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Abstract: In this paper, propagation of shear waves in a non-homogeneous anisotropic incompressible, magnetic field, 

gravity field and initially stressed medium has been studied. Analytical analysis reveals that the velocity of propagation of 

the shear waves depends upon the direction of propagation, the anisotropy, magnetic field, gravity field, non-homogeneity 

of the medium, and the initial stress. The frequency equation that determines the velocity of the shear wave has been ob-

tained. The dispersion equations have been obtained and investigated for different cases. In fact, these equations are an 

agreement with the corresponding classical results when the medium is isotropic. The results have been obtained are dis-

cussed and presented graphically.  

Keywords: Incompressible, initial-stress, anisotropic, shear-wave, gravity field, magnetic field. 

1. INTRODUCTION  

 In the recent years, more attention has given to the usage 
of the anisotropic material in engineering applications in 
considerable research activity. Problem of shear waves in an 
orthotropic elastic medium is been very important for the 
possibility of its extensive application in various branches of 
Science and Technology, particularly in Optics, Earthquake 
science, Acoustics, Geophysics and Plasma physics. 

 Shear waves propagating over the surface of homoge-
neous and inhomogeneous elastic half-spaces are a well-
known and prominent feature of wave theory. Abd-Alla and 
Abo-Dahab [1] investigated time-harmonic sources in a ge-
neralized magneto-thermo-viscoelastic continuum with and 
without energy dissipation. Abd-Alla [2] studied the effect of 
initial stress and orthotropy on the propagation waves in a 
hollow cylinder. Abd-Alla et al. [3] presented Rayleigh wa-
ves in a magnetoelastic half-space of orthotropic material 
under an influence of initial stress and gravity field. Garg [4] 
considered effect of initial stress on harmonic plane homo-
geneous waves in viscoelastic anisotropic media, Vecsey, et 
al. [5] investigated shear wave splitting as a diagnostic of 
variable anisotropic structure of the upper mantle beneath 
central Fennoscandia. Singh [6], studied wave propagation in 
a generalized thermoelastic material with voids. Willis and 
Movchan [7] discussed propagation of elastic energy in a 
general anisotropic medium. Zhang and Batra [8] wave pro-
pagation in functionally graded materials by modified smoo-
thed particle hydrodynamics (MSPH) method. Zhu and Shi 
[9] discussed wave propagation in non-homogeneous magne-
to-electro-elastic hollow cylinders. Jiangong, et al. [10] stu-
died wave propagation in non-homogeneous magneto-  
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electro-elastic plates. Bin et al. [11] discussed asymmetric 
wave propagation in a transversely isotropic half-space in 
displacement potentials. Khojasteh et al. [12] studied diffrac-
tion-biased shear wave fields generated with longitudinal 
magnetic resonance elastography drivers. Crampin and Pea-
cock [13] investigated shear horizontal waves in transversely 
inhomogeneous plates. Rayleigh waves in a magnetoelastic 
initially stressed conducting medium with the gravity field 
are investigated by El-Naggare et al. [14].  

 In this paper, the effect of initial stress, magnetic field, 
non-homogeneity of the medium and gravity field on the 
propagation of shear wave in an orthotropic elastic solid me-
dium has been discussed using the wave equations which 
satisfied by the displacement potentials . The frequency 
equation that determines the velocity of the shear wave has 
been obtained. The dispersion equations have been obtained, 
and investigated for different cases. In fact, these equations 
are in agreement with the corresponding classical results 
when the medium is isotropic. 

2. FORMULATION OF THE PROBLEM 

 Most materials behave as incompressible media and the 

velocities of longitudinal waves in them are very high. The 

varieties of hard rocks present in the earth are also almost 

incompressible. Due to the factors like external pressure, 

slow process of creep, difference in temperature, manufactu-

ring processes, nitriding, pointing etc., the medium stay un-

der high stresses. These stresses are regarded as initial stres-

ses. Owing to the variation of elastic properties and the pre-

sence of these initial stresses, the medium becomes isotropic 

as well. We consider an unbounded incompressible anisotro-

pic medium under initial stresses s11  and s22  along the x, y  

directions, respectively. When the medium is slightly distur-

bed (u,v) , the incremental stresses s11, s12  and s22  are 

developed, and the equations of motion in the incremental 

state become [14]. 
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where 
e

μ  is the magnetic permeability and 
0

H , the intensity 

of the uniform magnetic field, parallel to x-axes, also, ij
s is 

incremental stresses, ),( vu  is an incremental deformation, 

 is the rotational component about z-axis, g  is the accele-

ration due to gravity The incremental stress- strain relation 

for an incompressible medium may be taken as [14] 
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s33 = s13 = s23 , since the problem is treated in two dimen-

sions ( x, y ) where 
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s
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2
, e

ij
 is an incremental strain 

component, and N and Q  are the rigidities of the medium. 

The incompressibility condition exx + eyy = 0  is satisfied by. 
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 Substituting from eqs. (3) and (4). in eqs.(1) and (2) we 
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 Assuming non-homogeneities as 
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 Substituting from eq. (7) in eqs. (5) and (6) we get 
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 Eliminating s  from eqs. (8) and (9), we get 
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3. SOLUTION OF THE PROBLEM 

 For propagation of sinusoidal waves in any arbitrary di-

rection, we take the solution of eq. (10) as 

  
x, y,t( ) = Ae

ik x cos + y sin c
1
t( )         (11) 

where  is the angle made by the direction of propagation 

with the x-axes, and 
1

c and k  are the velocity of propaga-

tion and wave number, respectively. 

 Using eq. (11) in eq. (10) and equating real and imagina-

ry parts separately, we get 

  

c
1

2

=
1

1+ cy

1+ ay( )
P

2Q
0

+
μ

e
H

0

2

Q
0

cos
4 +

+ 4
N

0

Q
0

1+ by( ) 2 1+ ay( ) +
μ

e
H

0

2

Q
0

cos
2

sin
2 + 1+ ay( )+

P

2Q
0

sin
4 cg

k 2 2
cos

2

            (12) 

  

c
1

2

= 4
N

0

Q
0

b

c

2a

c
cos

2
+ 2

a

c
sin

2        (13) 

4. PARTICULAR CASES 

 In order to gain more insight information the following 

cases have been discussed. 

Analysis of eq. (12) obtained by equating the real part of 

equations of motion: 

Case I 

 In this case Q  is homogeneous (a 0)  i.e., rigidity 

along vertical direction is constant 
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The velocity of a long x-direction 
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which depends on the initial stress, gravity field and magne-

tic field. Similarly the velocity of propagation along  

y-direction (cos = 0, sin = 1, c1 = c22 ) , is obtained as 

  

c
22

2
=

2

1+ cy
1+

P

2Q
0

        (17) 

Case II 

 In this case N  is homogeneous ( 0b ) i.e., rigidity 

along horizontal direction is constant 
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 The velocity of a long x-direction 
 (cos = 1, sin = 0,  
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) is given by 
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which depends on depth y , gravity field and magnetic field. 

The velocity of propagation along y-direction 

(cos = 0, sin = 1, c1 = c22 ) , is given by 
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 For   P > 0 , the velocity along y-direction may increase 

considerably at a distance from free surface and the wave 

becomes dispersive. 

Case III 

 In this case N , Q  and  are homogeneous 

(  a 0,b 0,c 0 ) 
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 In the absence of initial stress the velocity equation be-

comes 
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 In x-direction 
  
(cos = 1, sin = 0, c
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)  the veloci-

ty is given by 
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and in y-direction (cos = 0, sin = 1, c1 = c22 )  the veloci-

ty is given by 
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Case IV 

 In absence of initial stress P 0 , the velocity is obtai-

ned as: 
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 The velocity of a long x-direction 
 (cos = 1, sin = 0,  
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 The velocity of a long y-direction 
 (cos = 0,  

  
sin = 1, c
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)  is given by 
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Case V 

 In this case, the magnetic field is neglected ( H0 0 ), 

the velocity equation is given by 
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 The velocity of a long x-direction 
 (cos = 1, sin = 0,  

  
c

1
= c

11
)  is given by 
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 The velocity of a long y-direction (cos = 0, sin = 1,  

c1 = c22 )  is given by 
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 Analysis of eq. (13) obtained by equating imaginary parts 
of equation of motion. 

 In absence the initial stress P  in equation (13), following 

three cases have been analyzed. 

Case I 

 In this case Q  is homogeneous ( a 0 ) i.e., rigidity 

along vertical direction is constant 
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 This shows that velocity of shear wave is always dam-

ped. The velocity of wave along x-direction 
 (cos = 1,  
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 This shows that actual velocity in x-direction is damped 

by 
2N0b

Q0c
, and no damping takes place along y-direction. 

Case II 

 In this case N  is homogeneous (b 0) , i.e., rigidity 

along horizontal direction is constant. 
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 The velocity of wave along x-direction (cos = 1,  

sin = 0,c1 = c11)  is given by 
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 The existence of negative sign shows that damping does 

not take place along x-direction for (b 0) . The velocity 

along y-direction is given by 
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 Indicating that a damping of magnitude (
2a

c
) takes place 

along y-direction . 

Case III 

 In this case N  and Q  are homogeneous but density is 

linearly varying with depth: 

  

c
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i.e., no damping takes place. Rather than perform the tedious 

analysis required in obtaining higher-order approximations 

in the manner outlined above. 

5. NUMERICAL RESULTS AND DISCUSSION 

 We wish to investigate the variation of shear waves velo-

city in a perfectly conducting medium under effect of ma-

gnetic field, initial stress and gravity field. To get numerical 

information on the velocity of shear wave in the non-

homogenous initially stressed medium we introduce the fol-

lowing non-dimensional parameters: 
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 Using these parameters in the Eq. (12), we obtain: 
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 Figs. (1-5) show the effect of a non-homogeneous aniso-

tropic incompressible, magnetic field, gravity field and ini-

tially stressed respectively on shear wave velocity c  with 

respect to depth b , it is obvious that shear wave velocity 

increases with the increasing of the depth b , also it is in-

creases with the increasing of the gravity field, magnetic 

field and it decreases with an increase in of the initial stress. 

While, Figs. (6-8) with respect to angle , it is obvious that 

shear wave velocity vibrations with the increasing of the 

angle . 

 Fig. (1) shows the variation in velocities of shear wave in 

the direction of = 30  with x-axis at different depth and 

different values of density parameter:  

  

a = 4; c = 0.7,0.8,0.9; P = 0.5;

g = .1cm / sec
2 N = 2.5 and H = 0.3

 

 The velocity of the shear-wave velocity increases as 

depth increases. Fig. (2) shows the variation in velocities of 

shear wave in the direction of = 30  with x-axis at different 

depth and different values of rigidities parameter:  

  a = 3,3.5,4;   c = 0.8; P = 0.5;
  g = .1cm / sec

2  

  
N = 2.5 and H = 0.3 . The velocity of the shear-wave 

increases as depth increases. Fig. (3) shows the variation in 

velocities of shear wave in the direction of = 30  with x-

axis at different depth and different values of N  (anisotro-

py):  
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Fig. (1). Variation in velocities of shear wave in the direction of = 300  with x-axis at different depth and different values of density para-

meter: 
  a = 4; c = 0.7, 0.8,0.9; P = 0.5; g = 0.1; N = 2.5 and H = 0.3.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Variation in velocities of shear wave in the direction of = 300  with x-axis at different depth and different values of rigidities pa-

rameter: 
  a = 3, 3.5, 4;   c = 0.8; P = 0.5; g = 0.1; N = 2.5 and H = 0.3.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Variation in velocities of shear wave in the direction of = 300 with x-axis at different depth and different values of  N (anisotropy): 

N = 2, 2.5, 3; a = 4; c =0.8; P = 0.5; g = 0.1; and H = 0.3 . 
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  N = 2,2.5,3; a = 4; c = 0.8; P = 0.5;
  g = .1cm / sec

2 and

  H = 0.3 . Also, Fig. (3) gives the information of variation of 

velocity for different values of anisotropic factor and reflects 

that with the increase in the values of N , the velocity of 

shear wave increases. Fig. (4) shows the variation in veloci-

ties of shear wave in the direction of = 30  with x-axis at 

different depth and different values initial stress parameter 

P  when  

  P = 0.8,0.0,0.8; c = 0.8; g = .1cm / sec
2
; a = 4; N = 2.5

  
and H = 0.3. The velocity of the wave increases as depth 

increases. Fig. (5) shows the variation in velocities of shear 

wave in the direction of = 30  with x-axis at different depth 

and different values of initial stress medium with  

  

a = 4; c = 0.8; P = 0.5; g = .1cm / sec
2 N = 2.5 and

H = 0.1, 0.5, 0.9.
 

 The velocity of the wave increases as depth increases. 

Figs. (6, 8) show the variation of shear-wave velocity with  

x-axis at different values of angles  and different values of 

anisotropy factor and it increases with increasing magnetic 

field H . Fig. (7) shows the variation of shear-wave velocity 

with x-axis at different values of angles  and it decreases 

with an increase of initial stress P . 

 Figs. (1-8) show the variation of the shear wave velocity 

with respect to initial stress. The shear wave velocity is in-

versely proportional to the depth; also, the increment in both 

shear wave velocity and initial stress is proportional to the 

magnetic field and gravity field. Lastly, from Figs. (1-8) it is 

clear the velocity of shear wave is decrease by increasing of 

the initial stress, while it is increased by the magnetic field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Variation in velocities of shear wave in the direction of 0
30=  with x-axis at different depth and different values initial stress pa-

rameter  P  when P = 0.8, 0.0, 0.8; c = 0.8; g = 0.1; a = 4; N = 2.5 and H = 0.3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Variation in velocities of shear wave in the direction of 0
30= with x-axis at different depth and different values initial stress me-

dium with  P  a = 4; c = 0.8;P = 0.5; g = 0.1; N = 2.5and H = 0.1, 0.5, 0.9 . 
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Fig. (6). Variation of velocities of shear wave with respect to  with x-axis,  

P = 0.5;H = 0.3; g = 0.1;a = 3; N = 2.5; b = 0.2 and c = 0.5, 0.8, 1.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Variation of velocities of shear wave with respect to  with x-axis,  

P = 0.2,0.5,0.8; H = 0.3; g = 0.1;a = 3; N = 2.5; b = 0.2and c = 0.8.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Variation of velocities of shear wave with respect to  with x-axis,  

c =0.8;P = 0.5; g = 0.1;a = 3; N = 2.5; b = 0.2and H = 0.3,0.6,0.8 .  
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6. CONCLUSIONS 

 The anisotropy, magnetic field, gravity field, non-

homogeneity of the medium, the initial stress, the direction 

of propagation and the depth have considerable effect in the 

velocity of propagation of shear wave and attracts the atten-

tion of earth scientists in their work. Numerical computation 

shows that the presence of initial compressive stress in the 

medium, magnetic field and gravity field, reduce the velocity 

of propagation while the tensile stress increases it. It is found 

that the variation in parameters associated with anisotropy 

and non-homogeneity of the medium directly affects the ve-

locity of the wave. The velocity of propagation also depends 

on the inclination of the direction of propagation; an increase 

in the inclination angle decreases the velocity in the begin-

ning, takes a minimum value before increasing. 
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