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1. INTRODUCTION  

 A lot of phenomena of interest in Physics and Biology 
can be mathematically described by means of discrete 
Markov chains (MCs). In this paper, we will consider the 
following class of MCs: let Xk be the size of a population at 
time k (here, the term population is meant in generalized 
sense, i.e. it not only denotes a group of cells or individuals, 
but even a collection of particles, molecules, etc.), where Xk 
takes values n {0, 1, ...N}, and N is the maximum 
allowed size of the population. Then, we can construct the 
MC with states {0, 1, ...N} and binomial-like transition 
probabilities:  

  

P( X
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= m | X
k
= n) =
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where 

 

N

m
 = 

  

N !

m!(N m)!
 and the parameter  = 

 

n

N
 

is a function of the fraction 
 

n

N

 
of individuals at time k over 

the maximum size of the population.  

 In particular, we suppose that  is a polynomial function 
of its argument:  

(x) = a0 + a1x + .... + arx 
r 
 (1.2)  

where ai are real constants, i = 0, 1, ...r. Examples of such 
MCs from biology will be given in the Section 4.  

 We observe that, because of the computational 
complexity of the formula (1.1) for N large, it is impractical 
to study the MC directly, so it is convenient to approximate 
it by a diffusion process; in fact many biological systems are 
well described in terms of continuous diffusion processes 
(see e.g. [1]). In our case, the advantages of a description in 
terms of diffusion processes are: (i) the shorter computer 
time  required  to  simulate  the  evolution  of  the  population  
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(especially for large N); (ii) more convenience to get the 

stationary probabilities of the MC and to study conditions for 

attainability/unattainability of the boundary states; (iii) more 

convenience to estimate the parameters ai. Thus, our goal is 

to study the diffusion approximation of the MC, that allows 

us to get easily information about the qualitative behavior of 

the system. Actually, by considering a sequence 
  
X

k

( N )  
of 

MCs where the coefficients ai = ai(N) in (1.2) depend on N, 

we study the problem of the convergence, as N  , of the 

rescaled 
  
MC

X
k

( N )

N
to a continuous diffusion process X(t) in 

[0,1], in such a way, for N large:  

  
X (t)

1

N
X

[ Nt ]

( N )  (1.3) 

([·] denotes the integer part).  

 The sense of the convergence in (1.3) will be precised 
later.  

 Once the description in terms of diffusion process is 
available, the evolution of the system can be more easily 
studied by considering the associated stochastic differential 
equation (SDE) for the process X(t)  [0, 1]. Of course, in 
order to make the SDE well defined, it needs that X(t) never 
exits from the interval [0, 1], and in fact conditions on the 
coefficients ai in (1.2) will be imposed to guarantee the 
above property.  

 While the drift coefficient of the SDE turns out to be 
Lipschitz-continuous and bounded, the diffusion term is not 
(in fact it is Hölder-continuous), so the usual conditions for 
the uniqueness of the solution, starting from X(0)  [0, 1], 
are not satisfied. However, the existence and uniqueness of 
the solution with given initial datum follow by a result of 
Yamada and Watanabe [2]; the continuity of the solution 
from initial value (i.e. the Feller Property) can be also proved 
(see e.g. [3]).  

 It is useful for the discrete process Xk, to study conditions 
on the parameters ai in (1.2) in order that the boundary states 
0 and N are accessible or unaccessible. This, translated in 
terms of the limit diffusion process, results into studying the 
nature of the boundaries of the interval [0, 1], following the 
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Feller classification (see e.g. [1]). Another interesting 
problem for the discrete process Xk is to find the stationary 
probabilities i of the MC, for those values of the parameters 
ai for which the chain is irreducible (for instance, this 
happens if pij > 0). Unfortunately, we are not able to find the 
exact formula for i (see e.g. the discussion in [4]); it is more 
convenient to consider the forward (Fokker-Plank) equation 
for the diffusion process (see e.g. [1]) 

  

u

t
= L *u  (1.4) 

where L u is the formal adjoint of the generator L of the 
diffusion process, and look at a stationary solution u, i.e.  

L u = 0  (1.5)  

If such a function u exists, it represents the probability 
density function of the invariant measure. Once the density u 
is known, one has the approximation:  

  
i

1

N
u

i

N
, N large  (1.6) 

 Indeed, the eq. (1.5) cannot be solved, in general, and 
only in some cases we are able to exhibit the explicit 
formula. Thus, we shall consider the problem of proving the 
existence and uniqueness of the invariant measure and of its 
density w.r.t. Lebesgue measure. Finally, we shall be 
concerned with the estimation of the parameters ai from 
experimental data, by means of the maximum likelihood 
method. Once again, the diffusion approximation turns out to 
be very useful, because the maximization of the likelihood 
function in the discrete case appears to be theoretically 
intractable.  

 Only some results of this paper will be proved, while 
others will be stated without proof, referring to the cited 
papers.  

2. A DIFFUSION APPROXIMATION SCHEME  

 Here we show how one can obtain the diffusion 
approximation of the MC with transition probabilities (1.1) 
with  depending on ai(N). First, we present a non-rigorous, 
heuristic argument; then, we state precisely the result.  

 Let us consider the limit process Xt  [0, 1], then x  
[0, 1] the infinitesimal drift b(x) must satisfy:  

E(X(t + dt)  X(t) | X(t)= x) = b(x)dt (2.1)  

Now, if we take k =[Nt] , dt = 
  

1

N
,  approximately we can 

write, for N   :  

E(X(t + dt)  X(t) | X(t) = x)   (2.2)  

  
E(Y

k+1
Y

k
|Y

k
=

[Nx]

N
)  

where Yk = 
   
Y

k

( N )
X

k

( N )

N
is the rescaled MC. Recalling the 

expectation value of a binomial r.v., by (1.1) the last quantity is:  

  

[Nx]

N

[Nx]

N
 

which implies by (2.1):  

  

b(x) N
[Nx]

N

[Nx]

N
N ( (x) x), N  (2.3) 

(Note that, since 
  

Nx 1

N
<

[Nx]

N

Nx

N
,  then 

  

[Nx]

N
 x  [0, 

1] as  N ). Now, we search for b(x) in a polynomial 

form:  

b(x) = 0 + 1x + ...... + rx 
r 
 (2.4)  

From (2.3) we must have, for N large:  
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 (2.5) 

Equating the coefficients of the terms of same degree, we 
obtain in the limit N   : 

  

0
= lim N a

0
(N )

1
= lim N a

1
(N ) 1

i
= lim N a

i
(N ), i = 2,...r

 (2.6) 

Of course, (2.6) are consistent only if, as N  : 

  

a
0
(N ) 0

a
1
(N ) 1

a
i
(N ) 0, i = 2,...r

 (2.7) 

Set 

  

x = E
X

k+1

N
|

X
k

N
=

[Nx]

N
=

[Nx]

N
.  From (1.2) and 

(2.7), we obtain  

 x   x as N    (2.8)  

(Precisely 

  

[Nx]

N

[Nx]

N
=  O(1/N)) 

 Now, we consider the diffusion term a(x). We have:  

a(x)dt = E((X(t + dt)  X(t))
2 

| X(t) = x)  (2.9)  

Approximately, for N  :  
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(2.10) 

 This quantity is approximately equal to the infinitesimal 
variance. Indeed, by (2.8) the last two terms go to zero as N 

 , so we obtain:  
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(2.11)  



Discrete Markov Chains The Open Applied Mathematics Journal, 2009, Volume 3    9 

 Finally, from (2.11), (2.10) and (2.9):    

  

a(x)dt a
[Nx]

N

1

N

1

N

[Nx]

N
1

[Nx]

N
 (2.12)  

from which it follows    

a(x) = x(1  x)  (2.13)  

The heuristic considerations above can be summarized into 
the following rigorous result:  

Theorem 2.1. For any positive integer N, let us consider the 

MC with transition probabilities (1.1) depending on the 

parameters ai(N) and suppose that the limits in (2.6) exist. 

Then, as N  , the process 
  

1

N
X

[ Nt ]

( N )

 with values in KN = 

{
  

i

N
,  i = 0, 1, ...N} weakly converges in the Skorohod 

space D(R
+
, [0, 1]), to the diffusion process Xt  [0, 1], 

whose associated backward differential equation has the 
form:  

  

u

t
= b(x)

u

x
+

1

2
x(1 x)

2
u

x
2

,u C
2[0,1]  (2.14) 

where b(x) 
  

i
x

i

i=0

r

and the coefficients i are given by 

(2.6).  

 We omit here the proof, since it is quite analogous to that 
of theorem 3.1 in [5].  

 The Itô’s stochastic differential equation (SDE) 
associated to our diffusion process in [0,1] is the following:  

dX(t) = b(X)dt + 
  

[X (1 X )]+ dB
t
 (2.15)  

where a
+ 

= max(a, 0), and Bt is a standard Brownian motion.  

Theorem 2.2. The SDE (2.15) has a unique strong solution 
X(t), for any initial condition X(0)  [0, 1]. Moreover, the 
continuity with respect to initial conditions holds for the 
transition function (Feller property)  

(For the proof see e.g. [3]).  

 In order that (2.15) describes the evolution of a process 
which never leaves the interval [0, 1], we have to impose 
some further conditions on the function b(x), i.e. on the 
coefficients i. We obtain:  

Theorem 2.3. If b(0) = 0  0 and b(1) = 
  

ii=0

r

  0, then 

the solution of the SDE (2.15) with initial condition X(0)  

[0, 1], remains in the interval [0, 1], for all times t  0.  

Proof. We shall prove that for all t  0 (i) X(t)  0 ; (ii) X(t) 
 1.  

 (i) First, we consider the case 0 =0. If X(0) = 0, then 

X(t) = 0 for every t, because of the uniqueness of the 

solution. If X(0) > 0, let be  = inf{t : X(t)=0}, i.e. X(s) > 0 

for 0 < s < . Then,   X (t) = X(t + ) is the solution of (2.15) 

starting from   X (0) = 0, and, for the uniqueness of the 

solution,   X (t) = 0 t, i.e. X(t + ) = 0 t which implies X(t) 

= X(min(t,  ))  0.  

 Let us consider now the case 0 = b(0) > 0; if the process 
X(t) were allowed to became negative, there should be  > 0 
and a time s >  such that, in the interval [ , s] X(t) 
decreases from 0 to ; we can suppose that  is small 
enough so that, for t  [ , s], it holds:  

b(X(t)) = 0 + 1X(t) + ... + rX
r
(t) >0  (2.16)  

Then, by the equation  

  
X (s) = X ( )+ b( X (u)) du +

s

[X (u)(1 X (u)]+ dB
u
,

s

 

since the integrand of the stochastic integral vanishes for X(t) 
< 0, we obtain  

  
= b( X (u)) du

s

 

which contradicts (2.16), because that equation implies that 

  
b( X (u)) du

s

 is nonnegative; in conclusion it must be X(t)  

0 for all t  0.  

 (ii) To show that X(t)  1 t, we consider the process 

Y(t) = 1  X(t) which solves the SDE dY = 

  
b (Y )dt

  
[Y (1 Y )]+ dB

t
, b (Y ) = b(1 Y). It suffices to 

proof that Y (t)  0 t; we can proceed in analogous way as 

done in (i).  

 The proof of Theorem 2.3 is concluded.  

 Now, we look at the invariant measure of the diffusion 
process driven by the SDE (2.15). We recall that a measure  
on [0, 1] is said to be invariant or stationary for the diffusion 
process X(t) if for every borel set E, t> 0:  

(E)=  P (t, x, E) (dx)  (2.17)  

where P (t, x, ·) = Px(X(t) ·), x  [0, 1] is the transition 
probability of the diffusion process X(t). Since [0, 1] is 
compact and the Feller property holds for the associated 
semigroup operator, one can easily prove the existence of a 
stationary measure  by a proof similar to the Markov-
Kakutani theorem (see e.g. [6]). Thus, the problem is to 
show the uniqueness of  and to find its density w.r.t. the 
Lebesgue measure, if it exists. Let L be the infinitesimal 
generator of the diffusion driven by the SDE (2.15), acting 
on u  C

2
([0, 1]), that is:  

  
Lu = b(x)

du

dx
+

1

2
x(1 x)

d
2
u

dx
2

 (2.18) 

 As told in the Introduction, the density of the invariant 
measure, if it exists, is given by the solution of the equation 
L u = 0 (see e.g. [1]), where L

 
is the adjoint of the 

differential operator L, i.e.:  

   

L *u =
1

2
x(1 x)u(x) (b(x)u(x))  (2.19) 

3. ATTAINABILITY OF THE BOUNDARY OF [0, 1]  

 We recall some results about the attainability of the 
boundary of a scalar diffusion process, according to the 
Feller classification (see e.g. [1]). Let us consider the SDE in 



10    The Open Applied Mathematics Journal, 2009, Volume 3 Mario Abundo 

[0, 1] : dX(t) = b(X)dt + (X)dBt and let [x1, x2] be any 
subinterval of [0, 1]; consider the functions:  

  

(x) = exp
2b(s)

2 (s)
ds

c

x

 (3.1)  

  
(x) = (x) 2[ 2 (s) (s)] 1

ds
c

2

 (3.2)  

where c  [x1, x2].  

 Let  be the first exit time from the interval (x1,x2) of the 
process X(t) starting from an interior point x  (x1,x2). The 
boundary point xi is called attainable (or accessible) if 
Px(limt  X(t) = xi,  < ) > 0 and unattainable (or 
unaccessible) otherwise. More generally, the boundary point 
xi is called attractive if P(limt  X(t) = xi) > 0 and repelling 
(or natural) otherwise. The classification above can be 
characterized in terms of integrability conditions of the 
functions  and  defined in (3.1) and (3.2). Precisely, we 
have:  

·  xi is attractive if  is integrable over a neighborhood 
of xi and repelling otherwise;  

·  xi is attainable if  is integrable over a neighborhood 
of xi, unattainable otherwise;  

·  xi is reflecting if the function [
2
]

 1 
is integrable 

over a neighborhood of xi, absorbing otherwise.  

If the boundaries x1 and x2 are both reflecting, then the 
process X(t) has an invariant measure with density const · 
[

2
]

 1
. In particular, for the SDE (2.15) we have:  

Theorem 3.1. If 2 0 < 1, then the boundary point x = 0 is 
accessible and attractive, unaccessible and repelling 
otherwise; if 2( 2+...+ r 0 1) < 1, then the boundary 
point x = 1 is accessible and attractive, unaccessible and 
repelling otherwise. If 0 > 0 and 0 + 1  ( 2 + .... + r) < 
0, then the boundary points x = 0 and x = 1 are both 
reflecting and the process X(t) has an invariant measure 
with density  

const · e q(x)
x

2
0

1
(1  x)

2(
2
+...+ r 0 1

) 1
 (3.3)  

where q(x) is a polynomial of degree r +1.  

Proof. It suffices to write explicitly the functions  and  in 
(3.1), (3.2) and to study the integrability conditions of them 
over neighborhoods of x = 0 and x = 1.  

4. EXAMPLES  

4.1. Population Genetics (Fisher & Wright and Feller)  

 Take (x) = x in (1.1), (1.2), i.e. a0 = 0, a1 = 1, ai = 0 ,i > 
1. One obtains the MC with transition probabilities:  

  

p
nm

=
N

m

n

N

m

1
n

N

N m

 (4.1) 

 It can be interpreted as follows. A number M of 

individuals are selected from a population in each 

generation. A particular gene assuming the form A and a has 

N = 2M representatives; if A occurs n times in the k-th 

generation, then a occurs N  n times. We assign to the 

population, at the k-th generation, the state n, 0  n  N. 

Assuming random mating, the composition of the successive 

generation is determined by N Bernoulli trials in which the 

A-gene has probability 
  

n

N
.  Then, (4.1) holds. The diffusion 

approximation of the MC is given by the process X(t)  [0, 

1] which is solution of the SDE: (by (2.6) the drift 

coefficient b(X) is identically zero)  

  
dX (t) = [X (1 X )]+ dB

t
 (4.2) 

 The boundary point x = 0 and x = 1 are both attainable 
and absorbing. The density of the invariant measure does not 
exist.  

4.2. Cooperative Interaction in Proteins [4]  

 Choose two numbers p and p such that p  p> 0 and 0 
 p ± p  1 and take (x)=(p p)+2x p, that is a0 = p p, 

a1 = 2 p, ai =0,i > 1. One obtains the MC having transition 
probabilities:  

  

p
nm

=
N

m
p p + 2 p

n

N

m

1 ( p p) 2 p
n

N

N m

 (4.3) 

 The interpretation of the system is as follows. A certain 

number of particles (molecules) which can be connected by 

chemical bonds is considered. Let N be the total number of 

pairings (chemical bonds) among the particles of the system 

(amino acidic residues). A configuration is defined by a 

sequence of binary r.v. 
  
{

i

(k )}
i=1,...N

such that 
(k) 

= +1 if the i-

th pair is linked at time k, 
  i

(k ) = 1, otherwise. The number 

p (mean probability) represents the probability of forming a 

chemical bond when the total number of existing bonds is 

exactly N/2 (physically, p is inversely related to the 

activation energy for the formation of that chemical bond). 

The number p (coupling capacity) is the maximum 

increment of the probability to form a chemical bond, for a 

given p. It is supposed that the r.v. 
  1

(k ) ,....,
N

(k )  are 

independent and Bernoullian with distribution:  

  

P
i

(k+1)
= +1|

j

(k )
= n

j=1

N

= p +
p

N
n  (4.4) 

 Thus, the greater the number of the chemical bonds 
already formed among amino acidic residues, the greater the 
probability that additional bonds can be formed. This is the 
distinctive feature of a cooperative phenomenon. From (4.4) 
a two-side Markov chain with state space { N, ...0, ...N} 
can be constructed; then the one-side MC with state space 
{0, ...N} and transition probabilities given by (4.3) is 
obtained by means of a variable change. The diffusion 
approximation of the MC (4.3) is given by the process X(t)  
[0, 1] which is solution of the SDE:  

  
dX (t) = b( X )dt + [X (1 X )]+ dB

t
 (4.5) 

 The drift is b(X) =   2 X, where  = 0 = lim N(p(N)  

p(N))  0; 2  = 1 = lim N(2 p(N)  1) < 0, with the 

condition   2   0. (These conditions assure that the 

process never exit from [0, 1], by theorem 2.3). By Theorem 
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3.1, if  < 
 

1

2
 the boundary point x = 0 is accessible and 

attractive, unaccessible and repelling, otherwise; if 4   2  

< 1, the boundary point x = 1 is accessible and attractive, 

unaccessible and repelling, otherwise. If  < 1/2 and 4   

2 < 1 the invariant measure of the process exists and it has a 

beta-type density:  

  

u(x) =
(4 )

(2 ) (4 2 )
x

2 1(1 x)4 2 1  (4.6) 

(see also [5], for more details). 

4.3. Cooperative Growth with Overcrowding Effect  

 Let be , ,  > 0 and take (x)=  + x  x
2 

in (1.1), 
(1.2). One obtains the MC with state space {0, ..., N} and 
transition probabilities:  

  

p
nm

=
N

m
+

n

N
(

n

N
)2

m

1
n

N
+ (

n

N
)2

N m

  (4.7) 

 This MC is suitable to describe cooperative growth 
phenomena concerning populations of particles, where a 
positive cooperativity occurs when the size of the population 
is not too big. Otherwise, overcrowding inhibits the growth 
of the population. This is exactly the contrary of what 
happens for protein folding. The SDE associated to the 
diffusion approximation is:  

dX(t) = (a + bX  cX
2
)dt + 

  
[X (1 X )]+ dB

t
 (4.8)  

where a = lim N (N) ,b = lim N( (N)  1) ,c = lim N (N). If 
a > 0 and a + b  c < 0, then the process X(t) never exit 
from [0, 1], by theorem 2.3.  

4.4. Cooperative Interaction in Proteins with a 

Hierarchic Structure Among Chemical Bonds [7]  

 This example is somewhat more complicated than the 
previous ones, and indeed it is not included in the class of 
MCs considered. In fact, now a two-dimensional MC is 
considered having binomial-like transition probabilities. Let 
us suppose that two types of chemical bonds are available to 
link a pair of particles: the strong bonds and the weak ones. 
If N is the total number of permitted coupling, N = N1 + N2, 
where Ni is the total number of permitted bonds of strong 
and weak type, respectively. Moreover, we suppose that 
strong bonds make easier the formation of weak bonds, but 
not viceversa.  

 We look at the two-dimensional process (Xn, Yn), n = 1, 
2, ... whose components represent the number of chemical 
bonds of strong and weak type, respectively, at time n. Let us 
suppose that the processes Xn and Yn are conditionally 
independent, then (Xn, Yn) turns out to be a MC with state 
space {0,1,...,N1} {0,1,...,N2} and transition probabilities: 
(see [7])  

  

P
( i

1
,i

2
)( j

1
, j

2
)
=

Pr(( X
n+1

= j
1
,Y

n+1
= j

2
) | ( X

n
= i

1
,Y

n
= i

2
) =

 

 

eq. (4.9) contd….. 

  

=
N

1

j
i

p
1

p
1
+ 2 p

1

i
1

N
1

j
1

1 p
1
+ p

1
2 p

1

i
1

N
1

N
1

j
1

N
2

j
2

p
2
+ p

2
2 p

2

i
2

N
2

+ 2 p
12

i
1

N
1

j
2

1 p
2

p
2
+ 2 p

2

i
2

N
2

2 p
12

i
1

N
1

N
2

j
2

 (4.9) 

where the parameters have an analogous meaning as in 
Example 4.2; the further parameter p12 represents the cross-
coupling capacity; it measures the influence of strong bonds 
on the formation of weak ones. The limit, as Ni  , of the 
rescaled process is a two-dimensional diffusion process in 
[0, 1]

2 
, which is driven by the SDE:  

  

dX = (
1

2
1
X )dt + [X (1 X )]+ dB

t

1

dX = (
2

2
2
Y + X )dt + [Y (1 Y )]+ dB

t

2

 

where i, i are defined in a similar manner as in Example 
4.2, and  = limN  2N2 p12(N).  

 When  = 0, i < 1/2 and 4 i  2 i < 1, the density of 
the invariant measure can be explicitly found as the product 
of two beta functions:  

u , ,0(x, y) = const · x
2

1
1
(1  x)

4
1

2
1

1 
y

2
2

1
(1  y)

4
2

2
2

1
 

For   0, the PDE L u = 0 cannot be solved explicitly. In 
this case, many technical difficulties arise; however, under 
some conditions on the coefficients, it is possible to prove 
that the process (Xt, Yt) never exit from [0, 1]

2 
, and the 

(unique) invariant measure has a density, even if its explicit 
form cannot be found (see [3]).  

5. ESTIMATION OF PARAMETERS  

 The parameters ai in (1.2) can be easily estimated, in the 
approximation N large, by using the diffusion approximation 
of the MC Xk and the maximum likelihood method. Here, we 
outline the method in the case of Example 4.2 (for the case 
of Example 4.4, see [7]). By discretization of eq. (4.5), one 
obtains: 

  

x
n+1

= x
n
+ ( 2 x

n
)h+ x

n
(1 x

n
) B

n

x
0
= X (0)

 (5.1) 

where, for n = 0, 1, ..., xn denotes the process Xt evaluated 
at the time tn = nh, and Bn = B(tn+1)  B(tn) is the increment 
of a standard Brownian motion. The equation (5.1) means 
that the random variable Xn+1 conditionally to (Xn = xn) is 
distributed according to a Gaussian with expectation xn +(  

 2 xn)h and variance xn(1  xn)h.  

 Then, given the sample of data (xn)n=0,1,...M , we obtain the 
likelihood function:  
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L( , ) =
1

2 h x
n
(1 x

n
)n=1

M

exp
[x

n+1
x

n
( 2 x

n
)h]2

2hx
n
(1 x

n
)

 

 The maximum likelihood estimates 
 
ˆ , ˆ  of the parame-

ters ,  are obtained setting to zero the partial derivatives of 
the log-likelihood function with respect to its arguments. In 

this way, we obtain: 

  

ˆ =
1

2h

CD EA

A
2

CB

ˆ
=

1

hA
(D +

B(CD EA)

A
2

CB
)

 

where  

  

A =
1

1 x
n

n

B =
x

n

1 x
n

n

C =
1

x
n
(1 x

n
)n

D =
x

n+1
x

n

1 x
n

n

E =
x

n+1
x

n

x
n
(1 x

n
)n

 

 Finally, from 
 
ˆ , ˆ,  the estimates 

  
p̂, ˆp  of the parame-

ters p and p are easily recovered, in the approximation N 

large, by using the relations  = lim N(p(N)  p(N)) and 

2  =  lim N(2 p(N)  1).  

 The goodness of the estimates has been checked by using 
simulated data obtained with given input parameters and, 
indeed, very satisfactory estimates have been found. More-
over, in the cases of examples 4.2 and 4.4, the method was 
successfully applied to data concerning real proteins (see [4, 
7]).  

6. CONCLUSION AND FINAL REMARKS  

 In this paper we have studied the continuous diffusion 
approximation of certain discrete Markov chains, with state 
space {0,1,...,N}, of interest in a variety of applications 
ranging from Physics, Biology and Engineering to Mathema-
tical Finance. As told in the Introduction, because of the 
computational complexity to get the transition probabilities 
of such a Markov chain for N large, it is impractical to study 
the MC directly, so it is convenient to approximate it by a 
diffusion process. Indeed, the simplest diffusion process is 
Brownian motion; the analogue of Brownian motion process 
in discrete times is the Random Walk model. Brownian 
motion can be obtained as the limit of Random Walks, when 
the displacement size and the time step get smaller and 

smaller. In analogous way, the limit as N  of the scaled 
MC here considered turns out to be a diffusion process.  

 A model for pure chance is given by an ideal coin tossed 

with equal probability for the heads and tails to come up. Let 

us consider a random variable  taking value +1 (heads) and 
1 (tails) with probability . If the coin is tossed n times 

then the sequence of random variables 1, 2,..., n describes 

this experiment. All k have exactly the same distribution as 

1, moreover they are all independent. Random walk is the 

process Zn defined by Z0 = 0 and Zn = 1 + 2 + ... + n. For 

instance, Zn can represent the fortune of a player in a game 

of chance after n plays, in which a coin is tossed and one 

wins 1$ if heads come up and loses 1$ when tails come up. 

Random walk is the central model for stock price in which 

the standard assumption is that returns on stocks follow a 

random walk.  

 Since E( k)=0, and Var( k)= E(
1

2
)=1, the mean value and 

the variance of the random walk are given by:  

E(Zn) = E( 1 + 2 + ... + n)= E( 1) + E( 2) + ... + E( n) = 0 

Var(Zn) = Var( 1 + 2 + ... + n) = 

= Var( 1)+ V ar( 2) + ... + Var( n) = nVar( 1) = n 

since the variance of a sum of independent random variables 
equals the sum of variances.  

 By scaling the Random walk and taking the limit as the 

time step and the displacement size go to zero, one obtains 

Brownian motion. While in the random walk model, at any 

time step the system can pass from the position x to x +1 or x 

 1 with probability , for the MCs considered in the 

present paper a transition from a state n {0, 1,...,N} to a 

state m {0, 1,...,N} is allowed with transition probability 

pnm given by (1.1). The rescaled MC Xk/N converges, as N 

 , to a continuous process, slightly more complicated 

than Brownian motion, that is a diffusion with mean 

displacement (drift) b(x) and infinitesimal variance x(1 x). 

Actually, the drift b(x) turns out to be a polynomial in the 

variable x.  

 By means of the diffusion approximation, we have 
analyzed the qualitative behavior of the MC. Moreover, we 
have investigated the stationary distribution, attainability of 
boundary and estimation of parameters which intervene in 
the description of the MC. We have also reported several 
examples of models for generalized growth phenomena in 
Biology and Biophysics, such as population genetics and 
cooperative evolution of protein macromolecules. However, 
the techniques and methods here used can be applied to any 
other field of investigation, when a description in terms of a 
continuous diffusion approximation of this kind, is appro-
priate.  
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