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Abstract: A simple heuristic algorithm, which determines the set of closed surfaces of the cubic tensor polynomial, is 

proposed. The algorithm is based on the requirement of positive Gaussian curvature (Stoker’s Theorem) for closed sur-

faces, excluding domains of tensor values, which do not provide closed surface solutions, and focus the search in the re-

maining domains. The identification of the closed surfaces is an important factor in both theory and applications, such as 

the failure behavior of anisotropic bodies. An example of applying successfully the algorithm to a material, which has a 

distinct anisotropic behavior, is presented.  
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INTRODUCTION 

 In designing structural applications using composite ma-
terials it is necessary to develop methodologies for estimat-
ing the load carrying capacity under complex states of stress. 
One such approach is to formulate a phenomenological fail-
ure criterion for anisotropic solids, which has received con-
siderable attention leading to a plethora of proposed criteria, 
the majority of which are rather limited in their capacity to 
explain a wide range of complex stresses [1]. 

 Anisotropic material failure models can be grouped in 
three categories of increasing operational complexity. The 
simplest approach is to design the maximum stress or strain. 
However, these models lead to substantial over-estimation of 
strength in the ‘corner’ regions of the failure surface enve-
lope. The next class of models approximates the failure sur-
face by quadratic polynomials of different forms. Many 
variations of quadratic models can be found in the literature, 
including those that define the surface using different func-
tions for each quadrant. Again, for certain load cases, quad-
ratic formulations can overestimate strength [1]. Both these 
classes of models have the disadvantage that the failure sur-
face is a synthesis of four surfaces at least (one for each 
quadrant). This leads to the emergence of singular points 
(that is, points of section of different surfaces) on the failure 
surface. For these potential surfaces the flow vector is not 
uniquely defined at the so-called ‘corners’ [2, 3] leading to 
indeterminate direction of straining. According to Zien-
kiewicz, Valliapan, and King [4], the existence of singular 
points imposes significant problems to the non-linear analy-
sis. The authors propose a method to avoid singular points in 
a yield surface by making a suitable choice of continuous 
surfaces, which can represent the true condition of the ani-
sotropic material with a good degree of accuracy. The third  
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category of failure models is termed ‘higher order models’, 
with the cubic polynomial [1-6] being the most common one. 
It should be mentioned that all these models represent ap-
proximations based on the general ‘tensor polynomial’ crite-
rion advocated in Reference [1]. The single feature common 
to all these failure models is that they represent a phenome-
nological, macro-mechanics approach to predicting anisot-
ropic materials failure.  

 One of the main difficulties encountered when attempting 
to model the failure surface with a single cubic polynomial 
representation is due to the mathematical nature of the cubic 
equation: the intrinsic complexity of the cubic function is of 
a magnitude, which necessitates the employment of special 
techniques to achieve closure of the surface. 

 The use of the least squares method to calculate the 
strength coefficients has been proposed in previous works. 
The successful application of the least squares method re-
quires a plethora of experimental data on the all quadrants, a 
requirement which is expensive and not always feasible.  

 For example, in the case of brittle materials such as ma-
sonry, the development of such an extensive experimental 
data base in the tension-tension quadrant is too difficult to be 
fulfilled. The absence of experimental data in a quadrant 
leads very often to the derivation of an open surface. To 
overcome the problem of ‘openness’ (non-closure) of the 
failure surface, a new approach is being proposed based on 
the heuristic method, which leads to closure of the cubic 
polynomial surface and estimates the best fit to the experi-
mental data. The proposed approach has been applied to the 
masonry anisotropic material. 

MATHEMATICAL FRAMEWORK 

 The most general failure criterion available for anisotro-

pic materials is the tensor polynomial, which was advocated 

as early as 1966 by Malmeister [7] and developed extensive-

ly by Tsai and Wu [1] and Jiang and Tennyson [6] in quadra-

tic and higher order forms. The failure surface in the stress 

space, can be described by the equation 
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ƒ( ) = Fi i + Fij i j + Fijk i j k +

1 no failure

= 1 failure

1 exceeded failure

    (1) 

for i, j, k= 1, 2,..., 6. Fi , Fij  and Fijk  are (strength) tensors of 

the second, fourth and sixth rank, respectively. 

 If one restricts the analysis to a plane stress state and 

considers that a cubic formulation is a reasonably accurate 

representation of the failure surface, making assumptions 

based on the symmetry and anisotropic nature of the material 

[6, 8], Equation 1 reduces to: 

ƒ 1, 2 , 6( ) = F1 1 + F2 2 + F11 1
2
+ F22 2

2
+ F66 6

2
+ 2F12 1 2 + 3F112 1

2
2

+ 3F122 1 2
2
+ 3F166 1 6

2
+ 3F266 2 6

2 1= 0

              (2) 

 This general form of the cubic tensor failure criterion can 

be shown that encompasses all other failure criteria, which 

are currently available [9-12]. 

 The problem that one is confronted with is the evaluation 

of the strength tensors. For the solution, basic principles and 

tools should be formulated. 

Basic Principle 

 The failure surface of the cubic function of Equation (2) 

must be a closed one (closure) due to the fact that, in nature, 

for each possible stress state the material is failed under fi-

nite values of stress vector; no material is indestructible. In 

mathematical terms, this basic principle can be expressed by 

the following Stoker’s uniqueness theorem for closed sur-

faces in three-space [13, 14]: 

Stoker’s Theorem 

 A surface is closed if the total Gaussian curvature K at 

any points of the surface is positive. 

 It is to be noted that the sign of K fixes in a qualitative 

way the shape of a surface near a given point. In geometric 

terms, if the K of a surface point is positive, the point is el-

liptic. 

 According to Mishchenko, Solovyev, Fomenko [15], the 

total Gaussian curvature K for the surface given by the Equa-

tion 2 is given by 

K =
1

ƒ 1( )
2
+ ƒ 2( )

2
+ ƒ 6( )

2 D          (3) 

 As the denominator is always positive, the total Gaussian 

curvature K of the proposed surface is positive if: 

D =

2
ƒ 1 1

2
ƒ 1 2

2
ƒ 1 6 ƒ 1

2
ƒ 1 2

2
ƒ 2 2

2
ƒ 2 6 ƒ 2

2
ƒ 1 6

2
ƒ 2 6

2
ƒ 6 6 ƒ 6

ƒ 1 ƒ 2 ƒ 6 0

0    (4) 

Lemma 1: Let  

ƒ 1, 2 , 6( ) = F1 1 + F2 2 + F11 1
2
+ F22 2

2
+ F66 6

2
+ 2F12 1 2 1 = 0   (5) 

be an equation of the second degree (the corresponding qua-

dratic form of Equation 2), which is not factorable. Its graph 

is always a closed surface if  

F11F22 F12 F11F22           (6) 

Proof 

 The surface will be closed if any curve for varying 6  is 

closed. Thus, according to Stocker’s Theorem and for the 

case of function f of Eq (5), Equation 4 becomes 

D =

2
ƒ 1 1

2
ƒ 1 2

2
ƒ 1 2

2
ƒ 2 2

0          (7) 

(because all other second derivatives are 0, except the 
2
ƒ 6 6  term which is the positive coefficient F66). 

 For the case of the function ƒ  of Eq. (5), the denomina-

tor D of Eq. (7) leads to the proof of Lemma 1.  

 In order to achieve closure of the surface, Tennyson & 

Elliot [16], have studied the quadratic model with F12 = 0  

and F12 =
1

2
F11F22 ; both these values belong to the 

proposed range of values (Inequality 6) within which the set 

of closed surfaces resides. 

EVALUATING THE TENSORS 

 The determination of the strength tensors is made in two 

steps. In the first step, the determination of Principal Streng-

th Tensor Components ( Fi  
and

 
Fii ) is taking place. In the 

second step, the determination of the Interaction Strength 

Tensor Components ( Fij  
and

 
Fijk ) occurs. 

First Step 

 It has been shown [5] that the Principal Strength Tensors 

( Fi  
and

 
Fii ) can be readily calculated from the experimental-

ly determined values of the uniaxial tensile and compressive 

strengths along the longitudinal ( X
 
and

 
X ) and the trans-

verse directions (Y
 
and

 
Y , respectively) and from positive 

and negative pure shear strengths ( S
 
and

 
S , respectively) 

in the principal directions. These uniaxial stresses define the 

six boundary points of tensor polynomial surface, namely the 

X, 0, 0( ) , X , 0, 0( ) , 0,Y , 0( ) , 0, Y , 0( ) , 0, 0,S( ) , and 

0, 0, S( ) , points. For these boundary point values the ap-

propriate relations of the Principal strength tensors are given 

by [5]: 

F1 =
1

X

1

X
, F11 =

1

XX
 

F2 =
1

Y

1

Y
, F22 =

1

YY
         (8) 

F66 =
1

S2
 

Second Step 

The problem that one is confronted with is the evaluation of  

the remaining interaction Strength Tensor Components ( Fij   
and

 
Fijk ). It has been proposed that the values of these  

parameters can be calculated using the least squares method  
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[5-6, 8]. The minimum value of ƒ  yielding a ‘best’ least 

squares fit is obtained from 

E

F12
= 0,

E

F112
= 0,

E

F122
= 0,

E

F166
= 0,

E

F266
= 0       (9) 

where: 

E = F1 1i + F2 2i + F11 1i
2
+(

i=1

F22 2i
2
+ F66 6i

2
+ 2F12 1i 2i +

+ 3F112 1i
2

2i + 3F166 1i 6i
2
+ +3F266 2i 6i

2 1)
2

 (10) 

with  denoting the number of the experimental sets of val-

ues 1i , 2i , 6i( )  (i=1, 2, …, ). 

 Solving the Equation 9, the (remaining) parameters F12 , 

F112 , F122 , F166  and
 
F266 can be determined, representing the 

‘best fit’ to experimental data. However, the solution does 

not correspond always to a closed surface. By not being able 

to achieve, many researchers are either employing semi-

empirical methods [16] or reducing the number of indepen-

dent parameters [17].  

 Our proposed approach reveals the set of closed surfaces 

(identifying the best fit solution to the experimental data) 

without constraining its approach to semi-empirical methods 

or reducing the number parameters. 

PROPOSED HEURISTIC ALGORITHM 

 To overcome the problem of ‘openness’ (non-closure) of 

the failure surface, a new approach is being proposed, based 

on heuristic methods, which satisfies the closure of the cubic 

polynomial surface and provides the best fit to the experi-

mental data. The proposed approach is implemented by ap-

plying the following algorithm: 

Step 1 

 Set the first value of the parameter F12  as 

F12 i = 1( ) = F11F22 , The choice of this value stems from 

Lemma 1; it constitutes the left limit of the inequality 

F11F22 F12 F11F22 . Beyond the limits of this interval, 

only open surfaces will occur.  

Step 2 

 Having setting up the value of F12 i( ) , the remaining pa-

rameters F112 i( ) , F122 i( ) , F166 i( )  and
 
F266 i( )  are calculated 

by solving the system of equations (9).  

Step 3 

 For the obtained values of the parameters F12 i( ) , 

F112 i( ) , F122 i( ) , F166 i( )  and
 
F266 i( ) : 

3.1 calculate the deviation E  (equation 10) of the corre-

sponding surface to the experimental data, and 

3.2 check if the corresponding surface complies to the 

requirement of positive total curvature (Equation 4), 

that is, the surface is closed. 

Step 4 

 Set F12 i +1( ) = F12 i( ) + F12 , where F12 = 2 F11F22 n  

with n=10 (a mesh size, which is sufficient for the case of 

engineering materials). Iterate through Steps 2, 3, and 4. If 

F12 i +1( ) F11F22  then stop. 

 From all closed surfaces, the one with the smallest devia-

tion corresponds to the best fit to the available experimental 

data. However, the practicing engineer may select a closed 

solution, which, based on his/her experience, may represent 

a more optimal solution to the problem at hand. 

EXAMPLE 

 In the following example the proposed algorithm is ap-

plied to define the failure surface in the case of a masonry 

material, the behavior of which has been well studied expe-

rimentally [18]. 

 The experimental values for the monoaxial failure streng-

th estimated from graphs [18] are X=0.40 MPa, X =4.3625 

MPa, Y=0.10 MPa, Y =7.555 MPa, S=S =0.40 MPa.  

 With these values on equations 8, the tensors Fi , Fii  be-

come: F1=0.227E+01 (MPa)
1
, F11=0.573E+00 (MPa)

-2
, 

F2=0.987E+01 (MPa)
-1

, F22=0.132E+01 (MPa)
-2

, 

F66=0.625E+01 (MPa)
-2

. 

 In order to determine constants F12 , F112 , F122 , F166  and 

F266 , the equation 10 is solved using the experimental data 

Table 1. Summary of Test Data Used to Evaluate the Interac-

tion Strength Tensor Parameters for Masonry Ma-

terial 

Test No 1  

(MPa) 

2  

(MPa) 

6  

(MPa) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

-0.727 

-0.727 

-2.272 

-2.181 

-4.545 

-7.909 

-8.818 

-9.454 

-9.590 

-11.273 

-9.272 

-4.181 

-9.909 

-8.308 

-4.555 

-5.821 

-6.620 

-5.821 

-6.620 

-8.273 

-5.227 

-4.181 

-9.909 

-7.542 

-8.417 

-9.250 

-8.750 

-8.667 

-7.791 

-8.750 

-4.792 

-2.333 

-5.583 

-1.000 

-8.000 

-5.042 

-8.475 

-1.310 

-5.821 

-6.620 

-5.821 

-6.620 

-8.475 

-1.310 

-8.000 

-5.042 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.084 

-1.622 

3.571 

2.120 

-3.571 

-2.120 

-0.084 

1.622 

0.000 

0.000 
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of Table 1. Their values are: F12=1.640209E-02 (MPa)
-2

, 

F112=9.453948E-03 (MPa)
-3

, F122=8.886827E-03 (MPa)
-3

, 

F166=1.365468E-01 (MPa)
-3

, F266=1.2929976E-01 (MPa)
-3

. 

 The surface corresponding to these values should be 

checked for closed form. The surface (see Fig. 1) is open 

because its total curvature is negative (condition 12 is not 

valid in this case), as is often the case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Open failure surface contours ( 6 =0.00 up to 5.00 by 

step=1.00). 

 

 The algorithm proceeds and identifies the range of values 

of tensor F12, which correspond to closed surfaces as: 

0.710 F12 0.150  

 In this range of values, the best-fit solution (which is 

least deviated from the experimental data) corresponds to 

F12=-0.150 (MPa)
-2

. For this value, the other tensors become 

F112=0.3195E-02 (MPa)
-3

, F122=0.1045E-02 (MPa)
-3

, 

F166=0.9466E-01 (MPa)
-3

, F266=0.1563E+00 (MPa)
-3

. 

 Thus, the failure surface (Fig. 2) for the masonry material 

is described by the equation: 

2.27 1 + 9.87 2 + 0.573 1
2
+1.32 2

2
+ 6.25 6

2 0.30 1 2 +

+ 0.009585 1
2

2 + 0.003135 1 2
2
+ 0.28398 1 6

2
+ 0.4689 2 6

2
= 1

  

            (11) 

CONCLUSIONS 

 In the present paper, an algorithm to determine the closed 
surfaces of the cubic tensor polynomial is proposed. From all 
closed surfaces, the one with the smallest deviation corres-
ponds to the best fit to the available experimental data. Ho-
wever, the practicing engineer may select a closed solution, 
which, based on his/her experience may represent a more 
optimal solution to the problem at hand. Our algorithm may 
offer significant support in areas such as the research on 
composite laminates, and the failure of trabecular bone in 

many biomechanical applications (facilitating the investiga-
tion of the effects of aging, disease, and drug treatment), in 
addition to the research on masonry materials. 
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Fig. (2). Closed failure surface contours for masonry material 

( 6 =0.00 up to 3.50 by step=0.50). 
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