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The Bifurcation of Cycle Length and Global Asymptotic Stability in a

Rational Difference Equation with Higher Order
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Abstract: A new bifurcation case for the cycle length is found in this paper for rational difference equations, which is

shown out from the following fifth order rational difference equation
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where ),0[ ��a and the initial values 4�x , 3�x , 2�x , 1�x , ),0(0 ��x . Mainly, the perturbation of the initial values may

lead to the essential variation of the cycle length rule for the nontrivial solutions of the equation. That is, with the change

of the initial values, the successive lengths of positive and negative semicycles for nontrivial solutions of this equation is

found to periodically occur with multiple different prime periods, respectively, 4 ,12 . Furthermore, in any one fixed
period, the successive occurring order of positive and negative semicycles is completely inverse, i.e., for the period 4 , the

order is either
+3 ,

�1 or
�3 ,

+1 in a period, and for the period 12 , the order is either +5 ,
�2 ,

+1 ,
�1 ,

+1 ,
�2 or

�5 ,
+2 ,

+1 ,
�1 ,

+1 ,
+2 in a period. This rule is different from the known one we have obtained for various rational

difference equations. By the use of the rule its positive equilibrium point is verified to be globally asymptotically stable.

Keywords: Rational difference equation, bifurcation of cycle length, perturbation, global asymptotic stability, semicycle,

periodicity.

1. INTRODUCTION

The qualitative properties of rational difference equations

have been the object studied in the recent years. For the

systematical investigation of rational difference equations,

one can refer to the monographs [1, 2] and [3-10], especially,

the papers published in the two international journals

“Advances in Difference Equations” and “Journal of

Difference Equations and Applications” and the references

cited therein.

Generally speaking, given a difference equation

,,2,1,0),,(1 �==
+

nxfx nn μ

where xn �R
m ,μ �Rk , f �C(Rm+k ,Rm ),m,k �{1,2,�} and the

initial value mRx �0 , its solution is a continuous function

with respect to the initial value 0x and the parameter μ ,

denoted by ),,( 0 μxnxxn = . If the change of the initial value

0x or the parameter μ around a value leads to the essential

change of the trajectory structure rule of its solution, then it

is called that a bifurcation of this equation occurs.
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Correspondingly, the critical value is called to be a

bifurcation value. This is similar to the definition of the

bifurcation of ordinary differential equation.

Certainly, it should be pointed out that the essential

change of the trajectory structure rule of a difference

equation contains many cases, such as, a solution from the

stability to the unstability, from the boundedness to the

unboundedness, from one period to another period, or the

cycle length from one period to another period, etc.

Therefore, it is meaningful to investigate the bifurcation

theory of difference equation according to its own right.

In this paper, we study the rule of cycle length and global

asymptotic stability of the fifth order rational difference

equation
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where ),0[ ��a and the initial values 4�x , 3�x , 2�x , 1�x ,

0x ),0( �� .

According to our recent work [6-10], some bifurcation

cases are found for the lengths of positive and negative

semicycles of nontrivial solutions of some rational difference

equations to successively occur. The rule, generally
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speaking, is that the length of semicycle occurs periodically

with the following three cases.

(i) The period is fixed; and, moreover, in the fixed period,

the order for the lengths of positive and negative semicycles

to successively occur is also fixed [6,7, 8];

(ii) The period is fixed; however, in the fixed period, the

order for the lengths of positive and negative semicycles to

successively occur is changeable [9];

(iii) The period is changeable, i,e,. possessing multi--

different prime periods; whereas, in any one period, the order

for the lengths of positive and negative semicycles to

successively occur is fixed [10].

In this note, we find a new case for the rule of the cycle

length, which is also our main aim to write this paper for

Eq.(1), that is the following case (iv).

(iv) The period is changeable, i,e,. possessing different

periods; Furthermore, in any one period, the order for the

lengths of positive and negative semicycles to successively

occur is also changeable, furthermore completely inverse.

Mainly we find the following bifurcation phenomenon: if

we fix some four of the five initial values

4�x , 3�x , 2�x , 1�x , ),1()1.0(0 �� �x and let the residual one

perturb around the equilibrium point of equation (1), then the

essential variation will take place for the rule for the

trajectory structure of solutions of the equation. In detail,

with the perturbation of the initial values, the successive

length of positive and negative semicycles of nontrivial

solutions of equation (1) is found to periodically occur with

multiple different prime periods, respectively, 4 , 12 .

Furthermore, in any one fixed period, the successive

occuring order of positive and negative semicycles is

completely inverse, i.e., for the period 4, the order is either
+3,� , �1 , +3 , �1 , +3 , �1 +3 , �,1� or
�3,� , +1 , �3 , +1 , �3 , +1 , �3 , �,1+ , and for the period 12 , the

order is either +5 , �2 , +1 , �1 , +1 , �2 or �5 , +2 , +1 , �1 , +1 , +2

in a period. By utilizing the rule, we show the positive

equilibrium point of equation (1) to be globally

asymptotically stable.

The positive equilibrium x of equation (1) satisfies
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, which shows 1=x .

The following definitions will be used in this paper.

DEFINITION 1.1.

A positive semicycle of a solution �

�= 4}{ nnx of equation

(1) consists of a“string”of terms },,,{ 1 mll xxx �
+

, all greater

than or equal to the equilibrium x , with 4��l and ��m

such that

either 4�=l or 4�>l and xxl <
�1

and

either �=m or �<m and xxm <
+1 .

A negative semicycle of a solution �

�= 4}{ nnx of equation

(1) consists of a“string”of terms },,,{ 1 mll xxx �
+

, all less than

x , with 4��l and ��m such that

either 4�=l or 4�>l and xxl �
�1

and

either �=m or �<m and xxm �
+1 .

The length of a semicycle is the number of the total terms

contained in it.

DEFINITION 1.2.

A solution �

�= 4}{ nnx of equation (1) is said to be eventually

trivial if nx is eventually equal to 1=x ; Otherwise, the

solution is said to be nontrivial.

For the other concepts in this paper, see [1, 2].

2. TWO LEMMAS

We first establish two lemmas which will play a key role

in the proof of main results in the sequel.

LEMMA 2.1.

A positive solution �

�= 4}{ nnx of equation (1) is eventually

equal to 1 if and only if

0)1)(1)(1)(1)(1( 01234 =�����
����

xxxxx . (2)

Proof. Assume that (2) holds. Then according to

equation (1), it is easy to see that the following conclusions

hold.

i) If 14 =�
x , then 1=nx for 3�n ;

ii) If 13 =�
x , then 1=nx for 4�n ;

iii) If 12 =�
x , then 1=nx for 3�n ;

iv) If 11 =�
x , then 1=nx for 1�n ;

v) If 10 =x , then 1=nx for 2�n .

Conversely, assume that

0)1)(1)(1)(1)(1( 01234 ������
����

xxxxx . (3)

Then one can show that

1�nx for any 1�n .

Assume the contrary that for some 1�N ,

1=Nx and that 1�nx for 14 ���� Nn . (4)

It is easy to see that
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which implies

0)1)(1)(1( 532 =���
��� NNN xxx .

Obviously, this contradicts (4).
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REMARK 2.1.

If the initial conditions do not satisfy equality (2), then,

for any solution }{ nx of equation (1), 1�nx for 4��n .

Hence, the solution is actually a nontrivial one.

LEMMA 2.2.

Let �

�= 4}{ nnx be a nontrivial positive solution of equation

(1). Then the following conclusions are true:

(a) 0)1)(1)(1)(1( 4211 <����
���+ nnnn xxxx for 0�n ;

(b) 0)1)(( 111 <��
��+ nnn xxx for 0�n ;

(c) 0)1)(( 221 <��
��+ nnn xxx for 0�n ;

(d) 0)1)(( 441 <��
��+ nnn xxx for 0�n .

Proof In view of equation (1), we have that
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�,2,1,0=n , from which inequalities (a) and (b) follow. The

proofs for inequalities (c) and (d) are similar to the one for

inequality (b).

3. MAIN RESULTS AND THEIR PROOFS

In this section, we mainly investigate the properties of

nontrivial solutions of equation (1). First, we study the

oscillation of nontrivial solutions of equation (1). We have

the result as follows.

THEOREM 3.1.

Any one nontrivial solution of equation (1) is strictly

oscillatory. Furthermore, regardless of positive semicycle or

negative semicycle, the cycle length is at most five.

Proof Let �

�= 4}{ nnx be any one nontrivial solution of

equation (1). It follows from Remark 2.1 that 1�nx for any

4��n . For some nonnegative intege p , if 14 >�px , 13 >�px ,

12 >�px , 11 >�px and 1>px , then, from Lemma 2.2 (a), one

can see 11 <+px . Conversely, if 14 <�px , 13 <�px , 12 <�px ,

11 <�px and 1<px , then, Lemma 2.2 (a) implies 11 >+px .

So, from those, we know the conclusion of Theorem 3.1 is

true.

Theorem 3.1 tells us that every nontrivial solution of

equation (1) is strictly oscillatory. Then, a problem naturally

rises: How does equation (1) oscillate ? This need further

studying the rule of the cycle length of equation (1).

Therefore, next, we consider the rule for the cycle lengths of

positive and negative semeicycles of nontrivial solutions of

equation (1) to occur successively.

THEOREM 3.2.

Let �

�= 4}{ nnx be a nontrivial solution of equation (1).

Then, the bifurcation of cycle length with respect to the

initial values happens and the bifurcations value is

)1,1,1,1,1(),,,,( 01234 =
����
xxxxx . Namely, with the

perturbation of the initial values, the successive lengths of

positive and negative semicycles of the solution will

periodically occur with multi-different prime periods,

respectively, 4, 12. Furthermore, in any one of the fixed

periods, the successive order of positive and negative

semicycles is completely converse. In detail, for the period 4,

the order is either +3,� , �1 , +3 , �1 , +3 , �1 , +3 , �,1� or
�3,� , +1 , �3 , +1 , �3 , +1 , �3 , �,1+ , and for the period 12,

the order is either +5 , �2 , +1 , �1 , +1 , �2 or �5 , +2 , +1 , �1 ,
+1 , +2 in a period.

Proof It follows from Theorem 3.1 that every nontrivial

solution of equation (1) is strictly oscillatory and the length

of a negative semicycle or a positive semicycle is at most 5.

From remark 2.1, we see that the initial values satisfy

0)1)(1)(1)(1)(1( 01234 ������
����

xxxxx ,

which leads to that, for some integer 0�p , one of the

following eight cases must occur:

Case 1: 14 >�px , 13 <�px , 12 >�px , 11 >�px and 1>px ;

Case 2: 14 >�px , 13 <�px , 12 >�px , 11 >�px and 1<px ;

Case 3: 14 >�px , 13 <�px , 12 >�px , 11 <�px and 1>px ;

Case 4: 14 >�px , 13 <�px , 12 >�px , 11 <�px and 1<px ;

Case 5: 14 >�px , 13 <�px , 12 <�px , 11 >�px and 1>px ;

Case 6: 14 >�px , 13 <�px , 12 <�px , 11 >�px and 1<px ;

Case 7: 14 >�px , 13 <�px , 12 <�px , 11 <�px and 1>px ;

Case 8: 14 >�px , 13 <�px , 12 <�px , 11 <�px and 1<px .

If Case 1 occurs, it follows from Lemma 2.2 (a) that

11 <+px , 12 >+px , 13 >+px , 14 >+px , 15 <+px , 16 >+px ,

17 >+px , 18 >+px , 19 <+px , 110 >+px , 111 >+px , 112 >+px ,

113 <+px , 114 >+px , 115 >+px , 116 >+px , 117 <+px , 118 >+px ,

119 >+px , 120 >+px , 121 <+px , 122 >+px , 123 >+px , 124 >+px ,

125 <+px , 126 >+px , 127 >
+px , 128 >+px , �,129 <+px .This

shows that the rule for the lengths of positive and negative

semicycles of the solution of equation (1) to successively

occur is +3,� , �1 , +3 , �1 , +3 , �1 , +3 , �1 , +3 , �1 +3 , �,1� .

If Case 2 comes up, then Lemma 2.2 (a) implies that

11 <+px , 12 <+px , 13 <+px , 14 <+px , 15 >+px , 16 >+px ,

17 <+px , 18 >+px , 19 <+px , 110 >+px , 111 >+px , 112 <+px ,

113 <+px , 114 <+px , 115 <+px , 116 <+px , 117 >+px , 118 >+px ,

119 <+px , 120 >+px , 121 <+px , 122 >+px , 123 >+px , 124 <+px ,

125 <+px , 126 <+px , 127 <+px , 128 <+px , 129 >+px , 130 >+px ,
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131 <+px , 132 >+px , 133 <+px , 134 >+px , �,135 >+px , which

indicates the rule for the numbers of terms of positive and

negative semicycles of the solution of equation (1) to

successively occur is �5,� , +2 , �1 , +1 , �1 , +2 , �5 , +2 ,
�1 , +1 , �1 , +2 , �5 , +2 , �1 , +1 , �1 , �,2+ .

When Case 3 happens, a similar deduction leads to that

11 >+px , 12 <+px , 13 <+px , 14 <+px , 15 <+px , 16 <+px ,

17 >+px , 18 >+px , 19 <+px , 110 >+px , 111 <+px , 112 >+px ,

113 >+px , 114 <+px , 115 <+px , 116 <+px , 117 <+px , 118 <+px ,

119 >+px , 120 >+px , 121 <+px , 122 >+px , 123 <+px ,

124 >+px , 125 >+px , 126 <+px , 127 <+px , 128 <+px , 129 <+px ,

130 <+px , 131 >+px , 132 >+px , 133 <+px , 134 >+px , 135 <+px ,

136 >+px , �,137 >+px which displays the rule for the

numbers of terms of positive and negative semicycles of the

solution of equation (1) to successively occur is �5,� , +2 ,
�1 , +1 , �1 , +2 , �5 , +2 , �1 , +1 , �1 , +2 , �5 , +2 , �1 , +1 ,
�1 , �,2+ .

If Case 4 arrives at, then Lemma 2.2 (a) tells us that

11 >+px , 12 >+px , 13 >+px , 14 >+px , 15 >+px , 16 <+px ,

17 <+px , 18 >+px , 19 <+px , 110 >+px , 111 <+px , 112 <+px ,

113 >+px , 114 >+px , 115 >+px , 116 >+px , 117 >+px , 118 <+px ,

119 <+px , 120 >+px , 121 <+px , 122 >+px , 123 <+px ,

124 <+px , 125 >+px , 126 >+px , 127 >
+px , 128 >+px , 129 >+px ,

130 <+px , 131 <+px , 132 >+px , 133 <+px , 134 >+px , 135 <+px ,

�,136 <+px . This shows the rule for the cycle length of the

solution of equation (1) to successively occur is +5,� , �2 ,
+1 , �1 , +1 , �2 , +5 , �2 , +1 , �1 , +1 , �2 , +5 , �2 , +1 , �1 ,
+1 , �,2� .

If Case 5 occurs, it follows still from Lemma 2.2 (a) that

11 >+px , 12 >+px , 13 >+px , 14 <+px , 15 <+px , 16 >+px ,

17 <+px , 18 >+px , 19 <+px , 110 <+px , 111 >+px , 112 >+px ,

113 >+px , 114 >+px , 115 >+px , 116 <+px , 117 <+px , 118 >+px ,

119 <+px , 120 >+px , 121 <+px , 122 <+px , 123 >+px , 124 >+px ,

125 >+px , 126 >+px , 127 >
+px , 128 <+px , 129 <+px , 130 >+px ,

131 <+px , 132 >+px , 133 <+px , 134 <+px , 135 >+px , 136 >+px ,

137 >
+px , 138 >+px , 139 >+px , 140 <+px , 141 <+px , 142 >+px ,

143 <+px , 144 >+px , 145 <+px , �,146 <+px , which manifests

the rule for the cycle length of the solution is still +5,� , �2 ,
+1 , �1 , +1 , �2 , +5 , �2 , +1 , �1 , +1 , �2 , +5 , �2 , +1 , �1 ,
+1 , �,2� .

When Case 6 appears, a similar deduction gives rise to

that 11 >+px , 12 <+px , 13 <+px , 14 >+px ,

15 >+px , 16 >+px , 17 >+px , 18 >+px , 19 <+px , 110 <+px ,

111 >+px , 112 <+px , 113 >+px , 114 <+px , 115 <+px ,

116 >+px , 117 >+px , 118 >+px , 119 >+px , 120 >+px ,

121 <+px , 122 <+px , 123 >+px , 124 <+px ,

125 >+px , 126 <+px , �,127 <+px , which displays that the

regulation for the lengths of positive and negative semicycles

which occur successively is +5,� , �2 , +1 , �1 , +1 , �2 , +5 ,
�2 , +1 , �1 , +1 , �2 , +5 , �2 , +1 , �1 , +1 , �,2� .

When Case 7 occurs, one can see from Lemma 2.2 (a)

that 11 <+px , 12 <+px , 13 <+px , 14 >+px , 15 <+px , 16 <+px ,

17 <+px , 18 >+px , 19 <+px , 110 <+px , 111 <+px , 112 >+px ,

113 <+px , 114 <+px , 115 <+px , 116 >+px , 117 <+px , 118 >+px ,

119 <+px , 120 >+px , 121 <+px , 122 <+px , 123 <+px ,

�,124 >+px .This proves the rule for the numbers of terms of

positive and negative semicycles of the solution of equation

(1) to successively occur still is �3,� , +1 , �3 , +1 , �3 , +1 ,
�3 , +1 , �3 , �,1+ .

When Case 8 appears, similarly, according to Lemma 2.2

(a), we obtain that 11 <+px , 12 >+px , 13 >+px , 14 <+px ,

15 >+px , 16 <+px , 17 >+px , 18 >+px , 19 <+px , 110 <+px ,

111 <+px , 112 <+px , 113 <+px , 114 >+px , 115 >+px , 116 <+px ,

117 >+px , 118 <+px , 119 >+px , 120 >+px , 121 <+px , 122 <+px ,

123 <+px , 124 <+px , 125 <+px , 126 >+px , 127 >
+px , 128 <+px ,

129 >+px , 130 <+px , 131 >+px , 132 >+px , 133 <+px , 134 <+px ,

135 <+px , 136 <+px , 137 <+px , 138 >+px , 139 >+px , 140 <+px ,

141 >+px , �,142 <+px , which proves that the rule for the

lengths of positive and negative semicycles which occur

successively is +5,� , �2 , +1 , �1 , +1 , �2 , +5 , �2 , +1 , �1 ,
+1 , �2 , +5 , �2 , +1 , �1 , +1 , �,2� .

Therefore, the proof is complete.

Since we have been clear for the rule for the cycle length

of trajectory structure of nontrivial solution of equation (1),

we'd like to know whether the unique positive equilibrium of

equation(1) is globally asymptotically stable. The question is

positively answered in the following, which is the third main

result in this note.

THEOREM 3.3.

Assume that ),0[ ��a . Then the positive equilibrium of

equation (1) is globally asymptotically stable.

Proof We must prove that the positive equilibrium point

x of equation (1) is both locally asymptotically stable and

globally attractive. The linearized equation of equation (1)

about the positive equilibrium 1=x is

43211 00000
����+

�+�+�+�+�= nnnnnn yyyyyy , �,1,0=n .

By virtue of [2, Remark 1. 3. 1], x is locally

asymptotically stable. It remains to verify that every positive

solution �

�= 4}{ nnx of equation (1) converges to 1 as ��n .

Namely, we want to prove

1lim ==
��

xxn
n

. (5)
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If the initial values of the solution satisfy (2), then

Lemma 1 says the solution is eventually equal to 1 (i.e.,

trivial solution) and of course, (5) holds. Therefore, we

assume in the following that the initial values of the solution

do not satisfy (2). Then, by remark 2.1, we know, for any

solution { }nx of equation (1), 1�nx for 4��n (i.e.,

nontrivial solution).

Now, let { }nx be a nontrivial solution of equation (1). In

view of Theorem 3.2, one can see that the successive lengths

of positive and negative semicycles occur periodically with

different prime periods, respectively, 4, 12. In a period, the

rule is

(C1) +5 , �2 , +1 , �1 , +1 , �2 , or

(C2) �5 , +2 , �1 , +1 , �1 , +2 , or

(C3) +3 , �1 , or

(C4) �3 , +1 .

Cases (C1) and (C2), (C3) and (C4) are respectively

symmetrical. It suffices to consider the cases (C1) and (C3).

First, we consider the case (C1). For simplicity, for some

nonnegative integer p , we denote by
+

++++
},,,,{ 4321 ppppp xxxxx the terms of a positive semicycle

of length five, followed by �

++
},{ 65 pp xx a negative

semicycle with length two, then a positive semicycle
+

+
}{ 7px , a negative semicycle �

+
}{ 8px , a positive semicycle

+

+
}{ 9px , a negative semicycle �

++
},{ 1110 pp xx , and so on.

Namely, the rule for the positive and negative semicycles to

occur successively can be periodically expressed as follows:

+

+++++++++
},,,,{ 41231221211212 npnpnpnpnp xxxxx ,

�

++++
},{ 612512 npnp xx , +

++
}{ 712npx , �

++
}{ 812npx , +

++
}{ 912npx ,

�,1,0,},{ 11121012 =
�

++++
nxx npnp .

From Lemma 2.2 (b) and (c), respectively, we may

straightforwardly obtain the following results:

(i) 12121412161219122112 ++++++++++
<<<< npnpnpnpnp xxxxx

npnPnpnpnp xxxxx 12212412712912 +++++++++
<<<<< ;

(ii) 181220122212 ++++++
>> npnpnp xxx ;

6128121012 ++++++
>> npnpnp xxx ;

(iii) 171220122312 ++++++
>> npnpnp xxx ;

5128121112 ++++++
>> npnpnp xxx .

Also, the following inequalities hold.

(iv) 113121812 >
++++ npnp xx and 111121312 <

++++ npnp xx ;

(v) 114121712 >
++++ npnp xx and 111121412 <

++++ npnp xx .

In fact, from the observations

1312

131215121612131215121612

131215121312161215121612

1812

1

1

++

++++++++++++

++++++++++++

++

>

++++

++++
=

np

npnpnpnpnpnp

npnpnpnpnpnp

np

x

axxxxxx

axxxxxx

x

and

,
1

1

1112

8121012111281210121112

8121012812111210121112

1312

++

++++++++++++

++++++++++++

++

<

++++

++++
=

np

npnpnpnpnpnp

npnpnpnpnpnp

np

x

axxxxxx

axxxxxx

x

we know that the two inequalities in (iv) are true. The proofs

for two inequalities of (v) are similar.

Combining the above inequalities (ii), (iii), (iv) and (v),

one can derive that

181220122212 ++++++
>> npnpnp xxx

1312

1

++

>

npx

6128121012 ++++++
>>> npnpnp xxx (6)

and

171220122312 ++++++
>> npnpnp xxx

1412

1

++

>

npx

5128121112 ++++++
>>> npnpnp xxx . (7)

(i) shows that the sequences �

=+ 012 }{ nnpx , �

=++ 0212 }{ nnpx ,

�

=++ 0412 }{ nnpx , �

=++ 0712 }{ nnpx and �

=++ 0912 }{ nnpx are decreasing

with lower bound 1. Therefore, their limits exist, are finite

and are equal. That is,

.lim

limlim

limlim

912

712412

21212

Lx

xx

xx

np
n

np
n

np
n

np
n

np
n

==

==

=

++
��

++
��

++
��

++
��

+
��

(6) and (7) display that the sequences �

=++ 0512 }{ nnpx ,

�

=++ 0612 }{ nnpx , �

=++ 0812 }{ nnpx , �

=++ 01012 }{ nnpx and �

=++ 01112 }{ nnpx

are increasing with upper bound1. Therefore, their limits
exist and are finite, moreover are equal. That is,

.lim

limlim

limlim

1112

1012812

612512

Mx

xx

xx

np
n

np
n

np
n

np
n

np
n

==

==

=

++
��

++
��

++
��

++
��

++
��

Furthermore, (6) and (7) indicate



The Bifurcation of Cycle Length and Global Asymptotic Stability The Open Applied Mathematics Journal, 2008, Volume 2 85

1412212 limlim
++

��
++

��

== np
n

np
n

xxL

1121312 limlim
1

++
��

++
��

=== np
n

np
n

xx
M

. (8)

Now, we prove that 1== ML . To this end, noting that

axxxxxx

axxxxxx

x

npnpnpnpnpnp

npnpnpnpnpnp

np

++++

++++
=

++++++++++++

++++++++++++

++

612812912612812912

612812612912812912

1112

1

and taking the limit on both sides of the above equality,

one can see that

aMMLLMM

aMMLMLM
M

++++

++++
=

1
.

Solving this equation with (8), one can see 1== ML .

From 1123121
++++

<< npnp xx and 1lim 112 =
++�� npn x , it is easy

to obtain 1lim 312 =
++�� npn x . Up to this, we have shown

11,,1,0,1lim 12 �==
++��

kx knpn , which says that (5) holds in

the case(C1).

Now, we deal with Case (C3). Similar to Case (C1), for

some nonnegative integer p , we denote by +

++
},,{ 21 ppp xxx

the terms of a positive semicycle of length three, followed by
�

+
}{ 3px a negative semicycle with length one and so on.

Hence, the rule for the positive and negative semicycles to

occur successively can be periodically expressed as follows:

�

++

+

+++++
}{,},,{ 3424144 npnpnpnp xxxx , �,1,0=n .

Still according to Lemma 2.2 (b), (c) and (d), we have

npnpnp xxx 42444 +++++
<< and npnpnp xxx 45484 +++++

<< . (9)

Similar to the derivation of (iv) in Case (C1), we also

obtain

14

34

54

1
++

++

++
<< np

np

np x
x

x . (10)

It follows from (9) that �

�=+ 44 }{ nnpx is decreasing with

lower bound 1 . Therefore, its limit exists and is finite.
Moreover, it is also clear from (9) that

Lxxx np
n

np
n

np
n

===
++

��
++

��
+

��
54244 limlimlim .

Accordingly, we obtain from (10) that

Lx npn 1lim 34 =
++��

.

Now, we prove that 1=L . To this end, noting that

axxxxxx

axxxxxx

x

npnpnpnpnpnp

npnpnpnpnpnp

np

++++

++++
=

++++++++++

++++++++++

++

4243442434

4244342434

54

1

and taking the limit on both sides of the above equality, we

get

aLLLLLL

aLLLLLL
L

++++

++++
=

11

111
.

Solving this equation produces 1=L . Hence,

1lim 4 =
++�� knpn x , 3,2,1,0=k , which says that (5) holds in

the case (C3). Thus, the proof of Theorem 3.3 is complete.

REFERENCES

[1] Agarwal RP. Difference equations and inequalities, Marcel Dekker,
New York, 1992 (1st edition); 2000 (2nd edition).

[2] Kocic VL, Ladas G. Global behavior of nonlinear difference
equations of higher order with applications, Kluwer Academic

Publishers, Dordrecht 1993.

[3] Kulenovi� MRS, Ladas G, Martins LF, Rodrigues IW. The

Dynamics of

1

1

�

+

++

+
=

nn

n

n
CxBxA

x
x

�� : facts and conjectures.

Comput Math Appl 2003; 45: 1087-99.

[4] Patula WT, Voulov HD. On the oscillation and periodic character
of a third order rational difference equation. Proc Am Math Soc

2002; 131 (3): 905-9.
[5] Camouzis E, DeVault R, Papaschinopoulos G. On the recursive

sequence. Adv Differ Equa 2005; 1 (2005); 31-40.
[6] Li X. The rule of semicycle and global asymptotic stability for a

fourth-order rational difference equation. Comput Math Appl 2005;
49(5/6): 723-30.

[7] Li X, Zhu D. Global asymptotic stability for two recursive
difference equations. Math Appl Comput 2004; 150 (2): 481-92.

[8] Li X, Zhu D. Global asymptotic stability of a nonlinear recursive
sequence. Math Appl Lett 2004; 17 (7): 833-38.

[9] Li X. Qualitative properties for a fourth order rational difference
equation. J Math Anal Appl 2005; 311(1): 103-11.

[10] Li X. The rule of trajectory structure and global asymptotic
stability for a nonlinear difference equa, Math Appl Lett 2006; 19:

1152-58.

Received: March 16, 2008 Revised: April 17, 2008 Accepted: May 04, 2008

© Chen and Li; Licensee Bentham Open.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which

permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.


