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Abstract: In this paper, a perturbing nonlinear homogeneous Schrodinger equation is studied under limited time interval, 

complex initial conditions and zero Neumann conditions. The perturbation and Picard approximation methods together 

with the eigenfunction expansion and variational parameters methods are used to introduce an approximate solution for 

the perturbative nonlinear case for which a power series solution is proved to exist. Using Mathematica, the solution algo-

rithm is tested through computing the possible orders of approximations. The method of solution is illustrated through 

case studies and figures.  
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1. INTRODUCTION  

 The nonlinear Schrodinger equation (NLS) is the princi-
pal equation to be analyzed and solved in many fields, see 
[1-5] for examples. Nonlinear Schrodinger Equations (NLS) 
are one of the most important models of mathematical phy-
sics arising in a great array of contexts as for conductor elec-
tronics, optics in nonlinear media, photonics, plasmas, fun-
damentation of quantum mechanics, dynamics of accelera-
tors, mean-field theory of Bose-Einstein condensates or in 
biomolecule dynamics. It was also the second nonlinear par-
tial differential equation (PDE) whose initial value problem 
was discovered to be solvable via the inverse scattering 
transform (IST) method. In the last ten decades, there are a 
lot of NLS problems depending on additive or multiplicative 
noise in the random case [6, 7] or a lot of solution methodo-
logies in the deterministic case. Wang M. and et al. [8] ob-
tained the exact solutions to NLS using what they called the 
sub-equation method. They got four kinds of exact solutions 
for which no sign to the initial or boundary conditions type is 
made. Xu L. and Zhang J. [9] followed the same previous 
technique in solving a higher order NLS. Sweilam N. [10] 
solved a nonlinear cubic Schrodinger equation which gives 
rise to solitary solutions using variational iteration method. 
Zhu S. [11] used the extended hyperbolic auxiliary equation 
method in getting exact explicit solutions to a more compli-
cated NLS without any conditions. Sun J. and et al. [12] sol-
ved an NLS with an initial condition using Lie group me-
thod. By using coupled amplitude phase formulation, Parse-
zian K. and Kalithasan B. [13] constructed the quartic an-
harmonic oscillator equation from the coupled higher order 
NLS. Two-dimensional grey solitons to the NLS were nume-
rically analyzed by Sakaguchi H. and Higashiuchi T. [14]. 
The generalized derivative NLS was studied by Huang D.  
et al. [15] introducing a new auxiliary equation expan- 
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sion method. The NLS equation arises in many application 
areas [16-20] such as wave propagation in nonlinear media, 
surface wave in sufficiently deep waters and signal propaga-
tion in optical fibers. 

 In this paper, a straight forward solution algorithm is 

introduced using the transformation from a complex solution 

to a coupled equations in two real solutions, eliminating one 

of the solutions to get separate independent and higher order 

equations, and finally introducing a perturbative approximate 

solution to the system. 

2. THE GENERAL LINEAR CASE  

 Consider the non homogeneous linear Schrodinger equa-

tion: 

  (1) 

where  is a complex valued function which is subjec-

ted to: 

a complex valued  

function, --             (2) 

           (3) 

 Let  

  

are real valued functions. The following coupled equations 

are got as follows: 

          (4) 

          

(5) 
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 Where  

and all corresponding other I.C. and B.C. are zeros. 

 Eliminating one of the variables in equations (4) and (5), 

one can get the following independent equations: 

        (6) 

         (7) 

 Where  

         (8) 

         (9) 

 Using the eigenfunction expansion technique [23], the 

following solution expressions are obtained: 

        (10) 

         (11) 

 Where  and  can be got through the applica-

tions of initial conditions and then solving the resultant se-

cond order differential equations using the method of varia-

tional of parameter [24]. The final expressions can be got as 

the following : 

       (12) 

       (13) 

 Where  

          (14) 

        (15) 

        (16) 

        (17) 

        (18) 

 In which 

        (19) 

        (20) 

 The following conditions should also be satisfied: 

        (21) 

        (22) 

 Finally the following solution is obtained: 

         (23) 

 Or 

        (24) 

3. THE NON- LINEAR CASE  

 Consider the non-homogeneous non-linear Schrodinger 

equation: 

       (25) 

 

 Where  is a complex valued function which is 

subjected to the initial and boundary conditions mentioned 

before in equations (2), (3) respectively. 

Lemma [21,22] 

 The solution of equation (25) with the constraints (2), (3) 

is a power series in  if exists. 

Proof 

 The proof can be found in [21] or [22]. 

 According to the previous lemma, one can assume the 

solution of equation (25) as the following: 

         (26) 

 Let  are real 

valued functions. The following coupled equations are got: 

        (27) 

       (28) 
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 Where  and all cor-

responding other I.C. and B.C. are zeros. 

 As a perturbation solution, one can assume that:  

       (29) 

        (30) 

 Where  and all 

corresponding other I.C. and B.C. are zeros. 

 Substituting from equations (29) and (30) into equations 

(27) and (28) and then equating the equal powers of , one 

can get the following set of coupled equations: 

        (31) 

        (32) 

        (33) 

        (34) 

      (35) 

       (36) 

       
(37) 

 

     
 (38) 

 

and so on. The prototype equations to be solved are: 

       (39) 

       (40) 

 Where  and 

all other all corresponding conditions are zeros.  

are functions to be computed from previous steps. 

3.1. The Order of Approximations 

 The following final expressions can be used to obtain 

different order of approximations. 

1. The absolute value of the zero order approximation is: 

        (41) 

2. The absolute value of the first order approximation is: 

        (42) 

or 

 
(43) 

3. The absolute value of the second order approximation is: 

       
(44) 

or 

  

 (45) 

4. The absolute value of the third order approximation is: 

 
       (46) 

or 

 

  (47) 

4. CASE STUDIES  

 To examine the proposed solution algorithm, some case 

studies are illustrated. 

4.1. Case Study 1 

 Taking the case  and fol-

lowing the algorithm, the following selective results for the 

first, second and third order approximations Figs. (1-9) are 

obtained: 
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Fig. (1). The first order approximation of  at ,  

and with considering only ten terms of the 

series. 

 

 

Fig. (2). The second order approximation of  at , 

 
and with considering only ten terms 

on the series (M=10). 

 

 

Fig. (3). The second order approximation of  at , 

, for different values of z. 

 

 

Fig. (4). The second order approximation of  at , 

 for different values of t. 

 

 

Fig. (5). The third order approximation of  at , 
 

with considering only ten terms of the series 

(M=10). 

 

 

Fig. (6). The third order approximation of  at , 
 

and for different values of z. 
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Fig. (7). The third order approximation of  at , 
 

and for different values of t. 

 

 We can notice the increase of the absolute value of u with 

the increase of z which can be considered a case of instabili-

ty.  

 Note: with constant initial conditions we calculated till 

third order which takes around 2 days continuously and we 

cannot calculate more since the machine gives 

“MATHEMATICA KERNEL OUT OF MEMORY”.  

 

Fig. (8). Comparison between first, second and third order ap-
proximation at , 

 
and 

 
. 

 

 

Fig. (9). Comparison between first, second and third order ap-
proximation at , 

 
and 

 
. 

4.2. Case Study 2 

 Taking the case  and fol-

lowing the algorithm, the following selective results for the 

first and second order of approximations Figs. (10-16) are 

obtained: 

 

Fig. (10). The first order approximation of  at , 

with considering only ten terms of the 

series (M=10). 

 

 

Fig. (11). The first order approximation of  at , 

for different values of t. 

 

 

Fig. (12). The second order approximation of  at , 

with considering only ten terms of the 

series (M=10). 
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Fig. (13). The second order approximation of  at , 

for different values of z. 

 

 

Fig. (14). The second order approximation of  at , 

for different values of t. 

 

 

Fig. (15). Comparison between first and second order approxima-
tion at  and . 

 

 

Fig. (16). Comparison between first and second order approxima-
tion at  and . 

 We can notice the tremendous effect of the presence of 

gamma factor on the stability of the solution, even for high 

values of epsilon. 

 Note: with constant initial conditions and  exist we cal-

culated till second order which takes around 3 days conti-

nuously and we cannot calculate more since the machine 

gives “MATHEMATICA KERNEL OUT OF MEMORY” . 

4.3. Case Study3 

 Taking the case  
 

 and following the algorithm, the fol-

lowing selective results for the first and second order of ap-

proximations Figs. (17-18) are obtained: 

 

Fig. (17). The first order approximation of  at ,  

and for different values of z. 

 

 

Fig. (18). The first order approximation of  at ,  

 and for different values of t. 

 

 Note: the calculations for first order takes 3 days and we 

can not calculate more orders since the machine gives 

“MATHEMATICA KERNEL OUT OF MEMORY” . 

4.4. Case Study 4 

 Taking the case  
 

 and following the algorithm, the fol-
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lowing selective results for the first, second order of ap-

proximations Figs. (19-23) are obtained: 

 

Fig. (19). The third order approximation of  at  

with considering only ten terms of the series 

(M=10). 

 

 

Fig. (20). The third order approximation of  at z , 

 for different values of t. 

 

 

Fig. (21). The third order approximation of  at t , 

for different values of . 

 

Fig. (22). Comparison between first, second and third order ap-

proximation at , 
 

and 
 

. 

 

 

Fig. (23). Comparison between first, second and third order ap-

proximation at , 
 

and 
 

. 

 

 We still notice the instability of the solution with epsilon 

or in the case of zero gamma. 

4.5. Case Study 5 

 Taking the case  
 

 and following the algorithm, 

the following selective result for the first and second order 

approximations Figs. (24-27) are got: 

 

Fig. (24). The second order approximation of  at , 

 and for different values of z. 
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Fig. (25). The second order approximation of  at , 

 and for different values of t. 

 

 

Fig. (26). Comparison between first and second order approxima-
tion at ,  and . 

 

 

Fig. (27). Comparison between first and second order approxima-
tion at ,  and . 

 

 We still notice the effect of gamma on the stability of the 

solution. 

5. PICARD APPROXIMATION  

 To validate our previous results, in the absence of the 

exact solution, let us follow another approximation techni-

que. The Picard approximation is considered in this section. 

 Solving equation (25) with the same conditions (2) and 

(3) and following the Picard algorithm which puts the nonli-

near terms in the right hand side of the equation evaluated at 

the previous step, which means that we solve the linear case 

iteratively [25]. 

 Let  are real 

valued functions. The following coupled equations are got: 

 
       (48)

 

 
      (49) 

 Where  and all cor-

responding other I.C. and B.C. are zeros. Applying the Pi-

card algorithm on equations (48) and (49), we obtain the 

following iterative coupled equations 

 
       (50) 

 

      (51) 

 Where  and 

all other all corresponding conditions are zeros.  

are functions to be computed from previous steps. Compu-

ting some iterations, the following order of approximations 

are obtained. 

         (52) 

where 
 j

 and 
 j

 are evaluated using the linear case algo-

rithm. 

6. CASE STUDIES, PICARD 

 To examine the proposed solution algorithm, some case 

studies are illustrated. 

 

Fig. (28). The second order approximation of  at , 

 and with considering only ten terms of 

the series (M=1). 
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6.1. Case Study 1 

 Taking the case  
 

 and following the algorithm, 

the following selective result for the first, second and third 

order approximations Figs. (28-30) are got: 

 

Fig. (29). The second order approximation of  at  , 

 and for different values of z. 

 

 

Fig. (30). The second order approximation of  at , 

 and for different values of t. 

 

 We can notice instability with the zero gamma. 

6.2. Case Study 2 

 Taking the case  
 

 and following the algorithm, 

the following selective result for the first, second and third 

order approximations Figs. (31-35) are got: 

 

Fig. (31). The second order approximation of  at  

and with considering only ten terms on the 

series (M=1). 

 

Fig. (32). The second order approximation of  at  and 

for different values of z. 

 

 

Fig. (33). The second order approximation of  at , 

for different values of t.  

 

 

Fig. (34). Comparison between first and second order approxima-

tion at  and . 

 

 

Fig. (35). Comparison between first and second order approxima-
tion at  and . 
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7. COMPARISON BETWEEN PERTURBATION & 

PICARD APPROXIMATION  

 Let us compare between the two methods. 

7.1. Case 1  

 Taking the case . 

 

Fig. (36). Comparison between Picard approximation and Perturba-
tion method for first order at  and 

. 

 

 

Fig. (37). Comparison between Picard approximation and Perturba-
tion method for first order at  and 

. 

 

 

Fig. (38). Comparison between Picard approximation and Perturba-

tion method for first order at  and 

. 

 

Fig. (39). Comparison between Picard approximation and Perturba-
tion method for second order  at  and 

 
. 

 

 

Fig. (40). Comparison between Picard approximation and Perturba-
tion method for second order  at  and 

 
. 

 

 

Fig. (41). Comparison between Picard approximation and Perturba-

tion method for second order  at  and 
 

. 

 

7.2. Case 2  

 Taking the case , the fol-
lowing selective results, (Fig. (36-41)) are obtained: 
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Fig. (42). Comparison between Picard approximation and Perturba-
tion method for first order at  and 

. 

 

 

Fig. (43). Comparison between Picard approximation and Perturba-
tion method for first order at  and 

. 

 

 

Fig. (44). Comparison between Picard approximation and Perturba-
tion method for second order  at  and 

 
. 

 

Fig. (45). Comparison between Picard approximation and Perturba-
tion method for second order  at  and 

 
. 

 

 We can notice that the two approximations are very near 

in the presence of gamma. In fact we noticed this fact for all 

case studies.  

 Taking the case , 

the following selective results, Figs. (42-45) are obtained: 

 

Fig. (46). Comparison between Picard approximation and Perturba-
tion method for first order at  and 

. 

 

 Taking the case , 

we obtained, Fig. (46): 

 

Fig. (47). Comparison between Picard approximation and Perturba-
tion method for first order at  and 
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 Taking the case , the 

following selective results, Figs. (47, 48) are obtained: 

 

Fig. (48). Comparison between Picard approximation and Perturba-
tion method for first order at  and 

.  

CONCLUSIONS  

 The stability of the solution of the cubic nonlinear homo-
geneous Schrodinger equation is highly affected in the ab-
sence of gamma. The perturbation as well as the Picard me-
thods introduce approximate solutions for such problems 
where second or third order of approximations can be obtai-
ned from which some parametric studies can be achieved to 
illustrate the solution behavior under the change of the pro-
blem physical parameters. The use of Mathematica, or any 
other symbolic code, makes the use of the solution algorithm 
possible and can develop a solution procedure which can 
help in getting some knowledge about the solution. 
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