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Abstract: In this paper, a new voting system model is introduced as a linear transformation model. The size of compart-

mental populations in each political group corresponding to every voted subject, the population weights, the weighted vo-

tes policy against each political group, the “Yes” and “No” rates, the “No” rejection policy and the “Yes” increase policy 

are the inputs / outputs of the introduced linear models. Some parametric studies have been achieved concerning the ans-

wer of some interesting questions, for example: the effect of unfair election policy, the critical population size of the op-

posite political group and others. The inverse problem and a stochastic case are also introduced.  
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INTRODUCTION 

 Generally, in most of the third word nations the elections 

are subjected to false policies from the government that lead 

to maximize required votes and minimize unwanted ones. In 

one of these countries, the government forbids the opposite 

nominees from completing their official papers and construct 

very long queues of pre-paid persons to prevent the other 

nominees who succeeded in getting completing official pa-

pers from recording their names in the short proper time. The 

election process itself is full of very bad events from artifi-

cial quarrelling among voters to faking or unfair votes. In 

some countries, the policy may lead to killing or imprisoning 

the opposites. The goal of all these policies is to transform a 

certain unwanted state, from governmental opinion, to a re-

quired state. In this paper, a linear transformation model is 

constructed to describe the voting system as a whole and 

allows such processes to be analyzed and controlled. 

 Formally, a voting system specifies the form of a ballot 
together with a tallying method. Since the works of Jean-
Charles de Borda and Marquis de Condorcet, the voting sys-
tems attracted the attention of many authors in different 
scientific fields. Many scientific thoughts have been applied 
in voting systems, for example: weighting votes, ranking 
votes, running off votes, single winning, multi winnings, 
proportionality and others, see [1-9]. In this paper, a voting 
system is introduced as a linear transformation in which the 
weighted populations of every political group of voters are 
the elements of the transformation matrix. The correspon-
ding board policies are the elements of the policy vector 
which is transformed into the reference mass vector to which 
the “Yes” or “No” rates are related. In sections 2 to 6 
,deterministic models are described and tested in different 
case studies, one political group (section 3), two political 
groups (section 4), three political groups (section 5) and two 
voted subjects in section 6. The inverse problem is introdu- 
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ced in section 7. In section 8, a primitive stochastic or ran-

dom model is introduced through a case study analyzing 

three possibilities concerning the “Yes” voters of a political 

group, mainly uniform, fall and rise cases. 

THE GENERAL DETERMINISTIC MODEL 

 Let us assume that the voters of the 
th

i  political group in 

certain community are divided into three populations, the 

first 
  i1

(k )
 is the “yes” voters, the second 

  i2

(k )
 is the “no” 

voters and 
  i3

(k )
 is the “ neutral” voters who do not select 

neither “yes” nor “no” , if this is allowed, may be “false” 

voting. If the total interested voters in the  i
th

 political group 

on the  k
th

 voted subject, for multi voted subjects, are 
  
N

i

(k )
, 

then the following relation for n political groups must hold: 

   
i1

(k )

l=1

3

= N
i

(k ) , i =1,2, n . 

 Also, we must have the following relationship concer-

ning the whole political system: 

   

N
i

(k )

i=1

n

= N
(k ) , k =1,2, m , 

where 
  
N

(k )
 is the total voters on the  k

th
 voted subject. 

 Let us define the population weight of the  i
th

 political 

group on the  k
th

 voted subject as 

   
i

(k )
=

N
i

(k )

N
(k )

, i =1,2, , n   

for which the following relationship must be satisfied 

   
i

(k )

i=1

n

=1, k =1,2, , m  

 The action against political groups may be “fair” in fair 

voting or “unfair” in an unfair voting, may have different 
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meanings in voting systems. These actions can be modeled 

when designing the action or policy parameters 

  
l
ij

(k ) , j =1,2,3 , where 

i) j=1 considers the “Yes” mass voters, 

ii) j=2 considers the “No” mass and 

iii) j=3 considers the “Neutral” mass. 

 The multiplication 
  i1

(k )
l
i1

(k )
 represents the official “yes” 

voters after the action. If 
  
l
i1

(k )
=1 , the voting system is fair, 

may have different terminology according to the voting sys-

tem. If 
  
l
i1

(k )
>1 , the voting system may give over weights for 

the “yes” voters, may be unfair. If 
  
l
i1

(k )
<1 , the voting system 

may give under weights for the “yes” voters, may be unfair. 

The other actions are similar. Accordingly, an effective deci-

sive population number 
  
D

i

(k )
 can be evaluated as 

   
ij

(k )

j=1

3

l
ij

(k )
= D

i

(k ) , i =1,2, , n  

which will be weighted by the population weight 
  i

(k )
. 

 Now, we can evaluate the “Yes”, “No” and “Neutral” 

ratios as follows: 

  
R

yes

(k )
=

i

(k )

i1

(k )l
i1

(k )

i=1

n

D(k )
, k =1,2,... m , 

  
R

No

(k )
=

i

(k )

i 2

(k )
l

i 2

(k )

i=1

n

D
(k )

, k =1,2,... m , 

  
R

neutral

(k )
=

i

(k )

i3

(k )
l

i3

(k )

i=1

n

D
(k )

, k =1,2,... m , 

where 

  

D(k )
=

i

(k )

ij

(k )l
ij

(k )

j=1

3

i=1

n

, k =1,2,... m . 

 All these parameters can be reserved in a linear transfor-

mation model where all quantities are considered as determi-

nistic ones. No uncertainties are considered in this section. 

The general model can be illustrated as follows: 

   

A
1

1
( k )

A
2

2
( k )

A
n

n

( k )

m,3n

L
1

L
2

L
n

3n,1

= D
m,1

, k =1,2, , m  

where 
 
A

i
: the population information of the voters of the i-

th political group on k-th  

voted subject,  

i
L : a sub-vector contains weighted votes policy against the 

i-th political group, 

D : the total effective decisive population numbers vector, 

n: the number of the political groups, 

m: the number of the voted subjects. 

 The elements of each row in 
 
A

i
 represent the compart-

mental populations in the i-th group distributed on a voted 

subject w.r.t “Yes”, “No” and “Neutral”. The elements of the 

sub-vectors 
 
L

i
 represent the election board policy (may be 

the government)or the action against the i-th political group. 

The D vector contains the effective decisive population num-

bers of the voted subjects for which “Yes”, “No” and 

“Neutral” rates are computed in relation to these decisive 

numbers.  

The Model Rules and Outcomes 

 The rules and outcomes of the model can be introduced 

as follows: 

1. The model deals with n political groups (collations, 

parties, clubs ..etc) each has an 
  
N

i

(k )
population from 

the total allowed votes 
  
N

(k )
. Accordingly, the ratios 

   
i

(k )
=

N
i

(k )

N
(k )

, i =1,2, , n  representing the population 

weights of i-th political group in a political society, 

where 

   
i

(k )

i=1

n

=1, k =1,2, , m . 

2. The compartmental populations of the i-th group are 

  ij

(k ) , j =1,2,3 distributed on “Yes”, No” and “ Neutral” 

respectively concerning the voted subject k, where  

i) j=1 represents the “Yes” mass, 

ii) j=2 represents the “No” mass and 

iii) j=3 represents the “Neutral” mass. 

 The compartmental populations should satisfy the follo-

wing condition:  

  
ij

(k )

j=1

3

= N
i

(k ) i, k . 

3. When dividing 
  ij

(k )
 on 

  
N

i

(k )
, one can get the compart-

mental population weights of the i-th political group for 

each voted subject k, i.e.  

  
ij

(k )
=

ij

(k )

N
i

(k )
, j =1,2,3, k =1,2,3,... m . 

 The following condition must be satisfied:  

  
ij

(k )

j=1

3

=1 i, k . 
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4. The election board policy against the i-th political group 

can be represented as the policy numbers 
  
l
ij
, j =1,2,3 

where  

i) j=1 represents the policy against “Yes” mass, 

ii) j=2 represents the policy against “No” mass and 

iii) j=3 represents the policy against “Neutral” mass. 

 For the most of the cases, 
  
l
ij
=1 but reported different 

values may exist for some policies (fair, unfair or others). 

The system may be biased to “Yes” by taking 
  
l
i1

1 , 

  
l
i2
<1which maximizes “Yes” and minimizes “No”. Diffe-

rent opposite view leads to a biased system to “No”.  

5. The effective decisive population number for the k-th 

voted subject is computed, using the model, as  

  

D(k )
=

i

(k )

ij

(k )l
ij

(k )

j=1

3

i=1

n

, k =1,2,... m  

for m independent voted subjects (for example, m-winners 

case). 

6. The “Yes” rate of the k-th voted subject can now be 

computed as follows: 

  
R

yes

(k )
=

i

(k )

i1

(k )l
i1

(k )

i=1

n

D(k )
, k =1,2,... m  . 

7. Similarly, the “No” and “Neutral” rates are computed as 

follows: 

  
R

No

(k )
=

i

(k )

i 2

(k )
l

i 2

(k )

i=1

n

D
(k )

, k =1,2,... m , 

  
R

neutral

(k )
=

i

(k )

i3

(k )
l

i3

(k )

i=1

n

D
(k )

, k =1,2,... m . 

 It is so easy to show that  

  
R

yes

(k )
+ R

no

(k )
+ R

neutral

(k )
=1, k =1,2,... m . 

8. As a special case, considering equally likely population 

ratios for all the political groups 

( 
  

i
=

1

n
 ), the following simpler relations are got: 

  

R
yes

(k )
=

i1

(k )l
i1

(k )

i=1

n

ij

(k )l
ij

(k )

j=1

3

i=1

n
, k =1,2,... m , 

  

R
no

(k )
=

i2

(k )l
i2

(k )

i=1

n

ij

(k )l
ij

(k )

j=1

3

i=1

n
, k =1,2,... m , 

  

R
yes

(k )
=

i3

(k )l
i3

(k )

i=1

n

ij

(k )l
ij

(k )

j=1

3

i=1

n
, k =1,2,... m . 

9. “No” rejection policy, voting systems biased toward 

“Yes” decision 

 In this policy, the policy parameters take the following 

values: 

   
l
i1
=1, l

i2
= , l

i3
= 0,0 1, i =1,2, , n . 

 This means that we reject (1- ) of the “No” votes. In 

this case, the “Yes” rate is 

  

R
yes

(k )
=

i

(k )

i1

(k )

i=1

n

i

(k )

ij

(k )l
ij

(k )

j=1

3

i=1

n
, k =1,2,... m

=

i

(k )

i1

(k )

i=1

n

i

(k )

i1

(k )

i=1

n

+
i

(k )

i2

(k )

i=1

n

 

 The system may be considered a “fair voting system” 

when 
 

=1, otherwise it is “unfair voting system “, or ac-

cording to the voting system terminology. 

10. “Yes” increase policy, voting systems biased toward 

“Yes” decision 

 In this policy, the policy parameters take the following 

values: 

   
l
i1
=1+ , l

i2
=1, l

i3
= 0, 0, i =1,2, , n . 

 This means that we put extra weights on “Yes” votes or it 

may carry another bad meaning, a fake voting system. In this 

case, the “Yes” rate is 

  

R
yes

(k )
=

i

(k )

i1

(k ) (1+ )
i=1

n

i

(k )

ij

(k )l
ij

(k )

j=1

3

i=1

n
, k =1,2,... m

=

i

(k )

i1

(k ) (1+ )
i=1

n

i

(k )

i1

(k ) (1+ )
i=1

n

+
i

(k )

i2

(k )

i=1

n

 

 The system may be considered a “fair voting system” 

when  = 0 , otherwise it is “unfair voting system “. 

11. Important property 

 Concerning the “No” rejection and the “Yes” increase 

policies, the value 
 

=
1

1+
 makes  and  produce the 

same “Yes” rate. 



Voting Systems as Linear Transformation Models The Open Applied Mathematics Journal, 2009, Volume 3    69 

Proof 

 This means that we have 

  

i

(k )

i1

(k ) (1+ )
i=1

n

i

(k )

i1

(k ) (1+ )
i=1

n

+
i

(k )

i2

(k )

i=1

n
=

i

(k )

i1

(k )

i=1

n

i

(k )

i1

(k )

i=1

n

+
i

(k )

i2

(k )

i=1

n
. 

 Dividing the l.h.s. of the equation by the factor 
 
(1+ )  

proves the statement. 

 This means that the two policies are equivalent in the 

sense that they produce the same “Yes” rate. 

ONE POLITICAL GROUP MODEL 

 In this case, a simple model can be illustrated as follows, 

k=1 is dropped: 

  

11 12 13

l
11

l
12

l
13

= D . 

 Let us examine the model through the following notes: 

N-1 Taking the policy parameters as follows: 

  
l
11
=1, l

12
= 0, l

13
= 0 , 

the “Yes” rate is  

  

R
yes

(1)
=

11
(1)

11
(1)+

12
(0)+

13
(0)

=100% . 

 This is the case of a total “Yes” system irrespective of the 

compartmental population weights. 

N -2 If the policy is changed to take 
  
l
11
= 0, l

12
=1, l

13
= 0  , 

the system is transferred to a total “No” system with 

  
R

no

(1)
=100%  . 

N -3 For the case of a “fair voting system”, or no weights 

voting cases, the policy is changed to 

  
l
11
=1, l

12
=1, l

13
= 0  which means that the voting sys-

tem considers all the “yes” votes, all the “No” votes 

and none of the neutrals (false votes) without any in-

terference. In this case,  

  

R
yes

(1)
=

11

11
+

12

. 

N -4) For the case of an “unfair voting system”, or alike, 

and taking the “No rejection policy” which reduces 

the “No” votes, the policy parameters are 

  
l
11
=1, l

12
= <1, l

13
= 0 . 

 In this case 

  

R
yes

(1)

unfair
=

11

11
+

12

> R
yes

(1)

fair
. 

 Fig. (1) illustrates the change of the “Yes” rate with . 

 

 

 

 

 

 

 

 

 

 

Fig. (1). The change of the “Yes” rate with  in the case of “No 

rejection policy”. 

 

 One can notice that 
 

=1 is reduced to “fair voting” 

while 
 

= 0  is the case of a total “Yes” system. 

N-5) For the case of “unfair voting system”, or alike, and 

taking the policy of increasing “Yes” votes , the poli-

cy numbers are 
  
l
11
=1+ , l

12
=1, l

13
= 0, > 0 . 

 In this case 

  

R
yes

(1)

unfair
=

11
(1+ )

11
(1+ )+

12

=
11
+

11

11
+

12
+

11

=
11

11
+

12

(1+ )

(1+ 12

11
+

12

)

=
(1+ )

(1+ 12

11
+

12

)

R
yes

(1)

fair

> R
yes

(1)

fair

 

TWO POLITICAL GROUPS MODELS  

 The model takes the following form, k=1 is dropped: 

   

11 12 13

1

21 22 23

2

l
11

l
12

l
13

l
21

l
22

l
23

= D  

where 
  i1

+
i2
+

i3
= N

i
, i =1,2  and 

 1
+

2
=1 . The follo-

wing notes can be considered: 

N-1) This system represents two political groups, the first 

may be the governmental group while the other may 
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represent the opposite one. They are voting on a one 

voted subject, say the new president or whatever. 

N-2) Let us have a fair policy, or alike, say 

  
l
11
=1, l

12
=1, l

13
= 0  and  

  
l
21
=1, l

22
=1, l

23
= 0  . In this case 

  

R
yes

(1)
=

1 11
+

2 22

(
11
+

12
)

1
+ (

21
+

22
)

2

. 

 For example taking 
 11

= .8,
12
= .1,

13
= .1, i.e. 80% of 

the governmental group vote “Yes” while 10% say “No” and 

the rest are neutral (false voting). The opposites may have a 

contradicting opinion as 
 21

= .05,
22
= .9,

23
= .05 . If the 

relative population weight of the governmental group is 

 1
= , then the corresponding weight for opposites is 

 2
=1 . Accordingly, the “Yes” rate is  

  

R
yes

(1)
=

.8 + .05(1 )

(.9) + (.95)(1 )

=
1+15

19
, 0 1

 

 Fig. (2) illustrates the change of the “Yes” rate with the 

population weight . 

 

 

 

 

 

 

 

 

 

Fig. (2). The change of the “Yes” rate with the governmental popu-
lation weight . 

 

 One can notice the high and logical effect of  on the 

“Yes” rate, the increase of  causes the increase of the rate. 

To insure that 
  
R

yes

(1)
> .5 , we should have 

 
> 54.84% . This 

has a very important meaning for the governmental group to 

have “Yes” on their voted subject. Oppositely, the opposite 

group should be maintained beyond 45.16% of the voting 

populations to keep the “Yes” possibility. Otherwise, the 

opposites will win.  

N-3) Let us take the case of an “unfair voting” by taking 

the following action against opposite group 

  
l
21
=1, l

22
= < 0, l

23
= 0 . In this case 

  

R
yes

(1)

unfair
=

11
+ (1 )

22

(
11
+

12
) + (

21
+

22
)(1 )

> R
yes

(1)

fair
 

since 
 

1  and all the quantities are positive. Using the 

example in (N-2), one can get 

  

R
yes

(1)
=

.8 + .05(1 )

(.9) + (.05+ .9 )(1 )

=
1+15

1+18 + (17 18 )
, 0 , 1

 

 Fig. (3) illustrates the global change of “Yes” rate with 

both  and . 

 

 

 

 

 

 

 

 

 

Fig. (3). The global change of the “Yes” rate with the weights ; 

the “No” policy parameter and ; the governmental population 

weight. 
 

 It is clear that the high values of the parameters lead to 

the highest values of the rate. Fig. (4) illustrates the change 

of the rate with the different values of the parameters. 

 

 

 

 

 

 

 

 

Fig. (4). The global change of the “Yes” rate with the weights ; 

the “No” policy parameter and ; the governmental population 

weight. 

Table 1. The Change of  with the Increase of  to Insure 
  
R

yes

(1)
> .5  

 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

% >  5.4 15.66 23.91 30.69 36.36 41.18 45.31 48.91 52.07 54.84 
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 Under the condition that 
  
R

yes

(1)
> .5 ,one can notice through 

the study of Table 1 that the decrease of  removes the 

pressure on the governmental population weight .  

N-4) Let us take another case of an “unfair voting” by ta-

king the following action toward the governmental 

group 
  
l
11
=1+ , l

12
=1, l

13
= 0  . In this case 

 

  

R
yes

(1)

unfair
=

(1+ )
11
+ (1 )

22

((1+ )
11
+

12
) + (

21
+

22
)(1 )

=
11
+ (1 )

22
+

11

(
11
+

12
) + (

21
+

22
)(1 )+

11

> R
yes

(1)

fair

 

by using the fact that 
  

n+ h

m+ h
>

n

m
, h > 0, n < m .  

 Using the example in (N-2), one can get 

  

R
yes

(1)
=

.8 (1+ )+ .05(1 )

(.8 (1+ )+ .1 )+ .95(1 )

=
.05+ .75 + .8

.95 .05 + .8

=
1+15 +16

19 +16
, > 0,0 1

 

 Fig. (5) illustrates the global change of “Yes” ratio with 

both  and . 

 

 

 

 

 

 

 

 

 

 

Fig. (5). The global change of “Yes” ratio with both  and . 

 

 Fig. (6) illustrates the change of the rate with the diffe-

rent values of the parameters. Under the condition that 

  
R

yes

(1)
> .5 ,one can notice through the study of Table 2 that the 

increase of  removes the pressure on the governmental 

population weight .  

THREE POLITICAL GROUPS MODELS 

 The model takes the following form, k=1 is dropped: 

   

11 12 13

1

21 22 23

2

31 32 33

3

l
11

l
12

l
13

l
21

l
22

l
23

l
31

l
32

l
33

= D  

where 
  i1

+
i2
+

i3
= N

i
, i =1,2,3  and 

 1
+

2
+

3
=1 . The 

following notes can be considered. 

N-1) This system may represent three political groups, the 

first is a governmental group, the second is an oppo-

site group and an independent third one. They are vo-

ting on a one voted subject, say the new president or 

whatever. 

N-2) Let us take a Fair policy, or alike, say 
  
l
11
= 1, l

12
= 1,  

  
l
13
= 0 , 

  
l
21
=1, l

22
=1, l

23
= 0  and 

  
l
31
=1, l

32
=1, l

33
= 0 . 

This means that a fair voting is established and no  

 

 

 

 

 

 

 

 

 

Fig. (6). The global change of the “Yes” rate with the weight , 

the “Yes” policy parameter and , the governmental population 

weight. 

Table 2. The Change of  with the Increase of  to Insure 
  
R

yes

(1)
> .5  

 0.0 .2 .4 .6 .8 1.0 

% >  54.84 49.71 45.46 41.87 38.81 36.17 

 1.2 1.4 1.6 1.8 2.0 

% >  33.87 31.84 30.04 28.43 26.98 
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rejection policies are considered from the voting 

board (usually governmental board). In this case 

  

R
yes

(1)
=

1 11
+

2 22
+

3 33

(
11
+

12
)

1
+ (

21
+

22
)

2
+ (

31
+

32
)

3

 

 For example take 
 11

= .8,
12
= .1,

13
= .1for the go-

vernmental group. The opposites may have a contradicting 

opinion as 
 21

= .05,
22
= .9,

23
= .05 . Let the independent 

group has the following weights 
 31

= .5,
32
= .4,

33
= .1  

Considering an unpopular governmental group, one can es-

timate its population rate as 
 1

= .2 . Let the population 

weight of the opposite group is 
 2

= . Accordingly, the 

corresponding weight for the independence is 
 3

= .8 . 

Accordingly, the “Yes” rate can be computed as 

  

R
yes

(1)
=

.8(.2)+ .05 + .5(.8 )

(.9)(.2)+ (.95) + .9(.8 )

=
56 45

90+5
, 0 .8

 

 Fig. (7) illustrates the change of the “Yes” rate with the 

population weight . 

 

 

 

 

 

 

 

 

Fig. (7). The change of the “Yes” rate with the opposite population 

weight . 

 

 One can notice that if the independence group joins the 

opposite one, the result will be a disaster on the governmen-

tal group, corresponding to minimum “Yes” rate. The hope 

for such a government is keeping the opposites to a mini-

mum weight to get around 55% “Yes” rate which is a critical 

situation for a governing political group losing its popularity. 

In fact, this case finds a lot of examples in third word nations 

where the government can face this situation by taking false 

policies to survive.  

 Now, let us study the opposite group possibilities to win 

(
  
R

yes

(1)
< .5 ). Let the maximum “Yes” ratio be r, then we get 

the following inequality, 

  

56 45

90+5
< r  which yields 

  

>
56 90r

45+5r

. 

 For  0 .8 , we must have   .2128 r .622 . Fig. (8) 

illustrates the feasible region of . 

 

 

 

 

 

 

 

 

 

Fig. (8). The change of the population weight of the opposite group 

with the maximum “Yes” rate. 

 

 The following table, Table 3, registers the minimum va-

lues of  versus the maximum “Yes” rate. 

 To decrease the “Yes” rate from .5 to .495, the opposite 

group’s popularity should increase from 23.16% to 24.12% 

(about 4% increase). To decrease the “Yes” rate from .5 to 

.4, the popularity should increase from 23.16% to 42.55%, 

i.e. 83.7% increase.  

Unfair Voting Case, “No” Rejection Policy 

 As a reaction of an unpopular governmental political 

group, it may follow an unfair voting policy. Let it rejects 

 
(1 )  of the “No” votes, i.e. 

  
l
i1
=1, l

i2
= , l

i3
= 0, i =1,2,3 . 

In this case, the “Yes” rate is 

  

R
yes

(1)
=

11 1
+

21 2
+

31 3

(
11
+

12
)

1
+ (

21
+

22
)

2
+ (

31
+

32
)

3

. 

 Consider the case of having a saturated population 

weight 
  1

= s and a dynamic population weight 
 2

= , then 

  3
=1 s . In this case, The “Yes rate becomes 

  

R
yes

(1)

unfair
=

11
s+

21
+

31
(1 s )

(
11
+

12
)s+ (

21
+

22
) + (

31
+

32
)(1 s )

=
11

s+
21

+
31

(1 s )

[
11

s+
21

+
31

(1 s )]+ [
12

s+
22

+
32

(1 s )]

> R
yes

(1)

fair

 

Table 3. The Change of the Minimum Values of  Versus the Maximum “Yes” Rate, Fair Voting 

r .3 .35 .4 .45 .46 .47 .48 .49 .495 .5 

min  .623 .524 .42 .32 .30 .28 .27 .25 .24 .23 
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 From the opinion of the opposite political group, it is 

required to satisfy the following criteria 

  
R

yes

(1)

unfair
< r, r .5  

which leads to the following inequality 

  

11
s+

31
(1 s) [

11
s+

31
(1 s)+

12
s+

32
(1 s)]r

(
31 21

)+ [
21 31

+ (
22 32

)]r
 

 Three branches can be noticed here: 

i) a straight line case in which 

  

c
=

31 21

22 32

 

 whereas 

  

11
s+

31
(1 s) [

11
s+

31
(1 s)+

c 12
s+

c 32
(1 s)]r

(
31 21

)
,

0 1 s

 

ii) 
 21 31

+ (
22 32

) > 0 , 

iii) 
 21 31

+ (
22 32

) < 0 . 

Cases ii) and iii) are the cases of two different curvatures. 

Example-5.1.1 

 Taking 
 

= .7  and s=.2 as the previous example. Consi-

dering the same weights, one can get the following relation 

for the “Yes” rate: 

  

R
yes

(1)
=

.8(.2)+ .05 + .5(.8 )

(.87)(.2)+ (.68) + .78(.8 )

=
56 45

79.8 10
, 0 .8

 

 To satisfy the criteria of having 
  
R

yes

(1)

unfair
< r, r .5 , the 

population weight of the opposite group should finally satis-

fy 

  

>
56 79.8r

45 10r

 

 For  0 .8 , we must have   .2786 r .7017 . Fig. (9) 

illustrates the feasible region of . 

 One can notice the change of curvature sign of the curve 

than that of Fig. (8). The following table, (Table 4), registers 

the minimum values of  versus the maximum “Yes” rate. 

 One can notice the high effect of the unfair policy of re-

jecting 30% of “No” votes. The popularity of the opposite 

group has been increased dramatically to do the same effect. 

For example, to insure that 
  
R

yes

(1)
< .5 , the minimum  

should be 40.25% in case of unfair voting while it is only 

23.16% in fair voting case. This definitely helps a bad go-

vernment group with low popularity to survive against ho-

nesty and fairness.  

Example- 5.1.2 

 Consider the same previous example with taking a va-

rying  and s=.2. In this case, the “Yes” rate is 

  

R
yes

(1)
=

.8(.2)+ .05 + .5(.8 )

(.8+ .1 )(.2)+ (.05+ .9 ) + (.5+ .4 )(.8 )

=
56 45

(56+ 34 )+ (50 45)
, 0 .8

 

 For a straight line case, 
  c

= .9 , the following inequality 

is obtained: 

  

11
s+

31
(1 s) [

11
s+

31
(1 s)+

c 12
s+

c 32
(1 s)]r

(
31 21

)
,0 1 s

=
1

.5 .05
[.8(.2)+ .5(.8) (.8(.2)+ .5(.8)+ .9(.1)(.2)+ .9(.4)(.8))r]

=
1

45
[56 86.6r]

 

 For  0 .8 , we must have   .2309 r .6467 . Fig. 

(10) illustrates the feasible region of .  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). The change of the population weight of the opposite group 
 with the maximum “Yes” rate. 

Table 4. The Change of the Minimum Values of  Versus the Maximum “Yes” Rate, Unfair Voting:
 
= .7  

r .3 .35 .4 .45 .46 .47 .48 .49 .495 .5 

min  .763 .6764 .5873 .4961 .4775 .4589 .4402 .4214 .4120 .4025 
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Fig. (10). The change of the population weight of the opposite 

group . 

 

with the maximum “Yes” rate, 
  

=
c
= .9  . 

 Now let 
 

> .9 , then we get 

  

>
56 (56+ 34 )r

45+ (50 45)r
,.9 < <1 

 Figs. (11,12) illustrate the general behavior of  versus 

r and . 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). The global change of  versus r and . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). The change of  versus r for diferent . 

 For  0 .8 , we must have 

 

20

20 + 74
 

  

r
56

56 + 34
,.9 < < 1 . 

 One can notice that the fair voting case is approached 

when =1. 

 Now let 
 

< .9 , then we get 

  

>
56 (56+ 34 )r

45 (45 50 )r
,0 < < .9  

 Figs. (13,14) illustrate the general behavior of  versus 

r and . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13). The global change of  versus r and . 

 

 

 

 

 

 

 

 

 

 

 

Fig. (14). The change of  versus r for different . 

 

 For  0 .8 , we must have 

  

20

20+ 74
r

56

56+ 34
,0 < < .9 . The sure “Yes” case is 

approached as  tends to zero. 

TWO VOTED SUBJECTS SYSTEMS  

 In this case two voted subjects are considered. The model 

can be taken as follows 
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11

(1)

12

(1)

13

(1)

11

(2)

12

(2)

13

(2)

1

21

(1)

22

(1)

23

(1)

21

(2)

22

(2)

23

(2)

2

n1

(1)

n 2

(1)

n3

(1)

n1

(2)

n 2

(2)

n3

(2)

n

l
11

l
12

l
13

l
n1

l
n2

l
n3

=
D

(1)

D
(2)  

where n political groups are competing in deciding just two 

voted subjects. The population numbers 
  ij

(m) , j =1,2,3  are 

independent than the population numbers 
  ij

(k ) , j =1,2,3 

where  m k since the population of the political group is 

divided independently for every voted subject. We can also 

assume that the policy is rigid for every group. Following the 

model, one can get the following “Yes” rates 

  
R

yes

(k )
=

i
i1

(k )l
i1

i=1

n

D(k )
, k =1,2  

where 

  

D(k )
=

i
ij

(k )l
ij

j=1

3

i=1

n

, k =1,2  

Example-6.1 

 Consider one political group with the following popula-

tion weights 

 

11

(1)
= .6

12

(1)
= .2

13

(1)
= .2

11

(2)
= .8

12

(2)
= .1

13

(2)
= .1

 

where one can notice the different weights w.r.t. each voted 

subject. Let us have the following “Yes” biased policy 

  
l
11
=1 l

12
= .5 l

13
= 0 . The “Yes” rates are 

  

R
yes

(1)
=

11

(1)l
11

11

(1)l
11
+

12

(1)l
12

= .8571

 

  

R
yes

(2)
=

11

(2)l
11

11

(2)l
11
+

12

(2)l
12

= .9412

 

 One can notice the independency of computations. More 

complicated models can be described to model other com-

plex cases. 

Example-6.2 

 Consider three political groups as follows: 

   

.8 .1 .1

.1 .8 .1

1
=.2

.05 .9 .05

.9 .05 .05

2
=.5

.5 .4 .1

.5 .4 .1

3
=.3

1

1

0

1

1

0

1

1

0

=
D

(1)

D
(2)

 

 One can notice the fair voting and the varying decisions 

of the first group that it accepts the first subject and refuses 

the second. The second group has opposite opinions. The 

third party may have independent and fixed decisions against 

both voted subjects. Accordingly, the following “Yes” rates 

are computed: 

  

R
yes

(1)
=

11

(1)l
11 1

+
22

(1)l
22 2

+
33

(1)l
33 3

D(1)

= 36.22%

 

  

R
yes

(2)
=

11

(2)l
11 1

+
22

(2)l
22 2

+
33

(2)l
33 3

D(2)

= 67.03%

 

which are independent of each other. One can notice the suc-

cess of the second group in both voted subjects may be be-

cause of the unpopularity of the first group. 

 We can extend the model to m voted subjects ( m win-

ners case) and n political groups. 

 We shall look for other opinions in the following sec-

tions. 

INVERSE PROBLEMS 

 For the purpose of a future development, a group can 

study the voting system in reverse point of view. It can ask 

this question “ What are the design population weights or the 

policy numbers which satisfy certain “Yes” rate criteria?. We 

are facing a rectangular system such that no unique values, if 

exist, are found. We are under the complete control of the 

different cases of the linear system of equations. 

Example-7.1 

 Consider a ingle group single decision system and it is 

required to put the appropriate policy to satisfy the criteria 

  
R

yes

(1)
r . In this case 

  

11

(1)
l
11

11

(1)
l
11
+

12

(1)
l
12
+

13

(1)
l
13

> r  

 Let the policy such that 
  
l
11
= x, l

12
= y, l

13
= 0 . To satisfy 

the criteria, we should have 
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y
(1 r)

11

r
12

x . 

 For   x 1, we get 

  

y
(1 r)

11

r
12

. Fig. (15) illustrates the 

accepted region of y for different cases. 

 

 

 

 

 

 

 

 

Fig. (15). The change of y with x for 
 11

= .6,
12
= .2  and different 

r, (the shadow for the case of r=.5). 
 

 One can use these charts at different population weights 

to satisfy a required criteria. The solution is not unique and a 

measure of selectivity may exist. 

 At known population weights, one can follow a different 

routine. Let us have 
 11

= .5,
12
= .3,

13
= .2 . In this case, 

one gets the following 

  

.5 .3 .2

x

y

0

= d  

 Solving this equation, we get infinite number of solutions 

as 

  

x

y
=

2d

0

+ c
.6

1

 

 Now satisfying the criteria 
  
R

yes

(1)
r , one can get 

   

d
3(2r +5)c

10(5 3r)
,c . 

 Choosing c=-.8 and r=.5, one gets finally 

  
y = .8, x .3428  from which we can choose y=.8 and x=1. 

This routine depends greatly on having a solution to the gi-

ven system of equations. 

Example-7.2 

 Let us have two groups and a single decision. 

   

11 12 13

1
=.5

21 22 23

2
=.5

l
11

l
12

l
13

l
21

l
22

l
23

= D
(1) . 

 Required to satisfy 
  
R

yes

(1)
r .Let (

  
l
11
= x

1
, l

21
= x

2
,  

  
l
12
= y

1
, l

22
= y

2
, l

13
= l

23
= 0 ). This leads to the following 

  

11

(1)
x

1
+

21

(1)
x

2

11

(1)
x

1
+

21

(1)
x

2
+

12

(1)
y

1
+

22

(1)
y

2

r  

 Let 
  
x

1
= x

2
=1 , then we get 

  
r

12

(1)
y

1
+ r

22

(1)
y

2
(1 r)(

11

(1)
+

21

(1) ) ,  

or any other inequalities at different cases. The graph of the 

inequality can illustrate the feasible region of 
  
y

1
 and 

  
y

2
.For 

example, taking the values 

 

11

(1)
= .5

12

(1)
= .3

13

(1)
= .2

11

(2)
= .6

12

(2)
= .2

13

(2)
= .2

 

then the following inequality is obtained: 

  
3y

1
+ 2y

2
2.75 . 

 Fig. (16) illustrates the accepted region of selectivity: 

 

 

 

 

 

 

 

 

 

Fig. (16). The feasible region of 
  
y

1
 and 

  
y

2
. 

 

 One can design the system according to the feasible re-

gion got in the figure. 

RANDOM MODELS  

 In this case, one or more of the variables and parameters 

of the voting system may follow random or stochastic beha-

vior. Let us illustrate the random behavior through a one 

group-one decision model. For simplicity, let 
 13

=0 then 

  11
+

12
= N . Dividing by the total allowable population 

 N , then 
  
x + y =1 . Let us assume that the “Yes” population 

weight x is random and can have three possibilities. 

  
x ~ u(0,1) : uniform distribution. 

 Since y=1-x, the “No” population weight should be uni-

form too , i.e. 
  
y ~ u(0,1) . The “Yes” rate takes the following 

formula 

  

R
yes

=
l
11

x

(l
11

l
12

)x + l
12

. 
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 We have two cases. 

i) Fair voting 

 In this case, 
  
l
11
= l

12
=1, l

13
= 0 which leads to 

 
R

yes
= x . 

This means that the “Yes” rate is uniformly distributed too. 

Then the following basic probability relations are true 

  
P(R

yes
> .5) = P(R

yes
< .5) = .5 . 

ii) Unfair voting 

 Let us examine the “No rejection” and “Yes additions” 

policies and show the effect of these policies on the probabi-

lity distribution function (p.d.f.) of the “Yes” rate.  

ii-1) “Yes” increase policy 

 In this case, 
  
l
11
=1+ , l

12
=1  which leads to  

  
R

yes
=

(1+ )x

1+ x
, > 0 . 

 One can notice that in general  

  

R
yes unfair

=
(1+ )x

1+ x
,0 > x >1

> R
yes fair

 

 Using the theory of random variable transformation [10], 

we can obtain the following probability density function 

(p.d.f.) of the “Yes” rate 

  

f
R
(r) =

(1+ )

(1+ (1 r))2
,0 r 1. 

 Fig. (17) illustrates the deformations of the pd.f. of the 

“Yes” rate around uniformity. 

 

 

 

 

 

 

 

 

 

 

Fig. (17). The deviation of the p.d.f. of the “Yes” rate around uni-

formity ( = 0 ). 

 

 One can notice that the higher values of  the higher 

deviations around uniformity. We can compute a significant 

probability as follows: 

  

p(R
yes

> q) =
(1+ )(1 q)

1+ (1 q)
, > 0, q .5 . 

 Fig. (18) illustrates the change of the probability with . 

 

 

 

 

 

 

 

 

Fig. (18). The change of 
  
p(R

yes
> q) with . 

 

 One can notice the continuous increase of the probability 

with and its continuous decrease with the increase of q. 

Theoretically, the probability approaches unity when  

approaches . 

ii-2) “No” rejection policy 

 In this case, 
  
l
11
=1, l

12
=  which leads to  

  

R
yes

=
x

+ (1 )x
,0 > >1. 

 One can also notice that 

  

R
yes unfair

=
x

+ (1 )x
,0 > x >1

> R
yes fair

 

 Using the theory of random variable transformation, we 

can obtain the following p.d.f. of the “Yes” rate 

  

f
R
(r) =

(1 (1 )r)2
,0 r 1 . 

 Fig. (19) illustrates the deformations of the pd.f. of the 

“Yes” rate around uniformity. 

 

 

 

 

 

 

 

 

 

Fig. (19). The deviation of the p.d.f. of the “Yes” rate around uni-

formity (
 

=1). 

 

 One can notice that the higher values of  the lower 

deviations around uniformity. We can compute a significant 

probability as follows: 
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p(R
yes

> q) =
(1 q)

1 (1 )q
, q .5 . 

 Fig. (20) illustrates the change of the probability with . 

 

 

 

 

 

 

 

 

 

Fig. (20). The change of 
  
p(R

yes
> q) with . 

 

 One can notice the continuous decrease of the probability 

with the increase of  and its continuous decrease with the 

increase of q. Theoretically, the probability approaches unity 

when  approaches 1. 

ii-3) Combination policy 

 Let us combine the two previous policies. The following 

results hold 

  

R
yes

=
(1+ )x

+ [(1+ ) ]x
, 

  

f
R
(r) =

(1+ )

[(1+ ) (1+ )r]2
, 

  

p(R
yes

> .5) =
(1+ )

1+ +
. 

 One can notice that the case ii-1) can be reached at =1 

while the case ii-2) is reached when =0. An important 

question arises in this case, what are the values of  and  

to reach a maximum value for 
  
p(R

yes
> .5) . This can be sim-

ply got using optimization. 

~x fall( ): Fall distribution 

 If the probability of the population weight of “Yes” vo-

ters is high for low value, case of fall distribution which il-

lustrates that the political group suffers, the following fall 

distribution can be suggested 

  
f

x
(x; ) =

A(1 x)

1+ x
, > 0  

or ~x fall( ) where  

  

A =

2

(1+ ) ln(1+ )
. 

 Fig. (21) illustrates the distribution shape. 

 

 

 

 

 

 

 

 

 

Fig. (21). the change of the fall distribution with the parameter . 

 

 The probability that x is at least  can be computed as 

  
p(x ) =1+

A
A(

1
+

1
2

) ln(1+ ) . 

 Now the Yes ratio can be discussed as before as follows: 

i) Fair voting  

 In this case, 
 
R

yes
= x  which means that the Yes ratio also 

belongs to the fall distribution. The probability that the Yes 

ratio is at least 50 % can be evaluated as 

  
p(R

yes
.5) =1+

A

2
A(

1
+

1
2

) ln(1+
2

) . 

 Fig. (22) illustrates the change of the probability of the 

Yes ratio being at leas .5 with . 

 

 

 

 

 

 

 

 

 

Fig. (22). The change of 
  
p(R

yes
.5)  with . 

 

 One ca notice that the Yes rate is also suffering as the 

political group. 

ii) Unfair voting 

 With the aid of random variable transformation, the p.d.f. 

of the Yes ratio under Yes increase policy, 
  
l
11
=1+ , l

12
=1, 

can be evaluated as 

  

f
R
(r) =

A(1+ )2 (1 r)

[1+ + ( )r][1+ (1 r)]2
, > 0, 0 r 1  

 Fig. (23) illustrate the shape of the p.d.f. 
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Fig. (23). The change of the Yes ratio p.d.f. with r. 

 

 The probability that the Yes ratio is at least  can be 

evaluated as  

  

p(R
yes

) =
A

2
(1+ ) ln

(1+ )(1+ (1 ))

1+ + ( )

(1+ )(1 )

1+ (1 )

. 

 Fig. (24) illustrates this probability at  = .5 . 

 

 

 

 

 

 

 

 

 

Fig. (24). The change of 
  
p(R

yes
.5)  at different . 

 

 The low chance of the suffering political group is com-

pletely noticed even when taking unfair policies. 

~x rise( ): Rise distribution 

 If the probability of the population weight of “Yes” vo-

ters is high for high value, case of rise distribution which 

illustrates that the political group is succeeding, the follo-

wing rise distribution can be suggested 

  

f
x
(x; ) =

Ax

1+ (1 x)
, > 0  

or ~x rise( ) where  

  

A =

2

(1+ ) ln(1+ )
. 

 Fig. (25) illustrates the distribution shape 

 The probability that x is at least  can be computed as 

  
p(x ) =1+

A
+ A(

1
+

1
2
) ln(

1+ (1 )

1+
) . 

 Now the Yes ratio can be discussed as before as follows: 

i) Fair voting  

 In this case, 
 
R

yes
= x  which means that the Yes ratio also 

belongs to the rise distribution. 

 The probability that the Yes ratio is at least 50 % can be 

evaluated as 

  

p(R
yes

.5) =1+
A

2
+ A(

1
+

1
2

) ln(

1+
2

1+
) . 

 Fig. (26) illustrates the change of the probability of the 

Yes ratio being at leas .5 with . 

 

 

 

 

 

 

 

 

 

Fig. (26). The change of 
  
p(R

yes
.5)  with . 

 

 One can notice the success of this rise group. 

ii) Unfair voting 

 With the aid of random variable transformation, the p.d.f. 

of the Yes ratio under Yes increase policy, 
  
l
11
=1+ , l

12
=1, 

can be evaluated as 

  

f
R
(r) =

A(1+ )r

[1+ (1 r)+ (1+ )(1 r)][1+ (1 r)]2
, > 0, 0 r 1 

 Fig. (27) illustrate the shape of the p.d.f. 

 The probability that the Yes ratio is at least  can be 

evaluated as  

 

 

 

 

 

 

 

 

 

Fig. (25). The change of the rise distribution with the parameter . 
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Fig. (27). The change of the Yes ratio p.d.f. with r. 

 

  

p(R
yes

) =
A

2

(1+ ) ln((1+ )(1+ ) ( + (1+ ))
(1+ )(1 )

1+ (1 )

+ ln(1+ (1 ))
(1+ )+

ln(1+ (1 ))
. 

 Fig. (28) illustrates this probability at  = .5 . 

 

 

 

 

 

 

 

 

 

Fig. (28). The change of 
  
p(R

yes
.5)  at different . 

 One can notice that the Yes increase policy has increased 

the success of this succeeding group. 

CONCLUSIONS  

 In this paper, the voting systems are introduced as linear 

transformation models. The general system of n political 

groups and m voted subjects is introduced using the com-

partmental populations w.r.t. “Yes”, “No” and “Neutral” 

votes of each political group and reaction policy parameters 

of the voting responsible board. Different systems have been 

discussed including “fair” and “unfair” voting systems with 

the “No” rejection and “Yes” increase policies in determinis-

tic and a simple stochastic models. The inverse problem is 

also introduced. I believe that interesting more general stu-

dies can be achieved using this concept. 
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