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Abstract: An analytical solution for the free vibration of a nonuniform flexural beam resting on an elastic foundation is 

obtained. The characteristics of the beam are assumed variable over the beam length while the soil is considered of Win-

kler type. A power distribution model is used to simulate the variations in the beam geometry, beam material and soil 

stiffness over the beam length. The fourth order differential equation of beam vibration under appropriate boundary condi-

tions is transformed to the Bessel equation by factorization. Mode shapes and damped natural frequencies of the beam are 

obtained for wide range of beam-foundation system characteristics. Numerical comparison demonstrates that the present 

model results for uniform case agree with those found in literature. The present model analytical solutions may be used to 

verify the accuracy of other numerical and approximate solutions. 
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1. INTRODUCTION 

 Many practical engineering applications as railroad 
tracks, highway pavement, buried pipelines and foundation 
beams are modeled as beams resting on elastic foundations. 
To investigate the dynamics of such applications, the vibra-
tion behavior of these models need to be accurately obtained. 
Few analytical solutions limited to special cases for vibra-
tions of such models are found in literature. This is due to 
the difficult mathematical nature of the problem. Numerical 
methods such as finite element method [1-3], transfer matrix 
method [4], Rayleigh-Ritz method [5], differential quadra-
ture element method (DQEM) [6-10], Galerkin procedure 
[11, 12] and perturbation techniques [13-15] are used to ob-
tain the vibration behavior of different types of linear or non-
linear beams resting on linear or nonlinear foundations. 
Semi-analytical methods such as series solutions are sugges-
ted to obtain analytic expressions for frequencies and mode 
shapes of nonuniform beams resting on elastic foundation. 
Ruta P. [16] employed Chebychev series to obtain closed 
analytical formulae for the sought solution's coefficients. 
Calio I. and Elishakoff I. [17] solved the semi inverse pro-
blem to obtain the distribution of flexural rigidity and mate-
rial density for a postulated vibration mode. 

 As an attempt to obtain analytical solution for such pro-
blem, Taha M.H. [18] studied the transient response of a 
finite prismatic beam resting on viscoelastic foundation un-
der stochastic dynamic load using eigen function expansion. 
Also, Taha M.H. [19] obtained a closed form solution for 
damped free vibration of a non-uniform shear beam resting 
on an elastic foundation. Taha M.H. and Abohadima S. [20] 
have solved the fourth order differential equation with varia-
ble coefficient representing the vibrational behavior of a 
flexural beam and obtained solutions for a wide range of 
practical applications.  
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 In the present work, the model suggested in ref. [20] is 
extended to include the effect of foundation reaction on the 
vibration of nonuniform flexural beams. The foundation 
reaction is modeled as Winkler type. The beam mass intensi-
ty; damping intensity and flexural stiffness are assumed to 
vary as power functions along the beam length while the soil 
stiffness is assumed increasing linearly with the beam length. 
The fourth order differential equation with variable coeffi-
cients of the beam vibration is solved to obtain mode shapes 
and natural frequencies of the system. Charts of natural fre-
quencies for wide range of non-uniform flexural beams res-
ting on elastic foundation are conducted.  

2. ANALYSIS 

 The vibration equation of a flexural nonuniform beam 
resting on an elastic foundation is given as: 
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 Where k(x) is the flexural stiffness of the beam, m(x) is 
the mass intensity, C(x) is the material damping intensity, 
ks(x) is the foundation stiffness intensity, q (x, t) is the verti-
cal excitation acting on the beam, y(x , t) is the vertical res-
ponse of the beam, x is the coordinate axis along the beam 
and t is time. 

 The Boundary conditions for a simply supported beam 
whose length is L are given as: 

y(0, t)=0           (2a) 

y (0, t)=0           (2b) 

y(L, t)=0           (2c) 

y (L, t)=0           (2d) 

where prime means derivative with respect to x. 
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3. PROBLEM SOLUTION 

 To obtain the natural frequencies and mode shapes, one 
can assume: 

q (x, t) = 0            (3) 

y(x, t) = w(x) e 
i  t 

           (4)  

 where, w(x) is the mode shape function and  is the 
complex damped natural frequency of the flexural beam. 
Substitution of Eqs. (3) and (4) into Eq. (1), yields:  
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 Equation (5) is a fourth order differential equation with 
variable coefficients whose solution depends mainly on the 
distribution functions representing the beam characteristics 
and foundation stiffness. The flexural stiffness of the beam 
depends on the moment of inertia of the beam cross section 
while both the mass intensity and damping intensity depend 
on the area of the beam cross section. The foundation reac-
tion depends on the foundation stiffness and the contact area 
between the beam and the foundations. Therefore, the system 
characteristics may be expressed as: 
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where ko is the flexural rigidity, mo is the mass intensity, co is 
the damping intensity and Kso is the foundation stiffness in-
tensity at x=0. Substituting Eqs. (6-9) into Eq. (5), one ob-
tains: 
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where: 
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 In the following analysis, a power function distribution is 
assumed to represent the case of a beam of rectangular cross 
section with variable width and depth; while the foundation 
stiffness increases along the beam length. However, the po-
wer distribution can represent the case of a circular pile with 
variable radius embedded in a soil whose stiffness increases 
linearly with depth.  

 The non-uniform characteristics of the beam-foundation 
system may be assumed as: 

  
(x)= 1+ x( )

n+2
         (12) 

  
(x) = 1+ x( )

n

          (13) 

where the parameters  and n are used to approximate the 
actual non-uniformity of the system. Substitution of Eqs. 
(12), (13) into Eq. (10), leads to: 
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 Equation (14) may be rewritten in the operational form 
as: 

+
2( ) 2( )w(x) = 0          (15) 

where the differential operator  is obtained as: 
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 The general solution of Eq. (16) is the sum of the solu-
tions of the two Equations; 
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 Introducing new variables  (x) and Zi ( ), i=1, 2 as: 

(x) = (1+ x)μ           (19) 

  
Z
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 Using the new variables (Eqs. 19 and 20), Eqs. (17) and 
(18) can be transformed to: 
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where the transformation parameters μ ,  and  are obtained 
as: 

μ=
1

2
           (23) 

= n            (24) 

 = 2  /           (25) 

 Equations (21) and (22) are the Bessel's and modified 
Bessel's differential equations of order n with parameter  
whose general solutions are given as [21]: 
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where, Jn, Yn are the Bessel functions of the first and second 
kind and In , Kn are the modified Bessel functions of the first 
and second kind of order n. Using Eqs. (15), (26) and (27), 
the general solution of Eq. (14) may be written as: 
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 The constants Bi, i=1, 2, 3, 4 are obtained from the boun-
dary conditions (Eq. 2) at the ends of the beam. 

4. MODE SHAPES AND NATURAL FREQENCIES 

 Using the boundary conditions at the beam ends, the 
constants Bi i=1, 2, 3, 4 can be obtained. Then, the frequency 
equation, the mode shapes and the natural circular frequen-
cies of the beam-foundation system are obtained. 

 Applying the boundary conditions (Eq. 2), in the mode 
function (Eq. 28) leads to a linear system of algebraic homo-
geneous equations whose coefficients are Bessel’s functions 
and its derivatives at x=0 and x=L. This system may be ex-
pressed as: 

A B = 0           (29) 

where A is the coefficients matrix and B is the constants 
vector. The condition of nontrivial solution of this system 
leads to the frequency equation as: 

Det A = 0          (30) 

 The above equation is a nonlinear algebraic equation in  
(  = 2 / ) which may be solved using any appropriate itera-
tive technique to obtain the roots r, and then the natural 
frequencies of the system can be determined. 

 Substituting the obtained values of r in Eq. (29) and 
assuming any arbitrary value for the constant B1 (say B1=1), 
relative values of constants B2, B3 and B4 can be obtained. 
Then, the r-mode shape can be obtained and drawn for any 
values of the system characteristics as shown in Fig. (1). 

4.1. Natural Frequencies 

 Using Eqs. (11, 25), the r-mode complex damped fre-
quency is obtained as: 
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 The first term of Eq. (31) represents the attenuation of the 
system vibration due to damping, while the second term re-
presents the actual natural frequency of the r-mode. The r-
mode damped natural frequency of the system may be ex-
pressed as: 

dr = r 1 d 2           (32) 

where: 
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where, r is the undamped natural frequency of r-mode, d is 
the damping ratio and Cc is the critical damping coefficient 
of the beam-foundation system. 

5. NUMERICAL RESULTS 

 Since the obtained solution is expressed in a closed form, 
it does not need any additional corroboration [17]. However, 
for convenience, Table 1 indicates the results obtained from 
the present solution and those found in literature [22] for the 
case of a uniform beam resting on an elastic foundation.  

 The dimensionless frequency is defined as: 
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 The mode shapes are shown in Fig. (1) when the beam 
depth, width and foundation stiffness increase linearly with 
beam length (n=2, =0.2). It is clear that the amplitude of 
vibration decreases when the x increases, as the rigidity of 
the beam-foundation system increases. However the effect of 
non-uniformity is more obvious in higher modes.  

 The effect of non-uniformity coefficient  on the vibra-
tion amplitude is indicated in Fig. (2) for the first and second 
modes. As it is expected, as  increases the vibration ampli-
tude decreases because the system becomes more rigid. Also 
the effect of  becomes stronger as r increases. 

 Fig. (3) shows the effect of beam-foundation system non-
uniformity on its dimensionless natural undamped frequen-
cies. This is for beam-foundation system with slenderness 
ratio =20 and for two cases of foundation stiffness. The 
first for a beam without foundation (kso =0) and the second 
for a beam resting on a relatively rigid soil (kso = 1E9). As 
the foundation stiffness increase; the system becomes more 
rigid and the dimensionless frequencies increase. It is clear 
that the effect of foundation stiffness is more noticeable in 
lower modes which used in practical applications.  

Table 1. Dimensionless Natural Frequencies of Uniform Beam Resting on Elastic Foundation ( =20, ks=1E9 N/m
3
,  = 2500 kg/m

3
, 

E=2.1e10, b=0.3, h=0.6) 

ks 
* 

r=1 r=2 r=3 r=4 

present 3.0 12.7 27.6 48.6 0 

Exact 3.10 12.5 28.1 50 

present 67.9 68.8 72.8 82.1 1E9 

Exact 67.6 68.5 72.3 81.5 
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Fig. (1). Mode shapes for a nonuniform beam (  = 0.2, n = 2, = 20). 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Effect of nonuniformity factor  on the amplitude (r=1, 2; n = 2; = 20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Variation of the first four frequencies with  (n=2, = 20). 

 Fig. (4) shows the effect of the slenderness ratio  on the 
dimensionless fundamental natural undamped frequency. 
This is for different values of non-uniformity coefficients  
for two cases of soil as in Fig. (3). The graph may be consi-
dered as a design chart to calculate the fundamental natural 
frequency for beams with wide range of practical characte-
ristics. However, the figure indicates that the influence of  
is more noticeable for the case of beam with foundation. 
However, as  increases, the beam becomes more flexible. 

Then, the existence of foundation increases the overall rigi-
dity of the beam-foundation system.  

6. CONCLUSIONS 

 Analytic expressions for the vibrational behavior of non-
uniform viscoelastic flexural beam resting on an elastic 
foundation are derived. The characteristics of beam-
foundation system are assumed to vary with the length as 
power functions. The dynamic equation of the beam-
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foundation system is solved by introducing new variables to 
transform the dynamic equation to the Bessel differential 
equations. The suggested model is used to obtained solutions 
for mode shapes and natural frequencies for non-uniform 
beam-foundation system with linearly increasing depth, 
width and foundation stiffness (n=2).  

 It is concluded that the effect of non-uniformity is more 
noticeable on frequencies of higher modes. The effect of 
foundation stiffness is more pronounced on frequencies of 
lower modes. Charts are presented to depict the variations in 
the dimensionless fundamental natural frequency for the 
non-uniform beam-foundation system. This is for beams 
with different variations in geometry and material characte-
ristics which makes it useful for design purposes.  
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Fig. (4). Variation of fundamental natural frequency (r=1) with slenderness ratio  (n=2). 
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