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Abstract: Essentially, the Darboux proposition is based on the covariance properties of ordinary and partial differential 
equations with respect to a gauge transformation in the special case of second order differential equations of the Sturm-
Liouville type. In this work, the one-dimensional Schrödinger equation with a position-dependent mass (SEPDM) is 
transformed into a Schrödinger-like equation with a position-independent mass (SLEPIM) for an effective potential which 
incorporates the spatially dependent mass. Therefore, taking advantage of the similarity between the SLEPIM and the 
Sturm-Liouville differential equation it is shown the application of the Darboux transform to the SEPDM problem. 
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INTRODUCTION 

 The one-dimensional Schrödinger equation with a 
position-dependent mass (SEPDM) occurs in the quantum 
chemistry study of microstructures such as the electronic 
properties of semiconductors, liquid crystals, quantum dots 
and non uniform materials in which the carrier effective 
mass depends on the position [1-4]. Consequently, the 
exactly solvable SEPDM has attracted considerable attention 
as demonstrated by already published methods on the subject 
such as the kinetic energy operator [5], Lie algebras [6,7], 
supersymmetry [8] and path integration [9] approaches. On 
the other hand, the Darboux transform (DT) [10] provides a 
very advisable way to construct new solutions of integrable 
equations by a purely algebraic algorithm. For this reason, 
the DT has been extensively used in quantum mechanics in 
the search of isospectral potentials for exactly solvable 
Schrödinger equations of constant mass (SLEPIM) [11-14], 
and nevertheless, only recently it has been applied to the 
SEPDM problem [15,16]. Thus, considering the aforesaid 
aspects, as well as the correspondence between the Sturm-
Liouville (SL) equation and the SEPDM, this work has two 
objectives: a general approach to transform the SEPDM onto 
the SLEPIM in the search of exactly solvable SEPDM and 
the application of the DT to the SEPDM problem to find 
their corresponding isospectral potentials as given in the next 
two sections respectively.  

TRANSFORMATION OF THE SEPDM INTO A 
SLEPIM PROBLEM 

 The point canonical transformation, first used by De et 
al. [17] in the mapping of shape invariant potentials, also  
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has been applied to the SEPDM [18]. However, of all the 
cases appeared in the literature, only particular position- 
dependent mass distributions have been studied, instead of 
obtaining all those distributions that fulfill exactly solvable 
SEPDM, in the assumed potential model. Thus, to overcome 
such difficulty, we have considered convenient to begin with 
two important definitions.  

Definition 1. The SEPDM is a problem that looks for square 
integrable solutions n(x) on the interval ( , ), of the 
Sturm-Liouville equation 

   

d

dx

1

2m(x) n
(x) +V (x)

n
(x) = E

n n
(x),  (1) 

where the prime denotes derivative with respect to the 
argument, n is the number of zeros of the solutions, V(x) is 
usually known as the potential function and En are the 
corresponding eigenvalues. 

Definition 2. Each integrable function m(x) > 0 defines a 
point canonical transformation Tm from the variable x  ( , 

) onto new variable u by the formula u = g(x) = 

  
2m(t) dt

x

.  The inverse transformation, which is well 

defined, will be denoted by function F(u), that is, x = F(u) = 
g

1(u). 

 We are now in conditions for writing the equivalence 
between the SEPDM problem and the ordinary Schrödinger 
equation problem, i.e. the SLEPIM. 

Theorem 1. Given a solution n(x) of the SEPDM with 
potential V(x) and mass m(x) there exists a corresponding 
solution n(u) (in variable u as defined by Tm) of the 
SLEPIM 

   n
(u) +V

eff
(u)

n
(u) = E

n n
(u)  (2) 
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where the effective potential Veff (u) is given in terms of the 
potential V(F(u)) and of the superpotential W(u) by 

   
V

eff
(u) = V (F(u)) +W 2 (u) +W (u),  (3) 

where 

  
W (u) =

d

du
ln(2m(F(u)))

1

4 ;  (4) 

the relation between the functions n(x) and n(u) is a 
similarity transformation given by 

  

n
(F(u)) =

n
(u)exp W (t) dt

u

 (5) 

and the eigenvalues En are the same for the SEPDM and the 
SLEPIM. 

Proof. First we write the Eq. (1) in the form 

   

1

2m(x) n
(x) +

1

2m(x) n
(x) + (E

n
V (x))

n
(x) = 0  (6) 

and next we substitute the expressions 

   

1

2m(x)

d

dx
=

d ln
1

2m(F(u))

du

d

du
,  (7) 

and 

  

1

2m(x)

d
2

dx
2

=
d

2

du
2

+
d ln (2m(F(u))

du

d

du
,  (8) 

to obtain 

  

d
2

du
2 n

(F(u)) + 2W (u)
d

du
n
(F(u))

+(E
n

V (F(u))
n
(F(u)) = 0,

 (9) 

where W(u) is defined by Eq. (4). Now we use Eq. (5) 
followed by Eq. (3) into the previous equation in order to get 
the Schrödinger equation given in Eq. (2). 

Reciprocal theorem. Given a solution n(u) of the SLEPIM 
with effective potential Veff(u) and given the former potential 
V(x) of a SEPDM problem, there exists a solution n(x) in 
the variable x of the SEPDM 

   

d

dx

1

2m(x) n
(x) +V (x)

n
(x) = E

n n
(x),  (10) 

with eigenfunctions 

  n
(x) =

n
(g(x)) [2m(x)]

1

4 ,  (11) 

and mass distribution given by 

  

m(x) =
1

2
exp 4 W (t) dt

g ( x )

 (12) 

being W(u) solution of 

   
V (F(u)) = V

eff
(u) W 2 (u) W (u).  (13) 

Proof: The reciprocal theorem follows a similar proof of 
theorem 1. 

THE DARBOUX TRANSFORM APPLIED TO THE 
SEPDM 

 In order to know on the implications of the Darboux 
transform applied to the SEPDM problem, first we consider 
the Darboux transform applied to the SLEPIM problem. 

 According to the Darboux statement [10], we can define 
a Darboux transform from any given solution p(u) of the 
SLEPIM by using its logarithmic derivative which is p(u) = 

  

d

du
ln

p
(u).  The Darboux tranform is 

  
n

D (u) =
d

du p
(u)

n
(u).  (14) 

Darboux theorem: The function 
  n

D (u) satisfies the Sturm-

Liouville equation 

   n

D (u) +V
eff

D (u)
n

D (u) = E
n n

D (u)  (15) 

with a new potential usually named the Darboux potential 

 
V

eff

D  

   
V

eff

D
= V

eff
(u) 2

p
(u).  (16) 

 The proof of the Darboux theorem is standard and is 
given elsewhere [19]. 

 With these elements, we are now in position to establish 
our main theorem: 

Theorem 2. Suppose that n(x) is solution of the SEPDM 
problem, n(u) is a solution of the SLEPIM problem, and 
both are related in the sense of Theorem 1 or reciprocal 
theorem. Then the function 

  n

D (x) =
n

D (g(x))(2m(x))1/4 ,  (17) 

constructed from the Darboux transform 
  n

D (u),  is solution 

of the SEPDM problem given by 

   

d

dx

1

2m(x) n

D (x) +V
D (x)

n

D (x) = E
n n

D (x)  (18) 

where VD(x) is a new isospectral potential, named Darboux 
potential, which expression is 

  

V D (x) = V (x)
2

2m(x)

d

dx
[

p
(g(x))].  (19) 

Proof. From the reciprocal theorem applied to Eq. (15), the 
Darboux potential for the SEPDM is 

   
V D (F(u)) = V

eff

D (u) W 2 (u) W (u),  (20) 

using Eq. (16) is 

   
V D (F(u)) = V

eff
(u) 2

p
(u) W 2 (u) W (u)  (21) 

and from Eq. (13) it is 
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V

D (F(u)) = V (F(u)) 2
p
(u)  (22) 

that matches with Eq. (19) after performing change of 
variable by means of the point canonical transformation Tm. 

CONCLUDING REMARKS 

 As can be appreciated, this work had a double purpose; 
firstly, to contribute to the study of exactly solvable SEPDM, 
and secondly, to find the isospectral potentials associated to 
the SEPDM problem. To the first purpose, we have proposed 
a gauge and a canonical point transformations, to convert the 
SEPDM into a SLEPIM problem; i.e. the method leads to the 
possibility of using the effective potentials involved in 
exactly solvable SLEPIM. To attain the second objective, the 
DT has been applied to the SEPDM problem by using like 
intermediary the SLEPIM. In both cases, the methods are 
general and can be straightforwardly applied to specific 
former potentials in order to find the corresponding mass 
distributions that guarantee the exact solvability of the 
SEPDM. 

 That is, our proposal is by far simpler than other 
approaches already published such as [15] where the 
position-dependent mass problem is focused by means of the 
Darboux transform and form-preserving transformations or 
as in [8] where the supersymmetric treatment of the SEPDM 
is given for a particular position-dependent mass and 
potential.  

 For example, to better appreciate the usefulness of our 
method in the search of exactly solvable SEPDM, it should 
be noticed that several situations can be identified and 
applied to the potential Veff (u) = V(F(u)) + W

2(u) + W (u). 
Particularly, the simplest potential of the SEPDM is the null 
potential or free particle model in the x space. That is, if the 
former potential V(F(u)) = V(x) = 0; then the effective 
potential is given by the Riccati equation  

Veff (u) = W2(u) + W (u), (23) 

from which many solvable effective potentials may be 
considered depending on the choice of the ansatz W(u), that 
is related as well to the mass distribution. Therefore, the null 
potential model in the x space for a certain m(x) (SEPDM) is 
linked to an exactly solvable effective potential with constant 
mass in the u space (SLEPIM) [20].  

 Another form to appreciate the scope of the Darboux 
transform applied to the SEPDM is to point out about the 
general relationship 

   n
(u)2

+
n
(u) + E

n
= V (F(u)) +W

2 (u) +W (u),  (24) 

which reduces to 

   n
(u)2

+
n
(u) + E

n
= W

2 (u) +W (u).  (25) 

in the particular case of the free particle potential model. 
Consequently, if in addition E0 = 0 one leads to (u) = W(u) for 
which the potential VD(x) of the SEPDM problem becomes  

  

V D (x) =
2

2m(x)

d

dx
[W (g(x))]  (26) 

that is equivalent to 

  

V
D (x) =

1

4

1

(m(x))2

2
m(x)

x x

3

8

1

(m(x))3

m(x)2

x
 (27) 

with eigenfunctions 

  
n

D (u) =
d

du
W (u)

n
(u).  (28) 

 In short, the proposals are general and can be used in the 
search of those exactly solvable SEPDM and their 
isospectral partners that fulfill specific former potential 
models and position-dependent mass distributions which in 
turn could be useful in the quantum mechanics treatment of 
outstanding applications in materials science. 
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