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Abstract: Stochastic approach to maximization of a functional constrained by governing equation of a controlled system 
is introduced and discussed. The idea of the proposed algorithm is the following: represent the functional to be maximized 
as a limit of a probability density governed by the appropriately selected Liouville equation. Then the corresponding ODE 
become stochastic, and that sample of the solution which has the largest value will have the highest probability to appear 
in ODE simulation. Application to optimal control is discussed. Two limitations of optimal control theory - local maxima 
and possible instability of the optimal solutions - are removed. Special attention is paid to robot motion planning. 

1. INTRODUCTION 

 Optimal control theory is a mathematical method for de-
riving control policies. It deals with the problem of finding a 
control law for a given system such that a certain optimality 
criterion is achieved. The optimal control can be derived 
using Pontryagin's maximum principle (a necessary condi-
tion), or by solving the Hamilton-Jacobi-Bellman equation (a 
sufficient condition). From the viewpoint of analytical me-
chanics, the first approach is based upon canonical Hamil-
ton’s ODE, while the second approach can be linked to Ha-
milton-Jacobi PDE. Both approaches impose some restric-
tions upon the functional to be optimized, and one of them is 
its differentiability with respect to all the state variables. In 
case of a singular control when the maximum principle is 
indecisive, the existence of the second derivative is required. 
Notwithstanding undisputable progress in this area, there are 
still many limitations of modern approach, and one of them 
is the problem of local maxima. Mathematical roots of local 
maxima are the same as those for a much simpler problem of 
finding global maximum of a multi-dimensional function, 
but even this problem, in general, is not yet solved. The se-
cond unsolved problem is stability: even if the optimal tra-
jectory is found, there is no guarantee that it is stable. This 
problem has not been solved even for the simpler case when 
the optimal trajectory is found from the classical Lagrange-
Euler method. Strictly speaking, the criteria of stability (if 
they are available) should be included into a list of unilateral 
constraints imposed upon the functional to be minimized, 
and that makes the problem even harder. 
 This paper introduces a fundamentally new approach to 
optimal control based upon two new ideas. 
 The first idea is the following: represent the functional to 
be maximized as a limit of a probability density governed by 
the appropriately selected Liouville equation. Then the cor-
responding ODE become stochastic, and that sample of the 
solution which has the largest value will have the highest 
probability to appear in ODE simulation. This idea has been 
introduced and discussed in [1] being applied to finding the  
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global maximum of a multi-dimensional function subject to 
equality and inequality constraints. The main advantages of 
the stochastic approach are that it is not sensitive to local 
maxima, the function to be maximized must be only integra-
ble, but not necessarily differentiable, and global equality 
and inequality constraints do not cause any significant obsta-
cles.  
 The second idea is to remove possible instability of the 
optimal solution by equipping the control system with a self-
stabilizing device. 
  Thus, the main challenge of this paper is to remove the 
problem of local maxima, and remove the problem of insta-
bility of optimal solution.  

Dynamical Model for Simulations 

 We will start this section with a brief review of models 
introduced and discussed in [1]. For mathematical clarity, we 
will consider a one-dimensional motion of a unit mass under 
action of a force f  depending upon the velocity x and time t  

 
&x = f (x,t),            (1) 

 If initial conditions are not deterministic, and their pro-
bability density is given in the form 

!
0
= !

0
(X), where ! " 0, and !dX

#$

$

% = 1          (2) 

while !  is a single- valued function, then the evolution of 
this density is expressed by the corresponding Liouville 
equation 

!"

!t
+
!

!X
(" f ) = 0            (3) 

 The solution of this equation subject to initial conditions 
and normalization constraints (2) determines probability 
density as a function of X and t 

! = !(X,t)              (4)  

 Let us now specify the force f  as a feedback from the 
Liouville equation 
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f (x,t) = !["(x,t)]             (5) 

and analyze the motion after substituting the force (5) into 
Eq. (1)  

 
&x = !["(x,t)],              (6) 

Remark 

 Theory of stochastic differential equations makes distinc-
tion between the random variable x(t) and its values X in 
probability space.  

 This is a fundamental step in our approach. Although 
theory of ODE does not impose any restrictions upon the 
force as a function of space coordinates, the Newtonian phy-
sics does: equations of motion are never coupled with the 
corresponding Liouville equation. Moreover, as shown in 
[1], such a coupling leads to non-Newtonian properties of the 
underlying model. Indeed, substituting the force f from Eq. 
(5) into Eq. (3), one arrives at the nonlinear and, in general, 
non-reversible equation for evolution of the probability den-
sity  

!"

!t
+
!

!X
{"#["(X,t)]} = 0            (7)  

 Now we will demonstrate the destabilizing effect of the 
feedback (6). For that purpose, it should be noted that the 
derivative x!! /" must change its sign, at least once, within 
the interval !" < x < " , in order to satisfy the normaliza-
tion constraint (2). But since 

 

Sign
!&x

!x
= Sign

d"

d#
Sign

!#

!x
           (8) 

there will be regions of x where the motion is unstable, and 
this instability generates randomness with the probability 
distribution guided by the Liouville equation (7). 

 Let us consider Eqs. (1) and (7) defining f as the follo-
wing function of probability density  

f =
1

!(x,t)
[!(" ,t) # !*("

#$

x

% )]d"            (9) 

 With the feedback (9), Eqs. (1) and (7) take the form, 
respectively 

 

&x =
1

!(x,t)
[!(" ,t) # !*("

#$

x

% )]d"         (10) 

!"

!t
+ "(t) # "* = 0          (11) 

 The last equation has the analytical solution  

! = (!
0
" !*)e" t + !*          (12) 

 Subject to the initial condition 

!(t = 0) = !
0

           (13) 

this solution converges to a prescribed, or target, stationary 
distribution !*(x) . Obviously the normalization condition 
for ρ is satisfied if it is satisfied for 

0
! and .*!  

 Substituting the solution (12) in to Eq. (10), one arrives 
at the ODE that simulates the stochastic process with the 
probability distribution (12) 

 

&x =
e
! t

["
0
(x) ! "*(x)]e! t + "*(x)

["
0
(# ) ! "*(

!$

x

% # )] d#   (14) 

 As notices above, the randomness of the solution to Eq. 
(14) is caused by instability that is controlled by the corres-
ponding Liouville equation. It should be emphasized that in 
order to run the stochastic process started with the initial 
distribution 

0
!  and approaching a stationary process with 

the distribution *! , one should substitute into Eq. (14) 
analytical expressions for these functions. 

 It is reasonable to assume that the solution (12) starts 
with sharp initial condition  

!
0
(X) = " (X)           (15) 

 As a result of that assumption, all the randomness is sup-
posed to be generated only by the controlled instability of 
Eq. (14). Substitution of Eq. (15) into Eq. (14) leads to two 
different domains of x: 0!x  and 0!x . The solution for the 
first domain is 

!*

"#

x

$ (% )d% =
C
1

e
" t "1

, x & 0         (16) 

 Indeed,  

 

&x =
e
! t

"*(x)(e! t !1)
"*(

!#

x

$ % )]d% = 

e
! t

" * (x)(e! t !1)
" * (# )d#

!$

x

%  

whence 

! * (x)

! * (" )d"
#$

x

%
dx =

e
# t

e
# t #1

dt . 

Therefore,  

ln ! * (
"#

x

$ % )d% = ln
C

e
" t "1

  and that leads to Eq. (16). 

 The solution for the second domain is 

0!x            (17) 

 Eq. (17) represents a singular solution, while Eq. (16) is a 
regular solution that includes arbitrary constantC . The regu-
lar solutions is unstable at t=0, 0|| !x  where the Lipschitz 
condition is violated 
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d &x

dx
!" at t! 0, | x |! 0        (18) 

and therefore, an initial error always grows generating ran-
domness. 

 Let us analyze the behavior of the solution (16) in more 
details. As follows from this solution, all the particular solu-
tions intersect at the same point x=0 at t=0, and that leads to 
non-uniqueness of the solution due to violation of the Lipc-
shitz condition. Therefore, the same initial condition x=0 at 
t=0 yields infinite number of different solutions forming a 
family (16); each solution of this family appears with a cer-
tain probability guided by the corresponding Liouville equa-
tion (11). For instance, in cases plotted in Fig. (1a) and Fig. 
(1b), the “winner” solution is, respectively,  

}sup{)(,,)(,0 22max11 !!!!" ===#= xxxandxx

            (19) 

since it passes through the maximum of the probability den-
sity (11). However, with lower probabilities, other solutions 
of the family (13) can appear as well. Obviously, this is a 
non-classical effect. Qualitatively, this property is similar to 
those of quantum mechanics: the system keeps all the solu-
tions simultaneously and displays each of them “by a 
chance”, while that chance is controlled by the evolution of 
probability density (11). It should be emphasized that in the 
ideal case, when no noise is present, the choice of displaying 
a certain solution is made by the system only once, at t=0, 
i.e. when it departs from a deterministic to a random state; 
since than, it stays with this solution as long as the Liouville 
feedback is present. However, strictly speaking, an actual 
realization of the trajectory may be affected by a non-

Lipschitz-originated instability at t=0; as a result, small ini-
tial errors may grow exponentially, and the motion will be 
randomly deviated from the theoretical trajectory in such a 
way that a moving particle visits all the possible trajectories 
with the probability prescribed by the Liouville equation, 
(Fig. (1d)). 

 The approach is generalized to n-dimensional case sim-
ply by replacing x with a vector

n
xxxx ,..., 21=  since Eq. (11) 

does not include space derivatives. 

Remark 

 The function f has been chosen in a special form (9) to 
remove the space derivative from the Liouville equation. The 
same procedure can be repeated for each variable, so Eq. 
(11) will formally remain the same with the only difference 
that for a multi-dimensional case ! will stand for the joint 
probability density.  

 The emergence of randomness due to violation of Lip-
chitz condition described above can be identified as self-
generated stochasticity. 

Examples 

 Let us start with the following normal distribution 

!*(X) =
1

2"
e
#
X
2

2          (20) 

 Substituting the expression (20) and (15) into Eq. (16) at 
X=x, one obtains 

 

 

 

 

 

 

 

 
     a       b 
 

 

 

 

 

 

 

    c        d 
Fig. (1). a. Stochastic process and probability density. b. Global maximum. c. Switching between superposition and classical states in ideal 
(no-noies) case. d. Random trajectory destabilized by noise. 
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x = erf
!1
(
C
1

e
! t
!1
), x " 0         (21) 

 Turning again to the solution (16), let us choose the tar-
get density *!  as the Student’s distribution, or so called po-
wer law distribution 

!*(X) =
"(
# +1

2
)

#$"(
#

2
)

(1+
X
2

#
)
%(#+1)/2        (22) 

 Substituting the expression (22) into Eq. (16) at X=x, and 
ν=1, one obtains 

x = tan(
C

e
! t
!1
) for x " 0        (23) 

 Let us now choose the final density as a uniform distribu-
tion  

!*(X) = {
1 / (b " a) if "a # X # b

0 otherwise
, a > 0    (24) 

Then 

!*

"#

x

$ (% )d% = {
(x " a) / (b " a)if a & x < b

1 if x ' b
      (25) 

 Substituting Eq. (25) into Eq. (16) at X=x >0 yields 

x = a +
C

e
! t
!1
,0 > C > a ! b, a " x " b, t # ln

b ! a

C + b ! a
 

             (26) 

 Qualitative behavior of the solutions’ family is shown in 
Fig. (2a, b). 

Finding Global Maximum 

 One of the oldest (and still unsolved) problems in optimi-
zation theory is to find a global maximum of a multi-
dimensional function. Almost all the optimization problems, 
one way or another, can be reduced to this particular one. 
However, even under severe restrictions imposed upon the 
function to be maximized (such as existence of the second 
derivatives), the classical methods cannot overcome the pro-

blem of local maxima. The situation becomes even worse if 
the function is not differentiable since then the concept of 
gradient ascend cannot be applied. 

 The idea of the proposed algorithm is very simple: based 
upon QIM model (10), (11), introduce a positive function 

!<||),,...,( 21 in
xxxx"  to be maximized as the probabili-

ty density ),...,( 21
*

n
xxx! to which the solution of Eq. (10) is 

attracted. Then the larger value of this function will have the 
higher probability to appear. The following steps are needed 
to implement this algorithm.  

1. Build and implement the n-dimensional version of the 
model (11), as an analog devise 

 

&x
i
=

e
! t

["
0
({x}) ! "*({x})]e! t + "*({x})

["
0

!#

xi

$ ({%}) ! "*({%})]d%
i
,

i = 1,2,...n

 

            (27) 

2. Normalize the function to be maximized 

! ({x}) =
! ({x})

! ({x})d{x}
"#

#

$

        (28) 

3. Using Eq. (12), evaluate time τ of approaching the 
stationary process to accuracy ε 

! " ln
1#$

%$
          (29) 

4. Substitute ! instead of *! into Eqs. (27) and run the 
system during the time interval τ. 

5. The solution will “collapse” into one of possible solu-
tions with the probability ! .Observing (measuring) 
the corresponding values of {x*}, find the first ap-
proximation to the optimal solution.  

6. Switching the device to the initial state and then star-
ting again, arrive at the next approximations. 

7. The sequence of the approximations represents Ber-
noulli trials that exponentially improve the chances of 

 

 

 

 

 

 

 

 

 

     a      b 
Fig. (2). a. Simulation of power law distribution. b. Simulation of uniform distribution. 
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the optimal solution to become a winner. Indeed, the 
probability of success 

s
!  and failure f!  after the 

first trial are, respectively 

!s =" 1
, ! f = 1#" 1

         (30) 

 Then the probability of success after M trials is 

!
sM
= 1" (1"# )M $ 1 at M $%       (31) 

 Therefore, after polynomial number of trials, one arrived 
at the solution to the problem (unless the function !  is flat).  

 The main advantage of the proposed methodology is in a 
weak restriction imposed upon the space structure of the 
function })({x! : it should be only integrable since there is 
no space derivatives included in the model (27). This means 
that })({x! is not necessarily to be differentiable. For ins-
tance, it can be represented by a Weierstrass-like func-

tion )cos()(

0

xbaxf nn !"
#

= , where 0 < a < 1, b is a positive 

odd integer, and !5.11+>ab , (Fig. (1b)). In a particular 
case when })({x!  is twice-differentiable, the algorithm is 
insensitive to local maxima because it is driven not by gra-
dients, but by the values of this function. 

 The restriction requiring })({x! being positive can be 
removed by adding to this function a large positive number: 
it will not change the optimal value {x*}; the only side effect 
of that may be in longer sequence of Bernoulli trials to ob-
tain the same accuracy since the augmented function will 
become relatively flatter, and therefore, the global maximum 
will be less dominating over the rest values of the function to 
be maximized.  

 The most significant restriction imposed upon })({x! is 
the requirement of its normalization. As follows from Eq. 
(28), the normalization includes computing n-dimensional 
definite integral, and that procedure is exponentially com-
plex being executed with deterministic algorithms. Indeed, in 
this case, the number of computations is given by the follo-
wing formula 

L ! "#n            (32) 

where ε is the assigned accuracy, and n is the dimensionality 
of the problem.  

 However, the Monte-Carlo methods (for which compu-
ting definite integrals was the main solid success) provide 
independence of the number of computations upon n 

L !
1

" 2
           (33) 

 It should be noticed that the Monte-Carlo-based compu-
ting of definite integrals requires generation of uniformly 
distributed random numbers, and for that purpose, the same 
proposed device (27) can be exploited. Indeed, prior to exe-
cuting the step 2, one should run the device (27) in the mode 
described by Eqs. (24) and (27) for producing uniformly 
distributed random numbers. In order to generate these num-
bers in one measurement procedure, one has to apply swit-
ches to initial state and back. 

Finding Constrained Maximum 

 In this section we will discuss several types of constraints 
imposed upon the function to be maximized that will include 
local constraints, global constraints, and integer constraints. 
Local constraints can be associated with a function defined 
for a piece-wise continuous arguments 

! =! (x
1
,...x

n
)at x

i
" #

i j
, $

i j
<#

i j
< %

i j
,       (34) 

 Imposing upon the function (37) the condition  

G
i
(x
1
,...x

m
) ! 0,           (35) 

one arrives at a global constraint, (Fig. (3a)). Both of these 
constraints do not cause any significant obstacles to applying 
the dynamical system Eq. (27) for simulation the constraint 
maximum. The only difference with the unconstrained case 
is in the integration procedure that should exclude the areas 
where the function ψ is not defined (see the blue and the red 
areas in Fig. 3a). 

 The integer constraint can be introduced using a delta-
function representation of an integer 

 

 

 

 

 

 

 

 

 

   a      b           c 
Fig. (3). a. Local and global constraints. b. Integer constraint. c. Continuous representation of an integer. 
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! =! [ " (x
1

m# x

$ % n
j
,...x

m
% m

j
)]  

 In addition to that, this function can be subjected to the 
constraints (34) and (35). 

 The Figs. (3a and 3b) illustrate the following example of 
global and integer constraints: 

 Find the maximum of the following function 

! = 2x
1
+ 3x

2
          (36) 

subject to the global and integer constraints 

x
1
+ 3x

2
! 8.25, 2.5x

1
+ x

2
! 8.75, x

1
, x

2
> 0,       (37) 

where 21, xx  are integers. 

 However, in cases when the undefined areas cannot be 
expressed explicitly, a more general strategy is required. 
This strategy can be associated with Lagrange multipliers or 
penalty functions. In order to extend the stochastic approach 
discussed above, we will exploit the penalty function strate-
gy.  

2. MAXIMIZATION OF THE PENALIZED 
PERFORMANCE MEASURE 

 We will start with an equality constraint  

f (x
1
,...xn ) = 0,           (38) 

imposed upon the maximization of the function  

! (x
1
,...x

m
)" Max,          (39)  

 As shown in [2], such a constrained maximization can be 
reduced to unconstrained maximization of the function (39) 
augmented by the weighted square of the constraint (38) 

!(x
1
,...xn ,") =# (x1,...xm ) $ " f

2
(x
1
,...xn )% Max, " > 0    (40) 

 The most difficult part of the problem is to assign an ap-
propriate value of the weight λ that controls the contributions 
of the function (38) and the constraint (39) into the function 
(40). Obviously, in order to enforce the constraint (39) exac-
tly, the weight must be infinitely large, i.e. 

! " #             (41) 

 However such a solution would be highly unstable: a 
small deviation of f from zero completely suppresses contri-
bution of the function ψ to be maximized. On the other hand, 
a small weight would cause an opposite effect: in will sup-
press the contribution of the constraint f. Therefore, there 
exists an optimal weight 

0 < ! < "           (42) 

that provides a reasonable, (but approximate) solution. 

 As suggested in [2], the optimal value of λ is found as a 
result of a search based upon successive approximations. 
Instead of that, in this paper we propose to extend the sto-
chastic approach described above. For that purpose, we will 
consider λ as an additional variable to be optimized in the 
same way as the variables xi are. 

 The same approach is extendable to the inequality cons-
traint 

G
min

! G(x
1
,...x

n
) ! G

max
        (43) 

if one reduces it to an equality constraint via an additional 
‘slack’ variable ξ>0 so that the constraint (43) becomes 

(G
max

!G)(G !G
min
) ! "2 = 0         (44) 

 Now we are ready to formulate the general result. 

 Consider an n-dimensional function 

! =! (x
1
,...x

n
)" Max          (45) 

to be maximized subject to m equalities 

fi (x1,...xn ) = 0, i = 1,2,...m         (46) 

and k inequality 

G
i

min
! G

i
(x
1
,...x

n
) ! G

i

max
, i = 1,2,...k        (47) 

constraints. 
 The first step is reducing the constrained maximization to 
the unconstrained one by introduction of the following func-
tion of n+m+2k variables: 

!(x
1
,...xn ,"1,..."m+ k ,#1,...k ) =

=$ (x
1
,...xn ) % "i

i=1

m

& fi
2
(x
1
,...xn ) %

        (48) 

!
i
[(

i=m+1

m+ k

" G
i

max
#Gi

)(G
i #Gi

min
) # $

i

2
]% Max.  

where  

0 < !
i
<
G

i

max
+G

i

min

4
,i = n + m + k,....n + m + 2k,       (49) 

 Now the system (27) can be applied. In order to do that, 
the function (49) should be normalized 

! ({y}) =
! ({y})

! ({y})d{y}
V

"

         (50) 

and substituted into Eqs. (27) 

 

&x
i
=

e
! t

["
0
({x}) ! #({x})]e! t +#({x})

["
0

x
0
i

xii

$ ({%}) ! #({%})]d%
i
,

i = 1,2,...n + m + 2k

 (51)

 Similar ODE should be written for the Lagrange multi-
plier by replacing 

i
x  with 

i
!  or 

i
! in Eqs. (51). 

3. APPLICATION TO OPTIMAL CONTROL 

 Optimal control theory is a mathematical method for de-
riving control policies. It deals with the problem of finding a 
control law for a given system such that a certain optimality 
criterion is achieved. The problem can be formulated as fol-
lowing.  
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 Let governing equations of the object to be controlled are 
represented by a system of ODE 

 
fi ( &x1,...&xn , x1,...xn ,u1, ...um ) = 0, i = 1,2,...n.        (52) 

subject to non-holonomic constraints 

 
G

i

min
! G

i
( &x
1
,...&x

n,
x
1
,...x

n
,u
1
,...u

m
) ! G

i

max
, i = 1.2,...k    (53) 

while the performance measure to be maximized is given by 
the functional 

 

J = !
t0

t f

" ( &x
1
,...&xn , x1,...xn ,u1,...um )dt# Max       (54) 

 Here u is the control vector, and ],[ 0 ftt is the time inter-

val where the measure J is defined. 

 The problem is to find the optimal trajectory 

x
i
= x

i
(t), i = 1,2,...n         (55)

  

and optimal control vector 

u
i
= u

i
(t), i = 1,2,...m         (56) 

that deliver the global maximum to the performance measure 
((54) while satisfying the equality (52) and inequality (53) 
constraints. 

 The idea of the proposed approach is based upon redu-
cing the maximization of a functional to maximization of a 
function by approximating the sought solution (55) and (56) 
in the form of a weighted sum of basic functions. It is assu-
med that the system of basic functions is complete, and these 
functions as well as their linear combinations are “accepta-
ble” for the functional. Introducing the sequence of such 
functions )(),...(),( 21 ttt

s
!!! , one can seek the solution (55) 

and (56) in the form 

x
i
= a

ij

j=1

j= s

! "
j
, i = 1,2,...n,         (57) 

ui = bij
j=1

j= s

! " j , i = 1,2,...m         (58) 

where ijij ba , are constant weight coefficients to be found, 
and s is the number of basic functions.  

 In particular, for homogenous boundary conditions 
xi (t0 ) = xi (t f ) = 0, ui (t0 ) = ui (t f ) = 0  

one can choose ! j = sin
j"t

t f

 as an “acceptable” for the cor-

responding functional. 

 The method seeking the solution in the form of a sum of 
basic functions is known as the Ritz method, [3]. 

 Approximating the time derivatives as 

 

&xi (tq ) =
xi (tq+1) ! xi (tq )

"tq

,  

and 

 

&ui (tq ) =
ui (tq+1) ! ui (tq )

"tq

,         (59) 

 substituting the representations (57)-(59) into Eqs. (52), 
(53), and (54), and then integrating these equation with res-
pect to time over the period ],[ 0 ftt one arrives at the pro-
blem of maximization of the function 

! ({a},{b})" Max,           (60) 

subject to equality 

fi ({a},{b}) = 0, i = 1,2,...m        (61) 

and inequality 

G
i

min
! G

i
({a},{b}) ! G

i

max
, i = 1,2,...k        (62) 

constraints. 

 Therefore, the problem is reduced to maximization of the 
unconstrained function similar to those described by Eq. (48) 

Js =! ({a},{b},"1,..."m+ k ,#1,...k ) =

=! ({a},{b}) $ "i
i=1

m

% fi
2 $

"i[(
i=m+1

m+ k

% G
i

max
$Gi

)(G
i $Gi

min
) $ #i

2
]& Max.

       (63) 

 It is shown in [3] that if the functions (52), (53) as well as 
the functional (54) are continuous, and the system of the 
basic functions is complete, then  

lim J
s
! J at s!"         (64) 

 However, in many practical cases it is sufficient to take 
4!s to obtain an acceptable approximation. 

4. SELF-STABILIZATION DEVICE 

Introductory Remarks 

 Optimal solution following from the Pontryagin's maxi-
mum principle, or from Hamilton-Jacobi-Bellman equation 
is not necessarily stable. There are many examples of insta-
bility of even Euler equation defining optimal solution. This 
limitation of optimal control theory is a consequence of more 
fundamental limitation of Newtonian mechanics: the New-
ton’s laws do not discriminate between stable and unstable 
motions. (For instance, exact solution for the Navier-Stokes 
equation for a flow with a supercritical Reynolds number can 
never be observed because of its instability). That is why 
special mathematical methods for discrimination between 
stable and unstable motions are required. If the conditions of 
stability of ODE are expressed in the form of inequalities, 
they could be included into inequality constraints. However, 
such inequalities can be formulated in exceptionally few 
cases, namely: for conservative systems, and for linear ODE 
with constant coefficients of order below seven. But control 
systems are never conservative since the main idea of control 
is to manipulate with the input of external energy, and it is  
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very rear that they can be represented by ODE with constant 
coefficients. That is why the removal of the limitation of 
possible instability of optimal solution is still a challenge, 
and this challenge will be addressed below. 

 There are at least three fundamental types of instability in 
dynamics: the Lyapunov instability, the Hadamard (or blow 
up) instability, and non-Lipchitz instability. The difference 
between them is outlined in [4] and [5]. However, the basic 
invariant of these instabilities is divergence of neighboring 
trajectories corresponding to infinitely close initial condi-
tions. The idea of our approach is to suppress this divergence 
without affecting the “target” trajectory that starts with the 
prescribed initial conditions. 

 In order to capture the divergence of trajectories, we will 
turn again to the Liouville equation and start with Eqs. (1), 
(2), and (3) following the ideas discussed in [6]. First we will 
specify a feedback that is different from those in Eq. (9) 

f = !" 2
#

#v
ln$           (65) 

to obtain the following equation of motion 

 

&x = !" 2 #

#x
ln$,          (66) 

 This equation should be complemented by the correspon-
ding Liouville equation (in this particular case, the Liouville 
equation takes the form of the Fokker-Planck equation) 

!"

!t
= # 2

!2"

!X 2
          (67) 

 The solution of Eq. (67) subject to the sharp initial condi-
tion is  

! =
1

2" #t
exp($

X
2

4" 2
t
)         (68) 

 Substituting this solution into Eq. (66) at X=x one arrives 
at the differential equation with respect to x (t) 

 

&x =
x

2t

          (69) 

and therefore, 

x = C t           (70) 

 Here C is an arbitrary constant. Since x=0 at t=0 for any 
value of C, the solution (70) is consistent with the sharp ini-
tial condition for the solution (68) of the corresponding 
Liouvile equation (67). The solution (70) describes the sim-
plest irreversible motion: it is characterized by the “begin-
ning of time” where all the trajectories intersect (that results 
from the violation of Lipcsitz condition at t=0, Fig. 5), while 
the backward motion obtained by replacement of t with (-t) 
leads to imaginary values of velocities. One can notice that 
the probability density (68) possesses the same properties. 
For a fixed C, the solution (70) is unstable since 

 

 

 

 

 

 

 

 
Fig. (5). Stochastic process and probability density. 

 

 

d &x

dx
=
1

2t
> 0            (71) 

and therefore, an initial error always grows generating ran-
domness. Initially, at t=0, this growth is of infinite rate since 
the Lipschitz condition at this point is violated  

 

d &x

dx
!" at t! 0         (72) 

 This is the same type instability that has been demonstra-
ted in Eq. (14).  

 Considering first Eq. (70) at fixed C as a sample of the 
underlying stochastic process (68), and then varying C, one 

    a      b 
Fig. (4). Divergence of trajectories. a. Uncontrolled evolution. b. Controlled evolution. 
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arrives at the whole ensemble characterizing that process, 
(see Fig. 6). One can verify that, as follows from Eq. (68), 
(Risken., 1989) the expectation and the variance of this pro-
cess are, respectively 

MX = 0, DX = 2! 2
t ,        (73) 

 The same results follow from the ensemble (70) 
at !""#! C . Indeed, the first equality in (73) results from 
symmetry of the ensemble with respect to x=0; the second 
one follows from the fact that 

DX ! x
2
! t            (74) 

 It is interesting to notice that the stochastic process (70) 
is an alternative to the following Langevin equation, (Ris-
ken., 1989)  

 
&x = !(t), M! = 0, D! = "       (75) 

that corresponds to the same Fokker-Planck equation (67). 
Here )(t! is the Langevin (random) force with zero mean 
and constant variance! . 

Negative Diffusion 

 Let us consider the Langeven equation (75) and couple it 
with the corresponding Liouville equation in the same fas-
hion as in Eq. (66)  

 

&x = !(t) +"
#

#x
ln$, !(t)!( %t ) = q& (t ' t ')       (76) 

 If one chooses α = q2, then the corresponding Liouville 
equation (that takes the form of the Fokker-Planck equation) 
will change from Eq. (67) to the following 

!"

!t
= q

2 !
2"

!X 2
#
!

!X
["
q
2

"

!"

!X
] = 0, " = "

0
(X) = const.    (77) 

 Thus, the Liouville feedback stops the diffusion. How-
ever, the feedback force can be even more effective: it can 
reverse the diffusion process and push the probability density 
back to the sharp value in finite time. Indeed, suppose that in 
the Liouville feedback 

! = q
2
exp D ., where D(t) = "X 2

#$

$

% dX.        (78) 

 Then the Fokker-Planck equation takes the form 

!"

!t
= [q

2
(1# exp D )]

!2"

!X 2
.         (79) 

 Multiplying Eq. (79) by X2 , then integrating it with res-
pect to X over the whole space, one arrives at ODE for the 
variance D(t) 

 

&D = 2q
2
(1! exp D ), i.e. &D " 0

if D # 0
        (80) 

 Thus, as a result of negative diffusion, the variance D 
monotonously vanishes regardless of the initial value D (0). 
It is interesting to note that the time T of approaching D = 0 
is finite 

2

0

2

0

)0(

2 61exp2

1

exp12

1

qD

dD

qD

dD

q
T

D

!
=

"
#

"
= $$

%

      (81) 

 This terminal effect is due to violation of the Lipchitz 
condition at D = 0  

 Let us turn to a linear version of Eq. (79) 

!"

!t
= #q2

!2"

!X 2
.           (82) 

and discuss a negative diffusion in more details. As follows 
from the linear equivalent of Eq. (80) 

 

d &D

dD
= !2q

2
,i.e.D = D

0
! 2q

2
t < 0 at t > D

0
/ 2q

2      (83) 

 Thus, eventually the variance becomes negative, and that 
disqualifies Eq. (82) from being meaningful. It has been 
shown in [7] that the initial value problem for this equation 
is ill-posed: its solution is not differentiable at any point. 
(Such an ill-posedness expresses the Hadamard instability 
similar to those studied in [8]). Therefore, a negative diffu-
sion must be nonlinear in order to protect the variance from 
becoming negative. One of possible realization of this condi-
tion is placing a terminal attractor [9], at D=0.  
 It should be emphasized that negative diffusion repre-
sents a major departure from Newtonian formalism.  

5. MODIFIED NEWTONIAN FORMALISM 

General Model 

 In this section, based upon the stabilizing effect of nega-
tive diffusion considered above, we will introduce a general 
approach to modeling postinstability dynamics. The modi-

 

 

 

 

 

 

 
 
Fig. (6). Effect of terminal attractor. 
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fied Newtonian formalism is based upon coupling the classi-
cal governing equations with the corresponding Liouville 
equation and suppression exponential divergence of trajecto-
ries by the effect of negative diffusion introduced above. The 
idea of the proposed approach is in introduction such a Liou-
ville feedback that as a fictitious force acts only upon the 
erratic component of a trajectory without affecting its “ex-
pected” value. For that purpose, introduce a system of n first 
order ODE with n unknowns 

 
&x&i
= fi[{x(t)},t], {x} = x

1
,...xn , i = 1,2,...n.        (84) 

subject to initial conditions 
0

)0(
ii
xx =             (85) 

 Due to finite precision, the values (85) are not known 
exactly, and we assume that the error possesses some joint 
distribution 

Err(X
i

0
) = !(X

1

0
,...X

n

0
) = !

0
.          (86) 

 It is reasonable to assume that the initial conditions (85) 
coincide with the initial expectations i.e. that  

0
!  has a maximum at Xi

0 = xi
0, i = 1,2,…n. This means that 

!"
0

!X
0

= 0,
!2"

0

!X
i
!X

j

< 0, i = 1,2,...n.        (87)  

 This is true for any symmetric initial density (for in-
stance, the normal distribution) when the expected values 
have the highest probability to occur. The Liouville equation 
describing the evolution of the joint density ρ is  

!"

!t
+ #• (" f ) = 0, f = f

1
... fn ,

fi = fi ({X},t), " = "({X},t).

         (88) 

 Its formal solution 

P = P0 exp(! " • fd#
0

t

$ )          (89) 

suggests that the flattening of the error distribution is caused 
by the divergence of the trajectories of the governing equa-
tions (84) from the target trajectory that starts with the pres-
cribed initial conditions (85), (Fig. (4)).  

 Let us introduce the following Liouville feedback 

F
i
= !

i

"

"x
i

ln#, !
i
> 0         (90) 

 Then the system (84) in modified to the following one 

 

&xi = fi +! i

"

"xi
ln#,          (91) 

that should be complemented by the corresponding Liouville 
equation  

!"

!t
+ # i

i

$
!

!Xi

(" fi +
!"

!Xi

) = 0         (92) 

 Now we will summarize mathematical aspects of the 
system (91), (92). 

 Firstly, the force 
i
F  makes the Liouville equation nonli-

near, while ODE becomes dependent upon PDE. Secondly, 
this force introduces to PDE a negative diffusion that chan-
ges the type of the PDE from the hyperbolic to the parabolic 
one. At the same time, the behavior of the solution to Eq. 
(92) is fundamentally different from its Fokker-Planck ana-
log.  

 Thirdly, as follows from Eq. (90), the force 
i
F  does not 

affect the motion along that trajectory *
ii
xx = which has the 

maximum probability of occurrence since  

!"

!x
i

(x
i
= x

i
*) = 0          (93) 

and that property makes this force fictitious. 

 Before formulating the proposed model in the final form, 
we will consider a trivial, but instructive example.  

Example 

 Let us consider an unstable linear ODE 

1, <<= !!xx&           (94) 

 In this particular case, the expected trajectory is known in 
advance: 

x = 0            (95) 

 However, any small error in initial conditions leads to a 
different trajectory that diverge exponentially  

txx exp0!=           (96) 

 Similar result follows from the corresponding Liouville 
equation: 

)( X
xt
!"

!

#

#
$=

#

#           (97) 

tXX exp0!=           (98) 

 Let us introduce now the fictitious force as  

F = D
!

!x
ln",          (99) 

where D is the variance 

D(t) = X
2!(

"#

#

$ X,t)dX        (100) 

and obtain the following modifies version of Eq. (94) 

!" ln
x

Dxx
#

#
+=&        (101) 

 Due to this Liouville feedback, Eq. (97) is modified to 
the following Fokker-Planck equation  

!"

!t
= #$

!

!X
("X) # D

!2"

!X 2
       (102) 
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 Multiplying Eq. (102) by V , then using partial integra-
tion, one obtains for expectations the same Eq. (95) and its 
solution Eq. (98). 

 Similarly one obtains for variances 

DDDD 22 !"!!= #&        (103) 

 For the initial condition  

D = D
0
at t = 0        (104) 

 the solution to Eq. (103) is 

D = ( D
0
! t)

2
for t < D

0
,

and D " 0 for t # D
0

     (105) 

 It is easily verifiable that the Lipschitz condition at is 
violated since 

 

! &D

!D
= "

1

D
#$ at D# 0      (106) 

 As will be shown later, this property of the solution is of 
critical importance for multi-dimensional case. 

 Now the solution to the nonlinear version of the Fokker-
Planck Eq. (102) can be approximated by the first term in the 
Gram-Charlier series represented by the normal distribution 
with the variance D. For the case close to a sharp initial va-
lue at X=0 

 ! =
1

D 2"
exp(#

X
2

2D
2
), D > 0      (107) 

 Substituting Eq. (107) (with reference to the solution 
(105)) into Eq. (101) one obtains 

20 )(
D

x
tDxx !!=& ]

1
1[

0 tD

x

!
!=      (108) 

whence for 
0
xx = at t=0 the solution is 

x =
x
0

D
0

e
t
( D

0
! t)

2
0 " t " D

0
, x # 0 t > D

0
.    (109) 

 For sufficiently small variance of initial error distribu-
tion 1

0
<<D , an exponential growth of initial error x0 is to-

tally eliminated after 
0
Dt > , Fig. (7).  

 It should be noticed that a finite time of approaching 
equilibrium are special properties of the terminal attractors 
discussed in [4]. One has to recall again that although the 
example we just considered is trivial, the stabilization me-
chanism performed by the negative-diffusion-based Liou-
ville-feedback forces is the same. It is also important to learn 
from this example that the true expected solution is given by 
Eq. (109) rather than by Eq. (98) despite the fact that Eq. 
(98) directly follows from the Liouville equation (97). In-
deed, the solution (98) is identical to the original solution 
(96), and any initial error will grow exponentially. This 
means that both of these solutions are unstable in the class of 
differentiable functions. But the same physical phenomenon 

described by Eq. (109) is stable in the enlarged class of func-
tions that includes stochastic components [6].  

 

 

 

 

 

 

 

 

 

 
Fig. (7). Suppression of instability. 

 

Final form of Modified Newtonian Formalism 

 Based upon the example considered above, we can now 
specify the coefficients αi in Eqs. (91), and (92) 

 

&xi = fi + Dii

!

!vi
ln",        (110) 

!"

!t
+

!

!Xi

(" fi + Dii

i

#
!"

!Xi

) = 0      (111) 

where 
ii
D  are principal variances 

D
ii
= ... (X

i

!"

"

#
!"

"

# ! X
i
)
2$(dX)n       (112) 

 In order to verify the stabilizing effect of negative diffu-
sion for n-dimensional case, let us linearize Eqs. (110) with 
respect to the initial state 0=

i
x . Then the linearized versions 

of Eqs. (110) and (111) will be, respectively 

 

&xi = aij x j + Dii

!

!xi
ln", aij = (

!fi

!x j
)x j =0

    (113) 

!"

!t
+

!

!X
i

("a
ij
X

j
+ D

ii

i

#
!"

!X
i

) = 0      (114) 

 An n-dimensional analog of Eq. (103) can be obtained by 
multiplying Eq. (114) by Vi and then using partial integration 

 

&Dij = !ailDlj ! ajlDli ! Dij
      (115) 

 Let us first analyze the effect of terminal attractor and, 
turning to Eq. (115), start with the matrix [ lkij DD !! /& ]. Its 
diagonal elements become infinitely negative when the va-
riances vanish 

 

! &D
ij

!D
ij

= ("2a
ij
"

1

2 D
ij

)# "$ at D
ii
# 0     (116) 
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while the off-diagonal elements are bounded. Therefore, due 
to the effect of terminal attractor (116), the system Eqs. 
(115) has infinitely negative characteristic roots, i.e. it is 
infinitely stable with respect to small errors regardless of the 
parameters ija  of the original dynamical system (113). In 
addition to that, the terminal attractor (as well as any attrac-
tor) guarantees “impenetrability” of the state 0=

ii
D , i.e. if 

the principle variances initially were non-negative, they will 
never become negative, and that prevent ill-possedness of 
the problem for the PDE (111).  

 Thus, all the properties of the modified model discovered 
in one-dimensional case are preserved in the n-dimensional 
case, namely: a simultaneous solution of the coupled ODE-
PDE system (110) and (111) describes a stable “expected” 
motion regardless of the original instability.  
6. GENERAL FORMULATION OF OPTIMAL 
CONTROL 

 Now we are ready to combine all the previous results and 
formulate the general strategy of optimal control.  

 First we have to replace the governing equations of the 
object to be controlled (see Eqs. (52)) by a system of ODE 
written in the form (110)  

 

fi = &xi + Dii

!

!vi
ln",         (117) 

!"

!t
+

!

!Xi

(" fi + Dii

i

#
!"

!Xi

) = 0      (118) 

subject to non-holonomic constraints 

 

G
i

min
! G

i
( &x
1
,...&x

n,
x
1
,...x

n
,u
1
,...u

m
) ! G

i

max
,

i = 1.2,...k
    (119) 

while the performance measure to be maximized is given by 
the functional 

 
J =! ( &x

1
,...&x

n
, x
1
,...x

n
,u
1
,...u

m
)dt" Max      (120) 

 First the problem is to be reduced to maximization of the 
unconstrained function similar to those described by Eq. (63) 

Js =! " #i
i=1

m

$ fi
2 " #i[(

i=m+1

m+ k

$ G
i

max
"Gi

)(G
i "Gi

min
) " %i

2
]"

# j

i=1

N

$ Qj

2
(cj )& Max.

           (121) 
while the system of N algebraic equations 

Qj = 0, j = 1,2,...N        (122) 

represents space-time-discretized version of the PDE (118) 
with parameters jc that plays the same role as parameters 

i
a  

in Eqs. (57).  

 The final form of the dynamical system simulating the 
components of the optimal trajectory in a compressed form 
are written below 

 

&yi =
e
! t

["
0
{y} ! Js{y}]e

! t
+ Js{y}

("
0

y
0
i

yii

# {y} ! Js{y})d$ i ,
 (123) 

 Here 

{y} = {a,b,c,!,"}        (124) 

is a symbolic variable that consists of all the state variable of 
the system.  

 It is expected that  

lim J
s
! J at s!"       (125) 

 As soon as the optimal values of iy are determined, one 
can find the optimal trajectory, and optimal control forces 
using Eqs. (57) and (58).  

7. APPLICATION TO ROBOT MOTION PLANNING 

 The optimal control via self-generated stochasticity pro-
posed above can be directly applied to robot motion planning 
for no obstacle case; the problem of finding collision-free 
trajectories among obstacles requires some modification of 
the proposed approach that is out of scope of this paper. 

 The problem is to find a motion 
],0[)),(),(( ftttutx ! satisfying the equations of motion 

 
u = M (q)&&q + C(q, &q) &q + g(q)       (126) 

such that . .)(,)0( goalfstart xtxxx ==  

 Here ),( qqC &  is a vector of velocity product terms with 
the QQ nn ! matrix ( ),( qqC &  is linear in )q& , g(q) is a vector 

of gravitational forces, )(qM is an QQ nn ! symmetric, posi-

tive definite inertia matrix, ],...[ 1 Qn
qqq = is a vector of gene-

ralized coordinates representing the configuration of the sys-
tem on the Qn  configuration space, and T

nQ
uuu ],...[ 1= is 

the vector of generalized forces acting on the generalized 
coordinates. 

 Typical cost function for robots is represented by a func-
tional expressing the global minimum of the control input 
energy 

J =
1

2
u
T
udt

0

t f

!         (127) 

 Both Eqs. (126) and (127) are particular cases of Eqs. 
(117) and (120), respectively, and therefore, the proposed 
methodology is applicable to general case of robot no-
obstacle trajectory planning. 

 It should be noticed that a particular case of underactua-
ted systems (when the number of actuators is fewer that the 
number of degrees of freedom) leads to a portion of equa-
tions in (126) that do not include actuators. Such equations 
should be considered as constraints being included in Eq. 
(121).  
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8. DISCUSSION 

Computational Challenge 

 We will start our discussion with the computational cha-
lenge that has not been addressed in the proposed approach: 
how to simulate ODE with failed Lipchitz conditions. In-
deed, although we obtained closed form solutions for that 
case (see Eqs. (16) and (70)), direct simulations for the ODE 
(14) and (69), respectively, is a fundamental challenge. Even 
the cases when Lipchitz conditions are only close to failure, 
i.e. when the ratio dxxd /&  is large, (but bounded), a special 
computational strategy (known as a stiff integration) is requi-
red. The main idea of this strategy is to suppress fast-
growing errors. In case of failure of Lipchitz conditions, the 
ratio dxxd /& becomes unbounded, the errors start growing in 
a super-exponential rate, and the stiff-integration-strategies 
do not work. However, in the non-Lipchitz case, the whole 
idea of suppression of errors is wrong. Indeed, as illustrated 
in Fig. (1a), the failure of Lipchitz condition at the point x=0 
leads to loss of uniqueness of the solution, while the multiple 
solution is represented by a one-parametric family of trajec-
tories. Therefore, errors can be exploited as a vehicle for the 
transition from the deterministic state to a stochastic state: 
being amplified by the non-Lipchitz instability, they trigger 
this transition. It should be recalled that each trajectory ap-
pears with the probability prescribed by the corresponding 
Liouville equation (see Eqs. (12), and (68), respectively) 
since Eqs. (14) and (69) have been derived from the ODEs 
that are coupled with their own Liouville equations. Howe-
ver a detailed solution to this computational problem is 
beyond the scope of this paper. 

Implementation of Self-Stabilizing Device 

 Another problem that has not been addressed in details in 
the paper is implementation of self-stabilizing device. Analy-
tical expression for the stabilizing force is presented by the 
last term in Eqs. (117) and (118). The components of this 
force are defined by the parameters {c} that appear as a result 
of space-time discretization of the Liouville equation (118) 
being a subject of optimization (see Eqs. (123) and (124)). 
Probably VLSI is the best way to implement self-stabilizing 
force as an additional component of the control system. 

9. CONCLUSION 

 Thus, a general approach to optimal control has been 
introduced. The approach targets two major obstacles of 

existing theory: local maxima and instability of optimal tra-
jectory. The first idea is the following: represent the functio-
nal to be maximized as a limit of a probability density go-
verned by the appropriately selected Liouville equation. 
Then the corresponding ODE become stochastic, and that 
sample of the solution which has the largest value will have 
the highest probability to appear in ODE simulation. This 
idea has been introduced and discussed in [1] being applied 
to finding the global maximum of a multi-dimensional func-
tion subject to equality and inequality constraints. The main 
advantages of the stochastic approach are that it is not sensi-
tive to local maxima, the function to be maximized must be 
only integrable, but not necessarily differentiable, and global 
equality and inequality constraints do not cause any signifi-
cant obstacles. The second idea is to remove possible instabi-
lity of the optimal solution by equipping the control system 
with a self-stabilizing device. 
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