
 The Open Applied Mathematics Journal, 2008, 2, 95-103 95

 1874-1142/08 2008 Bentham Open

Open Access

Multistage Human Resource Allocation for Software Development by
Multiobjective Genetic Algorithm
Feng Wena,b and Chi-Ming Lin*,a,c

aGraduate School of Information, Production & Systems, Waseda University, Kitakyushu, Japan
bSchool of Information Science and Engineering, Shenyang Ligong University, Shenyang, China
cCenter for General Education, College of Management, Kainan University, Taoyuan, Taiwan

Abstract: Software development is a multistage process. Minimizing the project duration and minimizing the project cost
are two objectives of software projects. These two goals are often in conflict with each other. The most important influ-
encing factor of these two objectives is human resource allocation. The best compromised human resource allocation plan
based on these two objectives should be provided to the project manager. This is a multistage human resource allocation
problem (MHRAP) which belongs to multiple criteria problems. Genetic algorithm is a well-known solving method for
multiple criteria problems.

In this paper, we propose a new multiobjective genetic algorithm (moGA). This moGA is based on a new encoding
method, named Improved Fixed-length Encoding method. This encoding method is simple and effective for programming.
An adaptive-weight fitness assignment mechanism is used to find a Pareto solution set. A factor weight method is pro-
posed to find the best compromised solution from a Pareto solution set. Project managers can assign weight on each ob-
jective to decide how to arrange software for the project.

Keywords: Software development, improved fixed-length encoding, multistage human resource allocation problem (MHRAP),
multiobjective genetic algorithm (moGA).

1. INTRODUCTION

 Currently, software development companies are facing an
extremely increasing rise in market demand for software
products and services. Software projects usually demand
complex management involving scheduling, planning, and
monitoring tasks. There is a need to control people and proc-
esses, and to efficiently allocate resources in order to achieve
specific objectives while satisfying a variety of constraints.
Usually, the software project scheduling problem should
consider how to allocate human resources to each task.
 A Project Scheduling Problem consists of deciding who
does what during the software project’s lifetime. This is a
capital issue in the software project, because the total budget
and human resources must be managed optimally in order to
result in a successful project. In short, companies are princi-
pally concerned with reducing the duration and cost of pro-
jects. If there occurs a software project duration extension,
fewer people are usually needed to finish the project. Corre-
spondingly, if we want reduce development time, more em-
ployees are needed. More person-months units are required
as a tradeoff for reducing development duration. And most
of the research is concerned with estimating the cost or dura-
tion. But in a real software developing environment, the
manager faces a problem in deciding how to compromise
these two goals to maximize profit. This problem is a multi-
stage human resource allocation problem (MHRAP).

*Address correspondence to this author at the Graduate School of Informa-
tion, Production & Systems, Waseda University, Kitakyushu, Japan;
E-mail: chiminglin@ruri.waseda.jp

 In the case of multiple-objectives, there does not neces-
sarily existence a solution that is best with respect to all ob-
jectives because of incommensurability and conflict among
objectives. A solution may be the best in one objective but
the worst in another. Therefore, there usually exists a set of
solutions for the multiple-objective case which cannot sim-
ply be compared with each other. For such solutions, called
no-dominated solutions or Pareto optimal solutions, no im-
provement is possible in any objective function without sac-
rificing at least one of the other objective functions.
 There is considerable literature focusing on the estimated
cost and duration. Some prediction models such as Function
Points Analysis [1], Constructive Cost Mode (COCOMO)
Models [2-3] and Ordinal Regression Models [4] have been
proposed. Artificial neural networks (Ann) are used to pro-
duce more accurate resource estimates [5-6]. Among them,
the Function Point method measures the developed system
by point counts that can be determined relatively early in the
development process. It measures software project size by
studying external features of the project. For software effort
estimation, the counting of function points requires complex
training to achieve an objective. But it does not take into
consideration the different stages. COCOMO is based on
well defined software engineering concepts. The model is
simple to apply and can be calibrated for precision. CO-
COMO offers a more readily adaptable means of developing
a tailored model. But it is hard to estimate the cost of the
software system at an early stage of the project. Ann is
widely used for forecasting problems. But, Ann is apt to
converge to the local minimum point during learning. Put-

96 The Open Applied Mathematics Journal, 2008, Volume 2 Wen and Lin

nam’s Model and Boehm’s Model were proposed to opti-
mize resource allocation for software development [7]. But
their model cannot solve multicriteria resource allocation.
 Evolutionary Algorithms (EA) are being applied to a
wide range of optimization, and can offer significant advan-
tages in solution methodology and optimization perform-
ance. Genetic algorithms (GA) are one of EA. GA searches
from a population of points that can provide globally optimal
solutions. In addition, GA uses probabilistic transition rules,
and work with a coding of the parameter set. Therefore GA
can easily handle the integer or discrete variables.
 A genetic method was proposed to solve the software
project scheduling problem [8]. However, the different
stages of the software project were not considered. Different
weights were assigned to different objective values to calcu-
late fitness value. The diversity of solution space was also
not considered.
 In recent years, EA is also increasingly being developed
and used for multiobjective optimization problems. EA pro-
vides a framework of using only objective function informa-
tion for analyzing many multiobjective problem types.
Within this framework, optimization techniques can be em-
ployed to solve the non-smooth, non-continuous and non-
differentiable functions which actually exist in a practical
optimization problem. Surveys on such multiobjective
Evolutionary Algorithms were given [9-10]. A
nondominated sorting-based multiobjective evolutionary
algorithm was suggested, that is, nondominated, sorting
Genetic AlgorithmⅡ [11].
 In this paper, we developed an efficient representation
scheme using Improved Fixed-length Encoding method. This
method can solve MHRAP effectively. Based on this encod-
ing method, a multiobjective Genetic Algorithm (moGA)
applying Adaptive Weight fitness value assignment method
is developed. This fitness assignment mechanism helps with
finding a set of solutions that are close to the global Pareto
set. If we want to get a global Pareto set, it will usually lead
to a very long execution time. In our research, we propose
moGA to find a near optimal and acceptable solution within
a reasonable execution time. Numerical experiments show
the effectiveness and the efficiency of our approach by com-
paring recent research. Then, a distance-based method was
proposed to select the best compromised result in a pareto
solution set by the managers’ preference. Managers can ar-
range software development by this result. They can thus
achieve the optimal trade-off of the two objectives.
 The rest of the paper is organized as follows. In Section
2, the software stages and assumptions are described, then a
mathematic model of a multiobjective problem is formu-
lated. The proposed moGA is described in Section 3 to solve
this problem. In Section 4, an experiment of moGA is given
and its results are analyzed. In Section 5, we draw a conclu-
sion from the proposed algorithm.

2. SOFTWARE DEVELOPMENT STAGES AND
MATHEMATICAL MODEL

2.1. Cost and Time Efforts and Assumptions

 In here, it shows that when the number of employees
increases, their rate of effort decreases[7]. One would
imagine that with more employees the project duration

should decrease sharply. However, the total contribution of
employees will increase only slightly when the number of
employees increases, mainly because of manpower and time
is not interchangeable. There exists a trade-off between per-
son units and development time. In other words, when in-
creasing employee numbers, the average productivity rate is
reduced. Here, to analyze the trade-off ratio between person-
nel unit and development time, we consider the composing
of software development process and then make some as-
sumptions for our research.
 Usually there are six stages in software projects which
includes requirement analysis, architectural design, detailed
design, coding, test and maintenance. Among them, the re-
quirement analysis and maintenance stages are discrete time
processing and these two stages should involve contact with
clients or investors. So we can’t use known mathematical
methods to estimate the cost and duration of them. Here, we
consider the other four stages.

2.2. The Network Model and Mathematical Model

 We can reformulate MHRAP as a network model, where
limited activity represented by stages (such as jobs or tasks),
and the resources gives possible states in each stage (number
of workers must be allocated for each stage). The meaning
element in network is decision variable xij. As shown in Fig.
(1), the inflows of xij are objective values (w1ij, w2ij, …, wpjj,
wOij) when assign j employees to ith stage.

Fig. (1). Illustration of element in network model.

 We start by describing the basic model. The network
model of MHRAP within multistage is shown in Fig. (2).
Consider Fig. (2), S and T are dummy starting and terminat-
ing nodes respectively. The inflow of dummy terminating
node T is 0. A path from S to T of this network is one alloca-
tion plan for MHRAP.
 We consider the MHRAP as multiobjective with mini-
mizing the total cost and minimizing the total duration. In
order to calculate these two objective values, we list some
assumptions about objective formulation function:

 In a pratical software project, there are several kinds of
costs in the project process. Here we only consider the cost
of employees.

1. A month is the measured unit of software project dura-
tion. In a practical enviroment, the software project may
be interrupted by some unpredictable event. In order to
facilitate our research, we only consider the continuous
time process of software projects.

2. Each project has a completion deadline, so we consider
that the duration should not extend beyond the deadline.

3. Each project should consider the benefits, so we assume
that the total cost should be less than 70 percent of in-
vestment.

4. Each stage will allocate at least one employee.

(w1ij,,w2ij,…,wpij…,wOij)

xi j

Multistage Human Resource Allocation for Software Development The Open Applied Mathematics Journal, 2008, Volume 2 97

5. In order to be simply calculated, the salary of employees
is the same in the same stage.

6. Each software Project includes all stages.

7. For one project, we use the number of person-months
required to measure its workload, and we assume that
the workload of each stage has been estimated by other
algorithms. Here, we only consider how to allocate the
human resource.

8. In a practical enviroment, when treating the same task,
different employees will use different times to finish his
task because of their different abilities. In our research,
we assume that if the manager assigns work to different
employees, they will finish the task in the same time.

 The MHRAP is to assign m staff to n different projects
for maximizing the benefit and minimizing the cost subject
to one resource constraint is formulated as a bicriteria integer
programming model, which has been proposed in [12].
These two objective values can be minimizing simultane-
ously [13].

Notations

Indices

i: index of stage, i = 1, 2, …, n.
j: number of employee, j= 1, 2, …,m.
Parameters

n: total number of stages in software developing
m: total number of workers

T: maximal duration of the whole project in considered four
stages

C: maximal cost consumption

cij : cost of stage i when j employee are assigned

tij : duration of job i when j employee are assigned

Decision Variables

1, if employees are assigned to stage

0, otherwise
ij

j i!
= "
#

x

min 1

1 0

n m

ij ij

i j

z t
= =

=!! x (1)

min 2

1 0

n m

ij ij

i j

z c
= =

=!! x (2)

1 0

n m

ij

i j

j m
= =

!"" x (3)

1
z T! (4)

2
z C! (5)

0

1

m

ij

j

i
=

= !" x (6)

s. t.

0 or 1 ,
ij

i j= !! !x (7)

 Constraint (3) ensures that we cannot assign the workers
more than the total number of workers. Constraint (4) en-
sures that the total duration of project is less than maximal
duration. Constraint (5) ensures that the total cost of the pro-
ject is less than maximal cost. Constraint (6) ensures that for
each job i we just can only assign workers for it one time.

3. MULTIOBJECTIVE GENETIC ALGORITHM

3.1. Genetic Representation

 The encoding mechanism is fundamental to the GA for
representing the optimisation problem's variables. The en-
coding mechanism depends on the nature of the problem
variables. In network problems, recently, to encode a short-

Fig. (2). Model of MHRAP within multistage.

S

x11

x12

x1 m-1

x1 m

x11

x21

x2 m-1

x2 m

xn-1 1

xn-1 1

xn-1m-1

xn-1 m

xn 1

xn 1

xn m-1

xn m

T

…

…

…

…

…
… … … …

stage 1 stage 2 stage n-1 stage n...

98 The Open Applied Mathematics Journal, 2008, Volume 2 Wen and Lin

est routing path into a chromosome for GAs, there are vari-
ous non-string encoding techniques that have been created.
 Munemoto et al. proposed variable-length chromosomes
to represent a routing [14]. But the algorithm requires a rela-
tively large population for an optimal solution due to the
constraints on the crossover mechanism, and is not suitable
for large networks. Ahn et al. developed a variable-length
chromosomes [15]. A new crossover operation exchanges
partial chromosomes is introduced. But crossover may gen-
erate infeasible chromosomes that have loops in the paths.
We need to check the feasibility and repair mechanism. It is
not suitable for large networks or unacceptable high compu-
tational complexity. Inagaki et al. proposed a fixed-length
chromosome technique [16]. The chromosomes in the algo-
rithm are sequences of integers and each gene represents a
node ID that is selected randomly from the set of nodes con-
nected with the node corresponding to its locus number. All
the chromosomes have the same length. In their method,
some offspring may generate new chromosomes that resem-
ble the initial chromosomes in fitness, thereby retarding the
process of evolution.
 In this paper, we propose an Improved Fixed-length
Encoding method which combines the merit of fixed-length
and variable-length chromosome coding method. This
encoding method is easy to realize as fixed-length encoding
method. As it is known, a gene in a chromosome is
characterized by two factors: locus, i.e., the position of gene
located within the structure of chromosome, and allele, i.e.,
the value the gene takes. In this encoding method, a
chromosome of the proposed GA consists of sequences of
positive integers that are randomly created based on
maximum successive set length of each node. Each locus of
the chromosome represents an order of a node in a routing
path. The gene of the first locus is always reserved for the
source node. The length of the chromosome is fixed, and it is
the same to the total number of nodes in the network. The
value of the gene is used to search the next node in decoding
method.

3.2. Improved Fixed-Length Encoding

 In the decoding method, the position of a gene is used to
represent the node index in the route and its value is used to
decide which node will be selected in successive set of
current nodes. When destination node occured in successive
set, the encoding process is ended. A path can be easily
determined by this encoding method. An example of
generated chromosome and its decoded path is shown in Fig.
(3).

 We denote the Suci[] as the successive set of node i in
road network, and |Suci[]| is nodes number in successive set
of node i. The maximum value of |Suci[]| in example
network shown in Fig. (3) is 3 . All value in gene locus is
randomly created between 1 to 3. As shown is Fig. (3), the
are {3, 1, 3, 1, 2, 2, 3, 1, 2, 1}. Node 1 is original node and
10 is destination node. At the beginning, we try to find out
which node should be selected in Suc1[].
 Nodes 2 and 3 are eligible for the position, which can be
easily found in Suc1[]. The value in locus 1 is 3, and |Suc1[]|
equals 2. Then, we calculate (2 mod 3) mod 2 = 0. The next
node index is Suc1[0], here is 2. Repeat these steps until we
obtain a complete path (1→2→4→7→8→10).
We list the whole encoding process as follows:

procedure 1: Improved Fixed-length Encoding
input: number of nodes n, array of successive nodes number Suc[]
output: kth initial chromosome vk[]
begin
select maximum length assign to j in Suc[];
for i =1 to n
vk[i] ← random[1, j];
output: kth initial chromosome vk []
End

 Based on the Improved Fix-length Encoding method
mentioned before, we present the decoding procedure as
follows:

procedure 2: Improved Fixed-length Decoding

input: chromosome v[], no. of nodes n, origin id O, destination id D,
Suc[][]
output: path P[]
begin
P[1] = O;

for i = 2 to n // initialize path with zero
P[i] = 0;
for i = 1 to n-1
id = P[i];
index = (|Suc[id][]| % v[i]) % |Suc[id][]|; // calculate the index of
next node

P[i+1] = Suc[id][index]; // add current node into path
if P[i+1] = D then break; // find the destination node
output: path P[]
End

Fig. (3). Example of generated chromosome and its decoded path.

Chromosome: 1213221313
10987654321locus ID:

1

3

5

6

7

9

10
27

18

13

12
23

1 1
s t

36 16 11

12
38

15

24

13

32

20
4 82

20

25 32 {2, 5, 6}33

{7, 8}24

{4, 6}25

{7, 9}26

{8, 9}27

{9, 10}28

{10}19

Ø010

{4, 5}22

{2, 3}21

Suci[]|Suci[]|Node Id

Path: 1 2 4 7 8 10

Multistage Human Resource Allocation for Software Development The Open Applied Mathematics Journal, 2008, Volume 2 99

 The trace table of decoding procedure is listed in Table 1.
Table 1. Trace Table of Decoding Procedure

Iteration Node ID (i) Suc[i] |Suci []| Path[]

1 1 {2, 3} 2 1

2 2 {4, 5} 2 1-2

3 4 {7, 8} 2 1-2-4

4 7 {8, 9} 2 1-2-4-7

5 8 {9, 10} 2 1-2-4-7-8

6 10 {Ø} 0 1-2-4-7-8-10

 This trace table is used for illustrate the process of decod-
ing process. The data and result is related to Fig. (3).

3.3. Genetic Operation

 The next step is to generate a next generation population
of solutions from those genetic operators: crossover (also
called recombination), and mutation.
 In the crossover method, two chromosomes are chosen
which should have at least one same node index except for
source and destination nodes, but there is no requirement that
they should be located at the same locus of the chromosome.
We illustrate the procedure as follows:

procedure 3: Improved Fixed-length crossover

input: v1, v2

output: vo
1, vo

2 //offspring of v1, v2

begin

P1 ← decoding(v1);

P2 ← decoding(v2);

if P1 and P2 have one or more same node set (SetP[]) then

randomly select index k from the SetP[];

l1 ← site in v1 corresponding SetP[k]; // l1 is crossover site in v1

l2 ← site in v2 corresponding SetP[k]; // l1 is crossover site in v1

apply crossover to v1 and v2 and produce offspring vo
1 and vo

2 ;

output: vo
1, vo

2

End

 Insertion Mutation has been adopted in this paper. In this
mutation, a gene is randomly selected and inserted into a
position, which is determined randomly.

3.4. Adaptive-Weight Approach

 The selection operation is intended to improve the aver-
age quality of the population by giving the high-quality
chromosomes a better chance to get copied into the next
generation. In this paper we use Roulette Wheel selection,
which was proposed by Holland [17] to determine selection

probability or survival probability for each chromosome
proportional to the fitness value [18].
 In selection operation, we should design a fitness as-
signment mechanism. The most important issue is how to
design a fitness assignment mechanism when we deal with
multiobjective optimization problems. Ho et al. [19] use a
weighted-sum approach by combining multiple objectives
into a single-objective function. However, in order to obtain
good solutions using the weighted-sum approach, domain
knowledge and large computation costs are required for de-
termining a set of good weight values.
 Here we adopt adaptive-weight Genetic Algorithm
(awGA), which is an improved adaptive-weight fitness as-
signment approach proposed by Gen et al. [18]. This algo-
rithm considers the disadvantages of weighted-sum approach
and Pareto ranking-based approach. This utilizes some useful
information from the current population to generate an adap-
tive weight for each objective, and thereby exerts a search
pressure towards the ideal point. To solve multiobjective
problems, we first define extreme points of each objective:
the maximum extreme point z+ ← {z1

max, z2
max, …,zq

max} and
the minimum extreme point z- ← {z1

min, z2
min, …,zq

min} in
criteria space, where zp

max and zp
min ! p=1,2,…q are the

maximum value and the minimum value respectively for pth
objective in the current population. We adopted the roulette
wheel selection as the supplementary operation to this inter-
active adaptive-weight assignment approach. The fitness
assignment process is shown as follows:

Procedure 4: Adaptive-weight fitness assignment

input: chormosome vk

output: fitness value eval(vk)

max max max min min

1 2 1 2

step 1: define two extreme points: the maximum extreme point

 and the minimum extreme point in criteria space

 as follows:

 { , , } { ,q

z z

z z z z z z z

+ !

+ !
= =!!

min

max min

, , }

 where , 1,2, , are the maximal

 value and minimal value for each objective in the current

 population. They are defined as follows:

q

p p

z

z and z p q" =

!

!

max

min

 max{ | }

 min{ | }

k

p p

k

p p

z f k popSize

z f k popSize

= !

= !

max min

step 2: The adaptive weight for objective p is calculated by

 the following equation:

1

p

p p

w
z z

=
!

()min

1

step 3: Calculate the fitness value for each individual.

 () ,
q

k

k p p p

p

eval v w z z k popSize
=

= ! " #$

3.5. Overall moGA

 The overall procedure for solving MHRAP is outlined as
follows:

100 The Open Applied Mathematics Journal, 2008, Volume 2 Wen and Lin

procedure 5: moGA for MHRAP

input: network data (V, A, C), GA parameters //C means offspring set

output: Pareto optimal solution E(t)

begin

t←0;

initialize P(t) by Improved Fixed-length Encoding;

calculate objectives zp by Improved Fixed-length Decoding;

create Pareto E(P);

fitness eval(P) by adaptive weight approach;

while (not termination condition) do

crossover P(t) to yield C(t) by Improved Fixed-length

crossover;

mutation P(t) to yield C(t) by insertion mutation;

objectives zp by Improved Fixed-length Decoding;

apply the iterative hill climbing method;

update Pareto E(P, C);

fitness eval(P, C) by adaptive weight approach;

select P(t+1) from P(t) and C(t) by roulette wheel selection;

t←t + 1;

end

output Pareto optimal solution E(t);

End

4. EXPERIMENT RESULTS

 To evaluate our algorithm, we consider a simple exam-
ple. We assign 10 to maximal number of employees in each
stage, and salaries are different in each stage. The table be-
low shows different salaries in different stages.
 In Table 2, we list the index of software developing
stages with different salaries.
 Table 3 shows the development duration effect by vari-
ous combinations of employee number in each stage. This
value is based on the history work achievement of employee
and the experience of the manager.

To analyze this problem, we reformulate this problem as a
network model.
i: index of stage, i = 1, 2, …, n.
j: number of employees, j = 1, 2, …, m.
tij: expected duration in each stage with different employee
numbers.
cij: expected cost in each stage with different employee num-
bers. To calculate cij, we can multiple employee numbers by
salary of different stage. (This value is not appeared in fol-
lowed figure.)
 A path from O to D is a resource allocation solution. We
use proposed moGA to find Pareto solution set.
 To measure and evaluate the efficency of proposed algo-
rithm, we should find Pareto-optimal set S* as a criterion set.
 In order to make a large number of solutions and make a
nearest distance to real Pareto front in Pareto-optimal set S*,
first we calculate the solution sets with special GA parameter
settings. The experiments need a long computation time. The
results are reference set S*. Furthermore, we will assign
small but reasonable GA parameter settings for comparison
experiments.
 In this section, the performance of moGA is compared
with nsGA-II. We use these parameters in nsGA-II and
moGA to find the reference solution set S*: population size,
popSize =100; crossover probability, pC =0.90; mutation
probability, pM =0.90; immigration rate; Stopping criteria:
max evolution generations, maxGen=10000. Fig. (6) shows
the reference Pareto solution set.
 We compare these two algorithms under these same GA
parameter settings: population size, popSize =20; crossover
probability, pC =0.70; mutation probability, pM =0.30; stop-
ping condition, maxGen =500. Each simulation was run 20
times to get average result values. We denote S as the solu-
tion set of each algorithm. In this paper, the Average Dis-
tance AD(S) is used as a measure which has already used in
different moGA studies [20]. AD(S) is to find an average
distance of the solutions of S from S*. Here, AD(S) is defined
as follows:

Table 2. Index of Salaries in Different Stages

No. of stage (i) 1 2 3 4

Stage of software development Architectural design detailed design coding test

Average salary per month 3,800 3,500 2,400 2,200

Table 3. Expected Duration in each Stage with Different Employee Numbers (Month)

j

 i
1 2 3 4 5 6 7 8 9 10

1 5.22 4.07 3.28 2.72 2.29 1.97 1.71 1.50 1.13 1.19

2 8.35 6.50 5.25 4.35 3.66 3.15 2.74 2.40 1.81 1.90

3 11.48 8.95 7.22 5.98 5.04 4.33 3.76 3.30 2.49 2.62

4 4.18 3.26 2.62 2.18 1.83 1.58 1.37 1.20 0.90 0.95

Multistage Human Resource Allocation for Software Development The Open Applied Mathematics Journal, 2008, Volume 2 101

Fig. (4). Element in network model of experiment.

Fig. (5). Network model of test problem.

Fig. (6). Reference solutions.

*

1
()

*

D
A

x

r S

S d
S !

= " (8)

where dx is the distance between a current solution x∈S and
a reference solution r in the 2-dimensional normalized objec-
tive space, fq(x) is objective value of qth objective.

()
22

*

1

min () () q q
r

q

d f f r S
=

! "
#

= $ %& '
#()
*x

x r
 (9)

 As depicted in Fig. (7c) and Fig. (8), the Pareto solution
of proposed moGA is more close to a reference solution by
calculating AD(S). So, the proposed algorithm is fit for solv-
ing MHRAP.
 We should find the best compromised solution according
to manager’s preference. We propose a Factor Weight
method in our algorithm. Here we use wT, wC as factor

weight for duration objective and cost objective respectively,
and wT+ wC=1. All factor weighting should be assigned by
manager as his preference.

a

b

c

Fig. (7). (a) Solution using nsGA-II. (b) Solution using moGA. (c)
Compared reference solution to different algorithm.

 We calculate the factor value fxl to decide which route is
the best compromised route in Pareto set by factor value
function listed bellow.

a

b

c

ij

tij

O

110

1 2 2 2 3 2

310

1 1

2 1 3 11 1 4 1

4 2

210 410

.

.

.

.

.

.

.

.

.

.

.

.

D

8.355.22 11.48 4.18

3.268.954.07 6.5

1.91.19 2.62 0.95

ideal point

duration (month)

c
o

s
t
(
$

)

ideal point

duration (month)

c
o

s
t
(
$

)

ideal point

duration (month)

c
o
s
t
(
$
)

moGA
nsGA-II
reference

duration (month)

co
st

 ($
)

102 The Open Applied Mathematics Journal, 2008, Volume 2 Wen and Lin

Fig. (8). Compare average distance bewteen two algorithms.

2 2

1 1

max max

() () () ()

() ()

2 2

T C

1 1 2 2

f x f l f x f l
f w w

z f l z f l

! " ! "# #
= +$ % $ %# #& ' & '

xl

 (10)

 Here, x is the current solution and l is the ideal solution in
the 2-dimensional normalized objective space. Using this
method, we can get the compromised best solution. When
we assign 0.5 to the two weight factors, the best compro-
mised solution of experiment result is shown in Table 4. Af-
ter comparing different multiobjective algorithms, the pro-
posed method has been proved to be efficient when solving
this problem.

5. DISCUSSIONS AND CONCLUSIONS

 In this paper, we proposed an Improved Fixed-length
Encoding for designing multiobjective genetic algorithm
(moGA) to solve a multi-criteria software project. By this
method, we can get a pareto solution set of two objectives
that include both project duration and cost of employee. An
then, we used a distance method to provide the manager of
the software project with the best compromised solution. By
comparing different multiobjective algorithms, the proposed
method has been proven to be more efficient when solving
this problem.
 We considered the multi-criteria software development
problem with the two conflicting objectives. To solve this
problem:
(1) We proposed a new chromosome representation

based on Improved Fixed-length Encoding method. In

addition, we gave a special decoding and encoding
method.

(2) In order to ensure the population diversity character-
istic in moGA, we proposed an adaptive-weight fit-
ness assignment approach. Their elements represent
that weights are adjusted adaptively based on the cur-
rent generation to obtain search pressure toward the
positive ideal point. It is an effective way when con-
sidering the computation time.

(3) To get the best compromised solution in a Pareto set,
we proposed a weight factor method to decide which
solution best fits a manager’s preference.

 By the experiment result, with comparison to other algo-
rithms, we can see the efficiency of our proposed method.
This efficiency is mainly due to the simple and effective cod-
ing method and fitness assignment mechanism.
 In our research, the software project is a continuous time
process; we have not considered the cooperative factor value
when assigning a task to different numbers of workers. In
future research, it will be possible to consider the task and
cooperative factor value function in each stage, and decide
how to allocate employees to reach the best balance of the

task. Managers of software companies are more concerned
about this problem.

REFERENCES
[1] Albrecht AJ. Measuring application development productivity.

Proc IBM Application Development Symposium 1979; pp. 83-92.
[2] Boehm B, Clark B, Horowitz E, Westland C, Madachy R, Selby R.

Cost models for future software life cycle processes: COCOMO
2.0. Ann Software Eng 1995; 1: 57-94.

[3] Boehm W, Horowitz E, Madachy R, et al. Software cost estimation
with COCOMOII. Prentice-Hall Saddle River 2000.

[4] Sentas P, Angelis L, Stamelos I, Bleris G. Software productivity
and effort prediction with ordinal regression. J Inform Software
Technol 2005; 47(1): 17-29.

[5] Gray AR, MacDonell SG. A comparison of model building tech-
niques to develop predictive equations for software metrics. Inform
Software Technol 1997; 39(6): 425-37.

[6] Witting G, Finnie G. Estimating software development effort with
connectionist models. Inform Software Technol 1997; 39(1): 369-
476.

[7] Ho YC, McDevitt CD. Determination of optimal resource alloca-
tion for software development – An application of a software equa-
tion. Inform Manag 1990; 18(2): 79-85.

[8] Alba E, Chicano JF. Software project management with Gas. In-
form Sci 2007; 177(11): 2380-401.

[9] Fonseca CM, Fleming PJ. An overview of evolutionary algorithms
in multiobjective optimization. Evol Comput 1995; 3(1): 1-16.

[10] Horn J. Multicriterion decision making. In: Bäck T, Fogel DB,
Michalewicz Z, Eds., Handbook of evolutionary computation. IOP
Publishing and Oxford University Press, New York and Bristol,
1997; pp. F1.9:1–F1.9:15.

Table 4. Comparison of Best Solutions with Different Methods (wT=wC=0.5)

The number of Employee in each stage
Method

stage 1 stage 2 stage 3 stage 4
Total duration (month) Total cost (US$)

NSGA-II 4 4 7 5 12.66 57,000

MoGA 2 5 9 4 12.40 55,500

Multistage Human Resource Allocation for Software Development The Open Applied Mathematics Journal, 2008, Volume 2 103
[11] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol
Comput 2002; 6(2): 182-97.

[12] Lin CM, Gen M. Multiobjective resource allocation problem by
multistage decision-based hybrid genetic algorithm. Appl Math
Comput 2007; 187(2): 574-83.

[13] Khor EF, Lee TH. Multiobjective evolutionary algorithms and
applications. London : Springer Science, 2005

[14] Munemoto M, Takai Y, Sato Y. A migration scheme for the genetic
adaptive routing algorithm. In Proc IEEE Int Conf Syst Man Cy-
bern 1998; pp. 2774-9.

[15] Ahn CW, Ramakrishna RS. A genetic algorithm for shortest path
routing problem and the sizing of populations. IEEE Trans Evol
Comput 2000; 6(6): 566-79.

[16] Inagaki J, Haseyama M, Kitajima H. A genetic algorithm for de-
termining multiple routes and its applications. In Proc IEEE Int
Symp Circuits Syst 1999; pp. 137-40.

[17] Holland J. Adaptation in natural and artificial systems, University
of Michigan Press 1975.

[18] Gen M, Cheng R. Genetic algorithms and engineering optimiza-
tion. New York: John Wiley & Sons 2000.

[19] Ho SY, Liu CC, Liu S. Design of an optimal nearest neighbor
classifier using an intelligent genetic algorithm. Pattern Recog Lett
2002; 23(13): 1495-503.

[20] Deb K. Multiobjective optimization using evolutionary algorithms.
Chichester, UK: Wiley 2001.

Received: April 08, 2008 Revised: April 17, 2008 Accepted: May 28, 2008

© Wen and Lin; Licensee Bentham Open.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which
permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

