know, for any
solution {r,} of equation (1), x,#1 for n>—4 (ie.,

nontrivial solution).

Now, let {x,} be a nontrivial solution of equation (1). In
view of Theorem 3.2, one can see that the successive lengths
of positive and negative semicycles occur periodically with
different prime periods, respectively, 4, 12. In a period, the
rule is

(Cl) s*, 27,17, 17, 1", 27, or

(C2) 57, 2%, 17,1, 17, 2%, or

(C3) 3",17, or

(C4) 37, 1"

Cases (Cl) and (C2), (C3) and (C4) are respectively
symmetrical. It suffices to consider the cases (C1) and (C3).
First, we consider the case (Cl). For simplicity, for some
nonnegative integer P, we denote by
{X )2 X 015X 125X ,13,X .4} the terms of a positive semicycle
of length five, followed by {x,s,x,. a negative
semicycle with length two,
{xp+7}+ b
{xp+9}+ b
Namely, the rule for the positive and negative semicycles to
occur successively can be periodically expressed as follows:

then a positive semicycle

a negative semicycle {x,}", a positive semicycle

a negative semicycle {x,,,,x,,,} , and so on.

+
{xp+12n H xp+12n+1 H xp+12n+2 ’ xp+12n+3 H xp+12n+4 } s

{xp+12n+5’xp+12n+6}7 {xp+12n+7 3 {xp+12n+8}7 {xp+12n+9}+

{xp+12n+105xp+12n+11} ,n=0,1--.

From Lemma 2.2 (b) and (c), respectively, we may
straightforwardly obtain the following results:

(D) X, 120021 < X 120419 < X 122416 < Xpi127414 < X pa127412

<X om0 < Xpi2me7 < Xpiiznes < Xprioper < Xpiian 5

(i1) X pr12n422 = X pi127420 = X pri2n+18 5

X >X Z X prione6 5

p+12n+10 p+12n+8

(111) X 120423 = X p12n420 = X pai2ns17 5

X > X > X

p+12n+11 p+12n+8 p+12n+5 *

Also, the following inequalities hold.

(v) X 120418 % pr12n+13 >1 and X p+120413% pr12n+11 <1;

(v) X 120417 % p+12n+14 >1 and X pi12n414% pri2nsn < 1.

In fact, from the observations
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'xp+12n+18
_ xp+12n+l()xp+]2n+15 + xp+12n+16xp+12n+l3 + xp+12n+15xp+12n+13 + 1 + a
xp+12n+]éxp+12n+15xp+12n+13 + xp+12n+16 + xp+12n+15 + xp+]2n+l3 ta
>
xp+12n+13
and
X pi12n113
XX priznn10 T XX priznes T Xpsi2ni10Xpsiznes l+a
X 120411 pr120410% p120n48 T Xpri2natt T X piioneto T Xpr12048 T4
<
xp+12n+11

we know that the two inequalities in (iv) are true. The proofs
for two inequalities of (v) are similar.

Combining the above inequalities (ii), (iii), (iv) and (v),
one can derive that

X 120422 = Xpr120420 = Xp+120+18

1
>

Xp+12n+13

> X 1120410 > Xpa12048 > Xpr12nes (6)
and

X 120423 = Xpr120420 = Xp+120417

1
>

Xp+12n+14

> X011 > X priznes > Xprianes - (1)

(i) shows that the sequences {x,.,}mo > (X 112042} me0 >

X 12044 im0 > X pa120a7 F o and {x pH12n49 fmeo ATC decreasing

with lower bound 1. Therefore, their limits exist, are finite
and are equal. That is,

hm 0 Xpr12n = 11m 0 Xp12n+2
= hm 0 Xpr12n+a = hm 0 Xp12n+7
= hm Xp+12nt9 = L~

n—co

(6) and (7) display that the sequences {x,,5,45}m0 »

X 12046 me0 > X pri2nes Frco > X pa120410 f neo and X 120411 neo

are increasing with upper bound 1. Therefore, their limits
exist and are finite, moreover are equal. That is,

hnl‘xp-%—12n+5 = 11m 0 Xp12n+6
= hm 0 Xp12n+s = hm 0 Xp 120410
= 11m Xp+12n+11 = M~

n—oo

Furthermore, (6) and (7) indicate
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L=1limx, 1, = IMx, 5,0,
n—oo n—

oo

= = lim Xp+12n+13 = lim Xp+i2n+1 - 3
n—soo n—soo

M
Now, we prove that L =M =1. To this end, noting that
X

p+12n+11

xp+]2n+9xp+l2n+8 + xp+12n+9xp+12n+6 + xp+l2n+8xp+]2n+6 +1l+a

X 412049% p12048% p1204+6 T Xpr12019 T X pi12ni8 T Xpi12046 T4

and taking the limit on both sides of the above equality,
one can see that
M= LM+ LM+ MM +1+a
LMM+L+M+M+a

Solving this equation with (8), one can see L=M =1.
From 1<Xx 412,43 <X 412, @nd lim, x5, =1, it is easy
to obtain lim, . x,,,.; =1. Up to this, we have shown
noseo X psianek = LK =0, 11, which says that (5) holds in
the case(Cl).

Now, we deal with Case (C3). Similar to Case (C1), for
some nonnegative integer p, we denote by {x,.x,,,x,.,}"

lim

the terms of a positive semicycle of length three, followed by
{x,.3}” a negative semicycle with length one and so on.

Hence, the rule for the positive and negative semicycles to
occur successively can be periodically expressed as follows:

+ - —
{xp+4l7 s X prdntl> X prant2 } > {xp+4n+3 } , n=0,1,-.
Still according to Lemma 2.2 (b), (c) and (d), we have
xp+4n+4 < xp+4n+2 < xp+4n and xp+4n+8 < xp+4n+5 < xp+4n . (9)

Similar to the derivation of (iv) in Case (C1), we also
obtain

xp+4n+5 < < xp+4n+1 . (10)

p+é4n+3

It follows from (9) that {x,.,,},_, is decreasing with

lower bound 1. Therefore, its limit exists and is finite.
Moreover, it is also clear from (9) that

limx,,,, =limx,,,,, =limx,, . =L.
n—sco n—co n—

oo
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Accordingly, we obtain from (10) that

hmn—)cc xp+4n+3 = l/L .

Now, we prove that L =1. To this end, noting that

‘xp+4n+5

xp+4n+3xp+4n+2 + xp+4n+3xp+4n + ‘xp+4n+2 xp+4n + 1 +a
+Xx +Xx +Xx +a

X

p+4n+3xp+4n+2xp+4n p+4n+3 p+4n+2 p+én

and taking the limit on both sides of the above equality, we
get
_VLL+1/LL+LL+1+a
V/LLL+1/L+L+L+a

Solving this equation produces L=1 Hence,
lim, ... x4, =1,k=0,1,23, which says that (5) holds in

the case (C3). Thus, the proof of Theorem 3.3 is complete.
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