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Two-Sided Bounds on the Displacement y(t) and the Velocity y(t) of the
Vibration Problem My+ By+ Ky =0,y(t,)=Y,,Y({,) =Y, with Application

of the Differential Calculus of Norms
L. Kohaupt*

Beuth University of Technology Berlin, Department of Mathematics, Luxemburger Str. 10, D-13353 Berlin, Germany

Abstract: If the vibration problem M3+ By+ Ky =0,y(t,) = y,.9(t,) = ¥,, IS cast into state-space form x = Ax,x(t,)=x, ,
so far only two-sided bounds on x(¢) could be derived, but not on the quantities y(zr) and y(¢). By means of new
methods, this gap is now filled by deriving two-sided bounds on y(z) and y(¢) ; they have the same shape as those for
x(t) . The best constants in the upper bounds are computed by the differential calculus of norms developed by the author
in earlier work. As opposed to this, the lower bounds cannot be determined in the same way since || y(¢)|, and || y(¢)|l,

have kinks at their local minima (like 171"> at =0 ). The best lower bounds are therefore determined through their local
minima. The obtained results cannot be obtained by the methods used so far.

Keywords: Initial value problem; vibration problem; state-space description; two-sided bounds; displacement; velocity;

differential calculus of norms.

1. INTRODUCTION

The problem  Mj+By+Ky=0,y(t,) =
Yo-¥(t,)=,, can be solved by writing it in the state-space
form x = Ax,x(t,) = x, . For this initial value problem, in [1,
2], so far we have derived two-sided bounds on x(¢) of
various forms to describe the asymptotic behavior of x(z),

from which it would be easy to obtain also upper bounds on
the displacement vector y(z) and the velocity vector y(z).

But, lower bounds on these quantities would not be obtainable.

vibration

In this paper, as the main new point, we fill this gap and
derive two-sided bounds on y(¢) and y(z) of the same type

as in [1, 2] for x(z). The best constants in the upper bounds

are computed by the differential calculus of norms developed
by the author in earlier work, the lower bounds by their local
minima.

The paper is structured as follows.

In Section 2, the initial value problem x = Ax,x(z,) = x,,,
is formulated for a general square matrix A. In Section 3,
the two-sided bounds on x(¢) in [2] are derived in a new
way that allows one to carry over the results from x(¢) to
y(¢) and y(¢), in a simple manner. In Section 4, the state-
space description X = Ax,x(¢,) =x,, of My+By+Ky=0,y
() =y,y(,)=Y,, is given where M, B, K € IR™ are
the mass, damping, and stiffness matrices, as the case may be,
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and where y(r) € IR" is the displacement vector. In Sections
5, 6, and 7, two-sided bounds of the same types as for x(z)
are derived for y(r), y(r), and even for x,(¢t), (where
Sc{l,.--,m=2n} is an index set), respectively. We
mention that, in Sections 3 and 5 - 7, first the case of a
diagonalizable matrix A is studied and then the case of a
general square matrix. In Section 8, applications follow.
Here, the optimal constants in the upper bounds are
computed by the differential calculus of norms. In Section 9,
conclusions are drawn. In Section 10, we comment on the
References, and in Section 11, an outlook on future research
is given.

2. THE INITIAL VALUE PROBLEM x = AX,X(t, ) = X,

Let AeC™ and x,e€C". When we assume

A e IR™", then it is implicitly assumed that also x, € IR".
We consider the initial value problem

X =Ax,x(t)) = x,, (1)

first without any reference to a vibration problem. Later on,
in Section 8, matrix A will be the system matrix of a specific
vibration model.

3. TWO-SIDED BOUNDS ON x(t)
In this section, we derive in a new way two-sided bounds

on the solution x(r) of X =Ax,x(t,)=x,, obtained already

in [1, 2]. The reason for this is that the new method allows us
to carry over the results in a simple manner to the
displacement vector y(¢) and the velocity vector y(¢) of the

vibration problem My + By+ Ky =0,y(t,) = y,,5(t,) =,
which is our actual goal. One even obtains, in this way, two-
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sided bounds on x,(¢), where Sc {l,---,m=2n} is an

index set. First, the case of a diagonalizable matrix A is
studied and then the case of a general square matrix.

3.1. Diagonalizable Matrix A
a. Hypothese on A
First, we formulate some hypotheses on matrix A.

(H1) AeIR ™",

(H2) T7'AT =J =diag(A),...,,» where

A, =2, (A),k=1,---,m are the eigenvalues of A,
(H3) A, =4.(A)#0,i=1,--,m,
(H4) A, # A i# jij=1,.m,

(HS) m=2n and the eigenvectors p,,---,p,;p,»=**> D,
form a basis of C™.

Remark: Let (H1) be fulfilled and let Ap =Ap . Then,

we have Ap=Ap, where the bar denotes the complex

conjugate. So, together with (4, p), also (A, p) is a solution
of the eigenvalue problem Ap =Ap.But, if A and p would
be real, then p and p would not be linearly independent.
This situation cannot happen when hypothesis (HS) is
supposed.

Remark: In the sequel, when the special hypothesis (HS)
is chosen, we do this in order to be specific in the
construction of a solution basis. Other cases such as the
model from [3], Fig. (1) with A< IR*** can be handled in a
similar manner, however. Therefore, if (HS) is supposed, this
is done without loss of generality. Another reason to assume
(HS) is that it is adapted to the examples in Section 8.

b. Representation of the Basis x(t),x"(t),k =1,---,n

Under the hypotheses (H1),(H2), and (HS), from [4],
we obtain the following real basis functions for the ODE
X=Ax:

o) A" -1 0 ") _ i 3D o)
x(@) = &% [cos;tk t—t)p” —sin 4’ (t —t,)p; ],
)
. (" . . ‘
i) Ay T (1—15) . i r i i
X)) = T [sml,i)(t—to)pi’+cos/'L,(()(t—tU)pf{)},

k=1,---,n,where

A AP +iAY = Red, +ilmA,,
(r) (i)

Py = pi tip =Rep, +ilmp,,
k=1,---,m=2n are the decompositions of 1, and p,

into their real and imaginary parts. As in [4], the indices are
chosen such that A, = A, p,., = p.k=1,--,n.

c. New Derivation of the Two-Sided Bounds on x(t) by
evo(t-to)

First, we prove the following lemma.
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Lemma 1:

Let the conditions (H1),(H2) and (HS) be fulfilled and
p =Re{p,}.p\’ =Im{p }.k=1,--,n. Then, the vectors
p p k=1,---,n are linearly independent.

Proof: Let

S n 41 =0
k=1

Then,

n ) +_ ) __
Yy B Py PPy <o,
pam 2 2i

This entails
LA v vl
Lk Dy (T Ty, 120,
EK S Pt (= Top]
Now, p,.---,p,:p,.--»p, are linearly independent and
therefore,
(r) @) (r) @)

yk J/k yk yk
Yo (Viy_o XYoo, k=1,n
Ry =% "

This delivers
y(kr)=05 J//(ci)=07 k=1,"',l’l
Let, u,k=1,---,m=2n be the eigenvectors of A’

corresponding to the eigenvalues Aik=1,---,m=2n.
Under (H1),(H2), and (HS), the solution x(¢) of (1) has
the form

m=2n n _
A, (t—t5) Ay (t—t) — Ak(t-ty)
— k 0/ — k 0 0
x(t) = chkpke _Z[Clkpke T ¢y Pie ]
k=1 k=1

with uniquely determined coefficients ¢,,,k=1,---,m=2n.
Using the relations

Cot = Cppu =Ciks k=1,2,m, 3)

(see [4], Section 3.1 for the last relation),then according to
[2], the spectral abscissa of A with respect to the initial

vector x, € IR" is given by

>
|

max {4 (A)lx, Lu}

o k=1, m=2n

max {4 (A, #0}

k=1,--m=2n

(4)

k}}}ax {ﬂ,,((r)(A)k‘lk #0}

max A7 (A)lxy Lu}

Index Sets

In the sequel, we need the following index sets:
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Sy, =1k, € IN |1SkOSnandl£;)(A)=v0} (5)
and
Jo = ALmNgy
= {k; €IN11<k; <nand /li’j(A) <V}
0 (6)
Starting Point: Appropriate Representation of x(t)
We have
x(0)= D [ex (@) + ¢ x (1]
k=1
with
c” =2Rec,, c"=-2Imc,, k=1,,n
(cf. [4]). Thus, due to (2),
< 20 (=1
HOEDY AR A Q)
k=1
with
@ = PlcosAV(t—t,)p” —sin AV (t —1,)p\"]
®)
+ Psin At —t)p +cos APt —1,)p ],
k=1,---,n.
Estimate from above
From (7), (8), one has immediately
| x(0)I€ X, 0" 1 21, (9)

where ||| is any vector norm.
Estimate from below

From (7), one obtains

o A (1
Ixll = 1™ ™ fol
k=1
A 1-1) A G-1)
D Y A1 I Y AG] BT
kelv keJ _
0 Yo
v (1= M (11
= 1| Y AN T= D T o), 121,
keJV keJ _
0 Vo
Now,
Y fi(0#0, 121, (11)
kelv

0

since p\"”,p\’,k=1,---,n are linearly independent according
to the above Lemma 1. Further, the functions
L@t =ty k=1,---.n are  periodic  with period
21/ AP k=1,--,n if A’ #0,k=1,---,n. This entails
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I Y fOIRinfll X, fOl=X, >0, 121, (12)

12t
keJ 0 keJ
Yo Yo

which remains valid also if ,” =0 for some orall ke J, .
With this,

27 (11, Ay -1 Vo (t=t1y)
I Y e r = 1Y, e T @) et0
ke!v_ ke]v_ (13)

0 0

< XVO evo(z—to)

> 121,21,

for sufficiently large ¢ >7, since A -v,<0,keJ _.
Yo

From (10), (12), (13), we infer

XV() Vo (t=tg) Vo (t~1g)
(o) [ e = X, 02 2, (14)
with
XV
X, =—+>0, (15)

for sufficiently large ¢, .

) (t-to )

Two-sided bound on x(t) by e
Summarizing, we obtain
Theorem 2: (Two-sided bound on x(r) by ™)

Let the hypotheses (H1),(H2), and (HS) be fulfilled.

Then, there exist constants X, >0 and X, >0 such that

X, e G x(t) € X, 0T, 12121, (16)

for sufficiently large ¢,, where the upper bound holds for
t,=t,. If x(t)#0,t 21, then ¢, =¢,.
Proof: It remains to prove the last assertion. For this, let

x(t)#0,t>1,. Then,

lx@)l

vo(t—to)
VO(I—IO))e lx@) 1], t, SlStl.

( min
1Sty e

d. Two-sided bound on x(¢) by || w(®)||
Let

Au, = Zku,f, k=1,--,m=2n

and

Re A (1—to) l/({r)(t—ro)
b

W, (1) = (x,,u, e = (x,, U, e >4, 17)

k=1,---,n aswell as
(@) =y, (1), p, 0] (18)
Herewith, we get

Theorem 3: (Two-sided bound on x(z) by || w(#)]|)
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Let the hypotheses (H1),(H2), and (HS) be fulfilled.
Then, there exist constants & >0 and & >0 such that
S Iy Il xO IS Ty, t2t,. (19)

Proof: This follows from [2], Theorem 11 and the
equivalence of norms in finite-dimensional spaces.

e. Determination of the Constants ¢, k=1,---,;m=2n

without Hypothesis (H4), ie., without
2"i ¢)'J ,i # jiil J = 11"'|m
We start with the representation
m=2n
x(t) = ZCkpkel"(t_to). (20)

k=1

Using the initial condition x(z,) = x, , we conclude

m=2n

5= (21)
Let

P=[p.p,] (22)
and

c=[c, e, 1. (23)
Then,

Pc=x,. (24)

Since matrix P is regular, the solution ¢ of matrix
equation (24) is uniquely determined. For the solution of
(24), we need not (H4). Any solution method can be

applied, for example, Gaussian elimination. However, under
the additional condition (H4), according to paper [5], there

is a biorthogonal system of eigenvectors {p,.---.p, }.{u;, --.u.}
so that ¢,,k=1,---,m=2n can be calculated by

¢, =(xp,u;),k=1,---,m, which is numerically very
effective. Without hypothesis (H4), one can use the
biorthogonalization method of the paper [6] to preserve the
formulae ¢, = (x,,u;).k=1,---,m .
3.2. General Square Matrix A
a. Hypotheses on A

Again, first, we formulate some hypotheses on matrix A.

(H1) AeIR™",

(H2') T7'AT =J =diag(J,(A),.,..., where

J.(A,)e """ are the canonical Jordan forms,
(H3) A =A(A)#0,i=1,-r,
(H4) A #ALizjij=1,r1,
(HS) m=2n, r=2p,and the principal vectors
@ M., () ). 5D =ONS ) )

pl "”’pml’ ’pl "”’pmp’pl ’”"pml’ ’pl ’.”’pmp

form a basis of C™".
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We mention that for the special hypothesis (HS”) similar
remarks hold as for (HS) in the case of diagonalizable
matrices A.

Let (H1), (H2), and (HS)
Apl(cl) = /llpl(!) +p/(<[—)1’k =L m,l=1,r,

be fulfilled and
where the

indices are chosen such that zp+,=i,,z=1,--.,p and

prh =E(kl),k =1,---,m,l=1,---,p. The vectors p.’ are the

principal vectors of stage k corresponding to the eigenvalue
A, of A.

b. Representation of the Basis

k:l’...’m|,| :1,...’p

X" (0, %" O,

Under the hypotheses (H1), (H2), and (HS), from

[4] we obtain the following real basis functions for the ODE
X=Ax:

) A1) 0] ) (t_fgy{il ) ()
x()=e cos 4" (t=1,)| py h—1)! ot p (T —1)+ py

Li) (t —1 )kil

—Sinl,m(t_tn){p: (k—1)! +"'+p;(lj1)(t_tn)+p;(<m :|},

[T (=1 : :
W= “’){Smlf”(t—m[l’:’”‘((k e 1)+l

+eos AV —1) u,/)(f—’n)k_]+ U (L)
| o)| P k—1)! e (E— 1)+ py >

(25)
k=1,---,m,l=1,---,p, where

)y _ () - (i)
P =P tip,

is the decomposition of p.” into its real and imaginary part.
c. New Derivation of the Two-Sided Bounds on x(t)

First, we state the following lemma.

Lemma 4: Let the hypotheses (H1), (H2), and (HS')
be fulfilled and pl" =Rep”,p" = Imp",
cooml=1,--,p. Then, the () )

vectors  p,"” p.”,
,o-,my,l=1,---,p are linearly independent.

Proof: The proof is similar to that of Lemma 1 and
therefore omitted.

Now, let u!”, k=1,---,m, be the principal vectors of
stage k of A" corresponding to the eigenvalue A;l=1,
~-,r=2p. Under (H1), (H2), and (HS'), the solution
x(¢) of (1) has the form

r=2p m

i p M
—)
x(0) =2, 2 cx (@)=Y D Ielx @)+ e xi ().

I=1 k=1 1=1 k=1

with uniquely determined coefficients c(,k=1,---,m,,l =
1,---,r =2p . Using the relations
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c](i) = (xo,u,((”*) k=1,--,m,l=1,---,p
O]
) = P =cie,l=1,,p (26)

(see [4], Section 3.2 for the last relation), then the spectral
abscissa of A with respect to the initial vector x, € IR" is

voEv AL = ma (A7 LM =l )
e re2p
= max {A"(A)c 20 for at least one ke {1,--,m,}}
I=1;r=2p
= may {/l "(A)lct) #0 for at least one k € {1,-+-,m,}}
= max{/l, Ay LM =[u e ul 1}
I=lip A(AT) 1
(26)
Index Sets
For the sequel, we need the following index sets:
JVO ={l, € INN<[,<pand l}o’)(A) =V,} 27)
and
Joo= AL p\Ty
= {ly e INI<I; <pand 17 (A) <v,}.
' (28)
Starting Point: Appropriate Representation of x(t)
We have
p. M
x(t)= Y YL x" (@) + ¢ Ox (1)]
I=1 k=1
with
" =2Recl), " ==2Imc), k=1, ,m,l=1,-,p
(cf. [4]). Thus, due (25),
2 ll(")(;—to) < o)
x(t)=Ye NARO 29)
=1 k=1

with

H (1)) ’ -
P >((k 01)‘ ot P (= 1)+ P

D) = c”’){cosl“’(l to)

—sin&” (1~ t){p””(t(kt‘)l)' +eot piy (1= z)+P””]}

n (11 {sm/l“ (-t )|:p(z,>(l t, )

+ot p" (1) + “"}
k=1)! Dy ( )tp

(O] (m(f t) (L,i) (L,i)
+cos A, (t— tn[ e 1)' +p =1+ p; ]}

(1)
k=1,ml=1,p.
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Estimate from above

From (30), (31), for every & >0, one has immediately
(Vo)1)
| x(@)|I€ X, (e)e 00 1> 1. (32)

Estimate from below

From (30), one obtains

my

le(t)] = IIZ s RO
AT (t—to) S (I) AT (t—to) - @
> ) e Zf DI Zf @
L= €T3,
= 1Y S @ e - T AH”“’Zf‘“ . t2to.
IGJ k=1 1617 (33)
Now,
i
S 300, 121, (34)
IEJVOk=I

since  p!,ptk=1,-,m,l=1,--,p are linearly
independent according to the above Lemma 4. Further, the
functions £ (t),t >t,,k=1,---, ,p are periodic
with period 27 /A" k=1,--, ,p if AV =0,
k=1,---,p. This entails

ml =1,

ml=1,

> Zf‘”(r>||> infll 2 Zf”)(t)ll=:XV0 >0, 121, (35)
Ie!0 =1 2ly 15/0 =1
which remains valid also if 4;” =0 for some or all /€ J,

With this,

my my

I Z AT (t—to) Zfil = | Z (\k )~ vo)(t— zc.;z:fﬂ

1€Jy, 1€dy,

| ~Vo(t—to)

Xy
< ST b2t 2t
2 (36)

for sufficiently large ¢, >, since 4" —v, <0,/ e J _
Yo

) (t-to )

Two-sided bound on x(t) by e
Summarizing, from (32), (33), (35), (36), we obtain
Theorem 5: (Two-sided bound on x(r) by ™)

Let the hypotheses (H1),(H2'), and (HS") be fulfilled.
Then, there exists a constant X, >0 and for every £>0 a

constant X, (&) >0 such that
X, 0" G x(0) € X, ()T 12120, (37)

for sufficiently large ¢,, where the upper bound holds for

t,=t,. If x(t)#0,t2>1,, then ¢, =z, . Further, if the index
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of every eigenvalue A=A(A) with ReA=v, is equal to
unity, then £ =0 can be chosen.

Proof: (37) has been proven; the rest is left to the reader.
d. Two-sided Bound on x(t) by || w(t) ||

Let

m*  ~ _n* i *

Afuy = Nuy” 4wl , k=1 oml=1---r=2p

and

(1>(t_to)kil+...+ (1>(t—t )+ <1)) (38)
Gopp PR

p,i;),k_l(t _to) = (xo’pl

k=1,--,m,l=1,---,r=2p aswell as

V0= p0 1), (39)
k=1,---,m,1l=1,---,r =2p; further, let

v OO =y 0.y OF (40)
l=1,---,r=2p and

v =y, y,0) . (41)

Herewith, we get
Theorem 6: (Two-sided bound on x(z) by || w(#)]|)

Let the hypotheses (H1),(H2), and (HS") be fulfilled.
Then, there exist constants & >0 and & >0 such that

Syl xS Tyl 121, (42)

Proof: This follows from [2], Theorem 13 and the
equivalence of norms in finite-dimensional spaces.

e. Determination of the Constants

' ¢ k=1,
---,m;,1 =1,---,r without Hypothesis (H4 ),

i.e, without A, #A4,,i# ji,j=1,-r
We start with the representation

r m
x(t) =Y cx0 (), 121,

=1 k=1

Substituting ¢ =¢, and using x(z,) = x,, we conclude

5= 33 p0, (43)

I=1 k=1
Let
P=(p o p)iip” by (44)
and
C(l) =[Cl(l),.._’cl(lil)]T, (45)

[=1,---,r aswell as
c=[c" T (46)
Then,
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Pc =x,. (47)
Since matrix P is regular, the solution ¢ of matrix
equation (47) is uniquely determined. For the solution of
(47), we need not (H4'). Any solution method can be
applied, for example, Gaussian elimination. However,

under the additional condition (H4'), according to paper

[5], there is a biorthogonal system of principal vectors

) M., oy (r) m” M., .0 (r)”
{pl ’...’p’nl’...,pl ,...’pmr},{vl ’...’VMI ’”.’Vl ’...,vmr }

with v = u® " k=1,-,m.l=1,-,r. Without hypo-

mlfk+1 ’
thesis (H4'), one can use the biorthogonalization method of
the paper [6] to construct a biorthogonal system.

4, THE STATE-SPACE DESCRIPTION OF
My + By + Ky =0,y(t,) = ¥,.Y(t,) = ¥,
Let M,B,K € IR™ and y,,y, € IR". Further, let M be

regular. The matrices M , B, and K are the mass, damping,
and stiffness matrices, as the case may be; y, is the initial

displacement and y, the initial velocity. We study the initial
value problem

My + By + Ky =0,y(t)) = y,,5(t) = Yo (48)

where y(¢) is the sought displacement and z(z) = y(z) the
associated velocity.

State-Space Description

Let

b, e
Z y 3y Yo

and

A=[ o | E } (50)
-M"K |-M7'B

x is called state vector and A system matrix. Herewith, (48)
is equivalent to

X=Ax,x(t)) = x,. (51)
In the sequel, we need only the special form of x(z).
5. TWO-SIDED BOUNDS ON y(t)

In this section, we derive bounds on y(z) corresponding
to those on x(¢) in Section 3.

5.1. Diagonalizable Matrix A
a. Hypotheses on A

We suppose (HI1),(H2), and (HS); (H3) is not
needed, and (H4) is needed only if the coefficients ¢, are
to be calculated by ¢, = (x,,u;).k=1,---,n.
b. Representation of the Basis y”(t),y’(t),k=1,---,n

Asin [4], let
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(r) (i)
. yi () ; yi (@) q
o= L o= T pe=|
Ve (@) Ve (0 I
k=1,---,m=2n.Then, from (2),
(r) 4t . X . .
Wy = % TV cos A (t—1,)g" —sin A (1 —1,)q" ],
(52)
. YN ) .
W@ = e 0)[31nl;,')(t—t0)q,(('>+Cosl,((')(t—t0)q,((')],
k=1,---,n.
c. Derivation of the Two-Sided Bounds on y(t) by e’
Starting point: Appropriate representation of y(t)
From (7), (8), we conclude
S 20 (1
NOEDY AN (53)
k=1
with
g.(t) = [cos A (t—1,)q —sin A" (t —t,)q\"]
(54)
+ P sin At —1,)q" +cos A (t - t,)q" ],
k=1,---,n.

Estimate from above

From (49)and (16), one has immediately
1Y@, <Nx@ll, < X,, 07 1 21,;

due to the equivalence of norms in finite-dimensional spaces,
this entails

[EOIS RN (55)
for a constant ¥, >0.

Estimate from below
Here, we have to investigate two cases.
Case 1:

Y g (1)#0, 121, (56)

kel
Yo

We mention that the corresponding inequality (11) for
x(¢) could be proven by use of Lemma 1. Now, from (56), it
follows

I 2 s Rinfll X, g,(0)l=Y, >0, 121, (57)

12t
keJ 0 keJ
Yo Yo

Similarly as for x(¢), here
YV Vo (t=t0)
Iy Iz e ™, 2,21, (58)

for sufficiently large ¢, .
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Case 2:

2 8.()=0, for at least onet > 1t,. (59)

ke,
Yo

In this case, (57) and therefore (58) remain valid only for

Y, =0.
0
Two-sided bound on y(t) by e"""’

Summarizing, we obtain

Theorem 7: (Two-sided bound on y(r) by ™)

Let the hypotheses (H1),(H2), and (HS) be fulfilled
and additionally condition (56). Then, there exist constants
Y, >0 and Y, >0 such that
Y, e <l y) <Y, 0T, 121,21, (60)

for sufficiently large ¢,, where the upper bound holds for
t,=t,. If y(t)#20,t=>1,, then ¢ =¢,. If, instead of (56),
condition (59) is fulfilled, then the lower bound is only valid
with ¥, =0.

According to Lemma 1, a sufficient algebraic condition
for (11) is the linear independence of p{”.p;".keJ, .

Similarly, we have

Sufficient algebraic condition for zkelv &) #0, t=1:
0

q.”.q," .k € J, arelinearly independent.

Sufficient algebraic condition for

. gr(t) =0,
Lone, 9x(t) for at least onet 21t :

J,, ={k} and ¢,”.q; are linearly dependent, e.g.,

40 =0, 4 (61)

Because then,
(r)

gko ) = C](‘;) [cos )'1%) (t— 1, )Qko —sin /’{’li;)(t =1 )q;;)]
Drain 1D (5 — 1 17 D (p_ g \oD
+ ci [sin 4 (= 1,)g;) +cos 4 (t = 1,)g;.] (62)
= [Ako cos /IL;) (t—1,)+ B, sin At =1, )} qi(’)), t>t,,
with
— (r) (i)
Ako = to 0
(r) (i) (63)
— r) _ i
Bko =G, 06

Since the factor in the bracket of g, () takes on the
value zero, we have proven that (61) is sufficient for (59).

Theorem 8: (Two-sided bound on y(¢) by || w(#)]|)

Let the hypotheses (H1),(H2), and (HS) be fulfilled
and additionally (56). Then, there exist constants 7, >0 and
n, >0 such that for sufficiently large 7, > ¢, ,

Mo IOl yOll=m Tyl 121, 21,, (64)
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with y(r) defined by (18), where ¢, =¢, if y(r)#0,t>1¢,.
Proof: From (16) and (60), it follows

Yok < ¥, €00 <y < ¥, 0
IY (65)
<SLIx@)l, 121 21,.

From (19) we infer

(@l <

}
< g alvl,

1 e’

50 and n, = ;5 Then, n, >0

1 0

and n, >0, and (64) is proven.

121 2t,; set n, =

5.2. General Square Matrix A
a. Hypotheses on A

We suppose (H1),(H2), and (HS’); (H3) is not
needed, and (H4) is needed only if the coefficients ¢, are

to be computed by ¢ _(xo,uf,fl’fkﬂk),k =1, ml=1,p.

b. Representation of the Basis y(t),y!(t),k=1,

e m, '| =1, p
Asin [4], let

(L,r) — (l r)( ) (L) — yi]’)(t) ) ._ q]((l)
@)= an . @)= 00 s> P = o |
(@) (@) n

k=1,---,m,l=1,---,p. Then, from (25),

. (- 11,
Yy =€ W{cos/l(”(z zo){q”’)i((k 1))' A t0)+q”'):|

G N i i
—sml,()(t—to)|: s ’W+ g (e —1)+¢"" |,

V() = A (=19 {snl“’(z‘ t0)|:q<1,)(t(ktol))' et gt (- t0)+q(1r):|

+eos A"t~ t){ “"% gl (- z)+q””]},

(66)
k = 1,---,m1,l = 1’...’p_
c. Two-sided Bound on y(t) by e"**’
Starting Point: Appropriate Representation of y(t)

We have

P (M) (gt m
NOEDY AR YII0! (67)
=1 k=1

L. Kohaupt
with

- i n =1 - :
() = c;“{cosz;)o—r >[ e f), gl =1, +g”

o N , i
—sin A" (t 1, {q”’((k 1))' O (= t0)+qi’>}

+ "”{smﬂf’)(z t){q””(t(kt“l))v ot gt —t)+q""

(m)(l t)

(1i) (i)
1! +et g (t—t))+q, }}

(68)

+cos A (¢ —t, )[

k=1,ml=1,p.

Estimate from above

From (49) and (37), for every £>0,
constant X, ,(&) >0 such that

ly®)ll2 < z@)]l2 < Xy 2(e)eoto)E=to),

due to the equivalence of norms in finite-dimensional spaces,
this entails

there exists a

t = to;

y ()] < Ya(e)eet=to) ¢ > g, (69)

for a constant Y,(¢)>0 .
Estimate from below

Here, we have to investigate two cases.
Casel:

Y ig,ﬁ”(t) £0, 21, (70)

leJ,, k=1
Yo

We mention that the corresponding inequality (34) for
x(¢) could be proven by Lemma 4. Now, from (70), it
follows

Ty
1y qu”u =k | 30D a0l =Y >0, t200. (71)

led,, k=1 - ledy, k=1

Similarly as for x(¢), here
YV Vo (t=t0)
Iyl e ™, 2,2, 72)

for sufficiently large ¢, .

Case 2:

'y
2 Zg,(f)(t) =0, for at least onet = t,,. (73)

leJ,, k=1
Yo

In this case, (71) and therefore (72) remain valid only for
Y, =0.

Yo

Two-sided bound on y(t) by e

Vo (t-to )

Summarizing, we obtain
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Theorem 9: (Two-sided bound on y(r) by ™)

Let the hypotheses (H1),(H2), and (HS’) be fulfilled
and additionally (70). Then, there exists a constant Y, >0
and for every &£ >0 aconstant ¥,(g) >0 such that

Y, e Gl y(0) €Y, ()T 121, 21, (74)

for sufficiently large ¢, where ¢, =z, if y()=0,¢t2¢,. If
the index of every eigenvalue A =A(A) with ReA=v, is

equal to unity, then =0 can be chosen. If, instead of (70),
condition (73) is fulfilled, then the lower bound is only valid
with ¥, =0.

Sufficient Condition for Y, >0

We want to give a sufficient condition for Y, >0.Asa

preparation, we first introduce some abbreviations and prove
alemma.

Abbreviations:
Jj=1 g = q'",
a0 = q",
j=2: @00 = g —t)+q)”,
é;“)(t) = 1!)(t t )+q(11)’
~(L,r) . an =1, )" (L )
=m ) = ——t-tq, (=) +q,)"
J 1+ D, q, (m,—1)! q -l q[
) _ my
200 = g g g,
! (m, —1)!

leJ, ,forevery fixed 7 >1,. With these abbreviations, we

have

Lemma 10: Let the hypotheses (H1),(H2'), and (HS")
be fulfilled. Then, for every fixed f=>1,, the vectors

ql(c“)(t)’ ql(f”)(t)’k = l’ T

if and only if the vectors q(“),qi“),k =1,

m,,leJ are linearly independent
,m,,lejv0 are

linearly independent.

Proof: =: Let r=t¢,. Then,
([0)=q§([’i)ek=1s”"

(Lr) (L) ~(Li)
kr(t) q 7qkl

m,leJ, so that the assertion follows.

& Let =1, be fixed and let

> {aan o+ alnan o+ el gl o]

leJ
Yo

I
e

+[a“” 5D (1) 4 G00GE (1) - +au:>qfntlz>(t)]}
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This means

z {[ (lr)qllr)+a[r)< [r)(t t)+q1r))

leJ
Yo

(m an = f) ) (4 (t.r)
(ql ( 1_1)' qmll(l t0)+qml

+|: (11>q(11)+a(11)( zz)(t t)+q(11))

)‘Ill
+Oc(“)[q.(m (Z “f) )1)' +-- +qx,l)l(t t)+q(l')ﬂ} = 0,
m, —

from which we infer

-1
(=1,)" b

_ 2
a0+ (—1,)880 + -1 &l + . = 0,
2 (m,—1)! "
_ mIfZ
N (R (o) o 2 g
(m=2)! ™
7+ (t—to)df,ﬁ"” =0
~(l,r) - 0
ml '
This delivers
al(lr) a;[r) —.. f’flr) IEJ
correspondingly,
G =60 == e,
1 0

so that the assertion follows.

Remark: The linear independence of the vectors for every
t>t, is much a stronger statement than the linear
independence of the associated functions.

Corollary 11: (Sufficient condition for Yv0>0 or
Y,>0)

Let ¢/, q"" k=1,---,m,l € J,, be linearly independent.

Then, 3, > " e"()#0,1>1,,50 that ¥, >0 and therefore
Yo a
my
Y, =Y, /2>0 where Y, = nf | S S gl

1€y k=1

Proof: Assume that », " g’(#)=0 for at least
€. VO

jeiSk

one 7>t,. From the linear

Lry (i) 1 _
C]k ,C]k ’k_la""

independence  of
m,lel, and Lemma 10, one infers

¢ cos A (7 —t,)+ ¢ sin AV (F - 1,)

" sin A (F —

0,

to)+ el cos AV (F —t,) 0,
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k=1,--m,leJ, . Thereby, we conclude " =l =

0/eJ, . This is a contradiction to e\ =

(e =c"")/2#0 foratleastone k=1,--,m,.leJ,

By a proof similar to that in Lemma 1, we have Sufficient
algebraic  condition  for z[ . 2 1e0()#0, 12>1,:

jeiSk

(Lr)

", q"" k=1,,m,l e JV0 are Ilnearly independent.

Likewise we have Sufficient algebraic condition for
Z,E,VOZZ”I g’(t) =0, for at least onet >t : J w =1} and

Uyr) (g

m =1 as well as ¢,°",¢,°" are linearly dependent, say,

() Uy

4" =0,4,
d. Two-Sided Bound on y(t) by || w(t)||
Let (70) be fulfilled so that (74) holds. Then, we have
Theorem 12: (Two-sided bound on y(¢) by || w(®)]|)
Let the hypotheses (H1),(H2), and (HS’) be fulfilled

and additionally (70). Then, for every &>0 there exist
constants 7,(¢) >0 and n,(g) >0 such that

M@l yolle ™™ ly@ IS @l yo e, (75)
1>t 21,
for sufficiently large 7, where ¢ =¢,
Here, w(z) is defined by (41).
eigenvalue A =A(A) with Red =v, is equal to unity, then
£ =0 can be chosen.

Proof: From (37),(74), it follows

it y@)#0,t2¢,.
If the index of every

)1) —&(t—ty) Vo (1—ty)
lx@)lle ™ <Y, " <y
X,(8)

1@ (76)

0

(vpt+e)(t—t, (1, )
Y, (g)e 0 x@lle™

t 2t 2t,. From (42), we infer

—e(-19) Y (e) (1)
XE) )50 ) lle™ 7 <y |I< IXo Ellw ™™, 12t 21

Y (&)
L ERIGES

and n,(¢)>0, and (75) is proven.
6. TWO-SIDED BOUNDS ON z(t) = y(t)

set n,(€):= .. Then, n,(e)>0

In this section, we state bounds on z(¢)=y()
corresponding to those on y(¢) in Section 5. However, no
proofs are given.

6.1. Diagonalizable Matrix A
a. Hypothesis on A
Again, we suppose (H1),(H2), and (HS); further,

(H3) guarantees that the vectors r, = 4,q,,k=1,---,m=2n

L. Kohaupt

are linearly dependent, if the vectors ¢,,k=1,---,
but later we need the stronger condition (80) below; (H4) is
needed only if the coefficients ¢, are to be calculated by
¢, = (xg,u ) k=1,

b. Representation of y(t), y’(t),k =1,---,n

m are so,

m=2n.

From (2),
W@ = el(kr)('_l")[cosl“)(t tor” sinl,ﬁ”(t—to)r,f”],
(77)
¥y = el’(‘r)(HO)[sm A0t —t)r” +cos l;”(t—to)rk(”],
k=1,---,n.

Remark: Here, it is wise to take the form (77) or [4], (57),
and not the form [4], (58) since with the form (77), it is easy
to carry over the results of Section 5 from x(z) to y(¢).

c. Two-Sided Bound on z(t) = y(t) by "’
Starting Point: Appropriate Representation of z(t) = y(t)

One has
n (r) s
2 =30)= Y TV h () (78)
k=1
with
h (@) = c[cos At —t )" —sin AP (¢t —1,)r"]
(79)
+ P sin At —t)r” +cos A (t — 1)1,
k=1,---,n.
Case 1:
N h()#0, t21,. (80)
kelv
0
Case 2:
2 h,(t)=0, for at least onet 2 t,. (81)
kelvo
Here,
Theorem 13: (Two-sided bound on z(t)=y() by
evo(t—to) )

Let the hypotheses (H1),(H2), and (HS) be fulfilled

and additionally (80). Then, there exist constants Z, >0 and
Z, >0 such that
Z, e <z ()€ Z, 0T, 121,21, (82)

for sufficiently large ¢,, where the upper bound holds for
t,=t,. If z(t)#0,t>1t,, then ¢ =¢,. If, instead of (80),

condition (81) is fulfilled, then the lower bound is only valid
with Z, =0.
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Sufficient algebraic condition for zk , h(@#0, 121,
Yo

ke J,, are linearly independent.
Sufficient algebraic condition for
zke%hk (t) =0, for at least onet 21, : JVo ={k,} and V;:(:), rk((;)
are Iinearly dependent, e.g.
r = =l r - (83)

d. Two-Sided Bound on z(t) = y(t) by || w(®)]|
One obtains
Theorem 14:

ly()1)

Let the hypotheses (H1), (H2), and (HS) be fulfilled
and additionally (80). Then, there exist constants £, >0 and
£, >0 such that for sufficiently large ¢, 21, ,

S Iy lIslzO I T |,
with w(¢) defined by (18), where ¢, =1z, if z(t) #0,t >¢, .

(Two-sided bound on z(t)=y() by

12t 21, (84)

6.2. General Square Matrix A
a. Hypotheses on A

We suppose (H1),(H2), and (HS’); further, (H3)
guarantees that the vectors r”.k=1,--.m.leJ, are
linearly dependent, if the vectors ¢,”.k =1,---,m,leJ, are

so, but later we need the stronger condition (88) below;
(H4') is needed only if the coefficients ¢!, are to be

computed by ¢! —(xo,uf,f;,kﬂk),k =1,ml=1,-p.
b. Representation of the Basis  y(t), yM (@),

k=1,..m,=1,..,p
One gets

(L A (1= i (-t
Yt =€ « to){cosl,"(t—tn)[r,“‘)7(0{ ('1))' ottt =)+ ’:|

. i i (t_t ) Ji S
—sm/ll()(l—la){ﬁu )7(](_01)' et r (e —t)+ 1" ’:|}

509 A (119 @ wn =1 ) (. (85)
()= sinAP(t—1,)| 7, W+ RSty

i 1i (t—to) Li Li

+cos/1,()(t—t0){rl( ’7(](_1)' R A (B RN ’}}

k=1,--;m,l=1,---,p.

c. Two-Sided Bound on z(t) = y(t)

Starting point: Appropriate Representation of z(t) = y(t)
We have

The Open Applied Mathematics Journal, 2011, Volume 5 11

2 =y(t) = ie*l”)“"wih,g“(z) (86)
I=1 k=1

with

11—t
(I)( 0) .- +rk(ll)

k-1 (e

W) = L'L"’{cos).“(t 1)

11,
(’)( ) 4. +rk(l])

)
= )
}
J

—sin A" (t - t)|: (t=t)+r""

k-1
N B t—1,
+ c{,’”{snnl}”(x—to)[ anU=t)™ | (=t + "

(87)
(k=1)!
iy win t=1)"" i) (/z)
+cos A, (¢ z(,)[ D] +otn (=t
k=1, ,m,l=1,-,p.
Case 1:
m
Y drPwy#0, 121, (88)
IEJV k=1
0
Case 2:
my
2 th)(t) =0, for at least onet > t,. (89)
IEJV0 k=1
We have
Theorem 15: (Two-sided bound on z(t)=y() by
evo(t—to) )

Let the hypotheses (H1), (H2'), and (HS’) be fulfilled
and additionally (88). Then, there exists a constant Z, >0
and for every £ >0 aconstant Z (¢) >0 such that

Z,e"" 70 Q) 2(1) K Z,(8)e T 121, 21, (90)

for sufficiently large z,, where ¢, =¢, if z(t)#0,t2¢,. If
the index of every eigenvalue A =A(A) with ReA=v, is
equal to unity, then =0 can be chosen. If, instead of (88),

condition (89) is fulfilled, then the lower bound is only valid
with Z, =0.

Sufficient algebraic condition for Z” > AP

k=1 K

O#0, t2t,: 11" k=1, m.leJ, are linearly

independent.

Sufficient algebraic condition for Z” > AP

k=1 K

(t)=0, for at least onet 21t : JV ={/,} and m, —1 as well

(10 r) (10 i)

as r, are linearly dependent, say,

R = i (91)

0
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d. Two-Sided Bound on z(t) = y(t) by || w(®)]|
We have
Theorem 16: (Two-sided bound on z(z) = y(¢) by || w(®)]|)

Let the hypotheses (H1),(H2), and (HS’) be fulfilled
and additionally (88). Then, for every &>0 there exist
constants {,(¢) >0 and { () >0 such that

G@lw@lle ™™ Sz € & @l w) 1™, 121,21, (92)

for sufficiently large #,, where ¢ =1, if y(t)#0,t2>1¢,.
Here, w(r) is defined by (41). If the index of every
eigenvalue A =A(A) with Red =v, is equal to unity, then
£ =0 can be chosen.

7. TWO-SIDED

BOUNDS ON  x(t)
Sc{l,...m=2n}

WITH

In this subsection, we derive two-sided bounds on x,(¢)
similar to those on x(¢), where Sc {1,---,m=2n} is any
subset.

7.1. Diagonalizable Matrix A

Important special cases of S are as follows:
S={1,--,m=2n} = x;()=x(),
S={1,---,n} = x,()=y@), ps.kzqwkzlv""”
S={n+l1,---,2n} = x@O=y1), pg=r.k=1,n (93)
S={l<iy<nt = xO=y, (0, pey =) k=1,n

=

S={n+j,1<j,<n}

Psi =P k=1,---,m=2n

xg(t)=)",0(l), Psx =(Vk)/“, k=1,--,n

where (g, )j.0 means the j, th component of vector ¢, and so
on.

We suppose that (H1),(H2), and (HS); instead of
(H 3), condition (97) below will be used here.

b. Representation of the Basis X$ (t), x$, () ,k =1,---,n
From (2),

0 = 0 eos A= 1)p) —sin 2@ =1,)p2 ]
(94)
0 = A0 [sin A1)+ cos K- 1,00 ]
with
pg":z = Re{psyk}v
Pgll = Im{ps,},
k = ]’ LR n,
c. Two-Sided Bound on X, (t) by "’
Starting point: Appropriate Representation of X ()
We have
n (r) _t
xg(0)= D T f @) (95)

k=1

L. Kohaupt
with

fsi(®)

c[eos A, (1 —t,)py) —sin A (£ —1,) s
(96)

+ P [sin A"t —1,)pS) +cos A7 (t = 1,)ps 1,

k=1,---,n.

Case 1:

Y fO#0, 21, (97)

kel
Yo

Case 2:

2 fs. (@) =0, for at least one t 2 t,. (98)

keJ
Yo

Here,
Theorem 17: (Two-sided bound on x,(¢) by 000

Let the hypotheses (H1),(H2), and (HS) be fulfilled
and additionally (97). Then, there exist constants X, >0

and X, >0 such that

Xgoe 7 < xg (DI X, €00, 121,21, (99)

for sufficiently large ¢,, where the upper bound holds for
t,=t,. If x;(t)#0,121,, then ¢, =¢,. If, instead of (97),
condition (98) is fulfilled, then the lower bound is only valid
with X, =0.

Sufficient algebraic condition for zk , @20, 121,
Yo

P§2. psisk € J, are linearly independent.

Sufficient algebraic condition for
zkejv fs. @) =0, for at least onet 21 :
0

J,, =1k} and pg; . pg, are linearly dependent, e.g.,

Sy, = Oy P - (100)
d. Two-Sided Bound on X4 (t) by || w()||

One obtains

Theorem 18: (Two-sided bound on x,(z) by || w(®)||)

Let the hypotheses (H1),(H2), and (HS) be fulfilled
and additionally (97). Then, there exist constants &, >0

and &, >0 such that for sufficiently large 7, >, ,

Esollv@)] < lzs(®)] < ésall®)]l, =t =t (101)

with w(¢) defined by (18), where ¢, =1, if x;(z)#0,t 2¢, .
7.2. General Square Matrix A

Similarly as in 7.1, we have the following important
special cases of S':
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S={lom=2n} = xO=x(0) p{=pk=1m.l=1m=2p

S={1,-n} = xO=y0), p{L=q"k=1m,l=1-m=2p (102)
S={n+l,2n} = xO)=y@), pi)=r" k=1 m,l=1-m=2p
and so on.

a. Hypotheses on A

We suppose (H1),(H2), and (HS') ; instead of (H3),
condition (106) below is used here.

b. Representation of the Basis x{; (1),xy} (1).k=1,--,m,,

l:l’...,p

From (25),

=
(L A -1 ) an(t—1y) Lr Lr
xs.x’(’)ze P Scos A7 (1~ 1) Psi (k—ol)‘ +m+p;.k—)1(t7to)+17§.|)

. (i o (l_t )k7‘
—sin A} )(I—IU)|:P(S/,|) (k ,01)!

+"'+p(xl,11|(t_tn)+p(sl,.1” }}

(103)

k-1
i A1) | . ai 1 E—1,) Lr) Lr)
va.k)(t)=e ! 0 {Sm A’I( »(7*f0)|:17;_1 (k _01), +”'+[7§,A—1 (tft0)+p§$

W)y (/.u(lft")ki‘
+cos A0 (t fn)[l’&l k=1

1, 1,
+oot p(s,L’il (1=19)+ p(SJ” }}’

k=1, ,m,l=1,-p.

Vo (t-to )

c. Two-Sided Bound on x(t) by e
Starting point: Appropriate Representation of X ()

We have

— 3 )“I(r)(t_to) < () 104
Xg(1) = 26‘ sx (1) (104)
I=1

k=1

with

. i (1=1)"" , .
;,/A)(t) = ){COSA/“(I*%)[P(S{})(kiol)"*'“'+p§'{k—)1([7to)+p;’,k)

k-1
NG o=t i i
—mna’u—%{px’ﬂkjﬁ,4~~+pazo—%>+p&f

(105)

p g o =1)"" ; .
+ Ci"){ﬂn&()(l*to)[ﬂg}) @ 01), +ot pdD (t—10)+ ply)

+cos AV (1 —t,) "~"’w+.,_+ 4D (g )4 D
| o)| Ps. k=1)! Psia(t—1,)+ ps;

k=1, ,m,l=1,-p.

Case 1:

m

1
Y w0, 124,

leJ,, k=1
Yo

(106)
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Case 2:

m

2 (t)=0, for at least onet > 1,.
IEJVO k=1

(107)

We have
Theorem 19: (Two-sided bound on z(¢t)=y() by

evo(t—to) )

Let the hypotheses (H1), (H2), (HS’)and be fulfilled
and additionally (106). Then, there exists a constant
X;, >0 and for every £>0 a constant X, (¢)>0 such

that

Xg o€ Sl xg () [I€ X, (€)e T, 121,21, (108)

for sufficiently large ¢,, where ¢, =1, if x(r)#0,121,. If
the index of every eigenvalue A =A(A) with ReA=v, is

equal to unity, i.e.,, ©(A)=1, then £=0 can be chosen. If,
instead of (106), condition (107) is fulfilled, then the lower
bound is only valid with X =0

Sufficient algebraic condition for
)nl (/) )
3., Tofwzorz:

ps psy k=1, my,l € J, are linearly independent.

Sufficient algebraic condition for
z/e/m z:ljlfs(lk) (t)#0, for at least onet 21, J"o = {lo} and

Iy.r In,i .
m =1 as well as p;ﬂ’ ),p;_? " are linearly dependent, say,

) (Iyr)

Psi = O0sy,Psi (109)

d. Two-Sided Bound on X4 (t) by || w()||
We have
Theorem 20: (Two-sided bound on x, () by || w(®)||)

Let the hypotheses (H1), (H2'), and (HS’) be fulfilled
and additionally (106). Then, for every £ >0 there exist
constants &, (€) >0 and &, (€) >0 such that

Eso@NYD) lle ™™ Slxs ()l &, @l wi) e,

121,21,

(110)

for sufficiently large ¢, where ¢, =¢, if x,(r)#0,7z2>¢,.
Here, w(r) is defined by (41). If the index of every
eigenvalue A =A(A) with Red =v, is equal to unity, then
£ =0 can be chosen.

8. APPLICATIONS

8.1. The Vibration Problem

Consider the multi-mass vibration model in Fig. (1).
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ky ka kn kn +1
m . s My
— — Mo b
b, > p B by 5 bya
il by Y
Fig. (1). Multi-mass vibration model.
The associated initial-value problem is given by
My +By+Ky=0, y(0)=y, y0)=y,
where y=[y,,---,y,]" and
m, ’
M= m,
ms
L mn_
b+b, b, ’
-b, b,+b, b,
B= —b, b,+b, b,
_bnfl bnfl +bn _bn
L _bn bn +bn+l—
k+k, —k, ’
—k, k,+k, —k,
K= —k,  ky+k, -k,
_knfl knfl + kn _kn
L _kn kn + kn+l .
or, in the state-space description x(¢#)=Ax(t), x(0)=x,,

where the state vector x is given by x=[y",z"'|",z=7y,
and where the system matrix A has the form

az|—C0 | E |
MK |-M'B

As in [2], we specify the values as

m; = 1,j=1,---,n
k= 1 j=len+l
and
b = .
J 1/2, jeven
1/4, j odd.

With the above numerical values, we have M =E,

31
4 2
LA
2 4 4
LI R
=| 442
31
4 4 2
3
2 4
(if n is even), and
L, -
-1 2 -1
-1 2 -1
-1 2 -1
-1 2
Further, let

yo =[_1515_1515_1]T’ yo =[O’0505050]T

so that x, =[y;,z |" with z, =, . We choose n=5 in this
paper so that m=2n=10. Thus, M,B,K € IR™  and

AelIR """ Finally,
t, =0.

Here, we obtain A, #A,,i# j,i,j=1,---,m=10; therefore,
A is diagonalizable, and €=0 can be set. Further, for
uy=T"'x,, we have u,;#0,j=1,--,m=10 so that

Vo =v, [Al=V[Al=max,, ,Rel,(A)=-0.050239  (see

[1]). We remark that BM 'K # KM ™'B .

Enumerating the eigenvalues such that A" >0 and A"

j=1--5 as well as A, =4,

are increasing for ;

j=1,---,5, we obtain

A, = —0.69976063878053+1.79598147815975i,
A, = —0.56266837404074 +1.61635870164386,
A, = —0.37500000000000 + 1.36358901432946,
A, = —0.18733162595926 + 0.99452168646559i,
As = —0.05023936121946+0.51637145071101i,

and thus Jv0 = {5} . Further,



Two-Sided Bounds on the Displacement
0.25786399565391+0.016536568970301
0.44351627218028 +0.00006053419538i

0.51248089685635
0.44351627218028 +0.00006053419538i

ps == [ 9s 1 — 0.25461690120244 —0.01653656897030:

—0.02149393453213+0.13232281886012i

—0.02231323233506 +0.22901609968036i

—0.02574671289524 +0.26463050417139i

—0.02231323233506 +0.22901609968036i

—0.00425277836311+0.13230768531127i

Here, ¢\”,q" resp. r”.r\” are linearly independent.
Thus, the constant Y, in Theorem 7 resp. the constant Z; in
Theorem 13 is positive.

8.2. Two-Sided Bounds on y(t)

In Section 5.1, we have derived the bounds

Y, e S y) LY, e, 121 >0, (111)
and
Mo TYO I yO lb=m, WO, 21,21, (112)

with positive constants Y,.Y,, and 7,,,7,,. The best
constants Y, and 1,, are obtained by the differential
calculus of norms. For example, the optimal constant 7, , is
computed from the conditions

!

1y 2) 1k Mo W) [

D, |y )1,
which leads to

DAy )b _ DTy,
1y 1k iz, ,) Il

or

D[y N )b =D, Myt ) bl v ) [I=0.

MDY 5) [l

When the point of contact 7., between y=||y(¢)|, and
v =l w(t)ll, has been computed from this nonlinear algebraic
equation in ¢, , then 7, , is obtained from

_ )l
)L

1,2

The lower bound y=Y,,e“™ resp. y=n,,llw®)l,
meets the curve y=||y(¢)|, at the point ¢_,, where it has a
kink like 171" at + =0 (in contrast to the curve y=|| x(¢)|},)
as can be clearly seen from the plot of y=||y(z)|, for
25<t <50 (not presented here). Therefore, ¢., cannot be
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determined by the differential calculus of norms; instead, it
must be computed from

Ia= Hlllzn ||y(t_,;2)||z,
j=1.2,

where ¢,,,j=1,2,--- are the local minima of y=|| y()|},. In

the sequel, we use the additional index [ for lower bound
and the additional index u for the upper bound. In this way,
for (111), we get

t,, = 27.591842,
Y,, = 0.00307318,

as well as

t.., = 0014088,
Y,, = 2236857.

In Fig. (2), the curve y=||y(¢)|, and the upper bound

vo(t=tg

y=Y,e " are drawn.

25 T

y:Y1 " RAA

0.5

y=lytoll,

Vo (. 1=t )

Fig. (2). y=lly(®)Il, and optimal upper bound y=Y,,e

For (112), we obtain
t,, = 27591842,

My, = 0.028839,

as well as

t.., = 48.885432,
N, = 1.557559.

In Fig. (3), the curve y=||y(#)|,, and the upper bound
y=1n,,llw#)|, are plotted, and in Fig. (4), the curve
y=lly@®) ||, along with the two-sided bounds y =n,, || w() ||,
and  y=mn,,lly@®]l,. The upper bound y=n,,[ly(®)I,
depends on x, and adapts faster to the curve y=||y(?)|l,

vo(r—to) .

than the upper bound y=7Y,e ; but, in the initial
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25 T T T

y=,, vl

05

y=lvel,
0 ; i
[} 5 10 15 20 25

Fig. (3). y=ll y(t)ll, and optimal upper bound y =1, (1)1l

y=n,., llvoll,

0.5
y=llvoll,

y=1,, vl

Fig. (). y=lly@®I|, and optimal two-sided bounds

y=no,2|| w(t) ||, and y=n1,2|| w() |,

domain, y=m,,|| ()|, is worse than y=1,,e"™ . This
can be remedied, however, by the method described in [7].
8.3. Two-Sided Bounds on z(t) = y(t)

In Section 6.1, we have derived the bounds

Z,,e 0 () 1, Z,, e, 121 21, (113)
and
Cor WOl zO 1L 8, WO Nl 21, 21, (114)

with positive constants Z,,,Z,, and {,,,{,,. The best
constants are computed like Y;,,Y;, and n,,,n,, in Section
8.2. For (113), we get
t,, = 42613832,

Z,, = 0.002200,

as well as

t.., = 0.688631,
Z, = 2758394

L. Kohaupt

In Fig. (5), the curve y=||z(¢)|l, and the upper bound

0) are drawn.

y= Zl,ze
For (114), we obtain

t,, = 24357362,

$o, = 0.016083,
as well as

t..., = 0.879345,
$, = 1.632277.

In Fig. (6), the curve y=||z(¢)|l, and the upper bound
y=¢,llw@)|, are plotted, and in Fig. (7), the curve
y=llz(®)|l, along with the two-sided bounds y =, Il w(1)l},
and y={,|ly(2)], . Similar remarks to those at the end of
Section 8.2 hold.

8.4. Computational Aspects

In this subsection, we say something about the used
computer equipment and the computation time.

y=leoll,

0 5 10 15 20 25

Vo (1—10)

Fig. (5). y=llz(®)|l, and optimal upper bound y=2,,e

25

0.5

y=C,,, v ol
y=llzeoll, v

0 L
0 5 10 15 20 25
t

Fig. (6). y=llz(¢), and optimal upper bound y = ¢, y(0)
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3
y=E, , vl

25

y=llz0ll,

0.5 -

¥=Co, Wl
[

0 5 10 15 20 25
t

Fig. (7). y=llz()],, and optimal two-sided bounds y =, w(®)ll,
and y =g, lly@)ll,

(i) As to the computer equipment, the following hardware
was available: a Pentium Il CPU at 300 MHz, an 8 GB mass
storage facility, two SDRAM 64 MB high-speed memories.
As software package for the computations, we used 368-
Matlab, Version 4.2.c, for the generation of the figures,
Version 6.0, in order to be able to caption them.

(i) The computation time ¢ of an operation was
determined by the command sequence tl=clock; operation;
t=etime(clock,t1); it is put out in seconds rounded to two
decimal places, by MATLAB. For example, to compute the
points of contact and to generate the table of values
t,y(t),y,(),y, ()t =00.1)25 for Figs. (4 and 7), we

obtained 7, =2.26s and ¢, =1.93s.
9. CONCLUSION

In this paper, for the vibration problem
My + By+ Ky =0,y(t)) = y,,9(,) = ¥, , two-sided bounds on
the displacement vector y(z) and the velocity vector y(r)

are derived. These bounds have the same shapes as the two-
sided bounds on the solution x(z) of the corresponding state-

space problem x = Ax,x(z,) = x, . Even two-sided bounds on
any quantity x;(z) where Sc{l,---,m=2n} are obtained.

The differential calculus of norms is used to compute the
optimal constants in the upper bounds, whereas the best
lower bounds must be determined via the local minima since
the curves have kinks there. Along with the papers [4-6], one
is now able to handle the solution of the above vibration
problem in nearly the same way as for one-mass models.
Therefore, the papers [4-6] and this paper make a major
contribution to Computational Engineering, especially to
Computational Mechanics. It could turn out to be of great
value also in Computational Electrics. In retrospect, a
mathematician might be tempted to derive the two-sided
bounds on x,(¢) first and to obtain the two-sided bounds on

x(t), y@), and z(t)=y(t) as special cases. We have not

done this here since the results are mainly of interest to
engineers and since we think the presented way will be more
convenient and simpler to understand for them. The method
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described here is also applicable to models with system
matrix A e IR™" where m is an odd natural number such
as AelR’from [3], Fig. 3.1, when the appropriate
adaptations are made for the solution bases.

10. COMMENTS ON THE REFERENCES

The References [1, 2, 4-16] contain the most important
contributions to the author's current research area. In [3, 17-
22] the reader finds dynamical problems of interest with
respect to the present paper. In the References [23-26] there
is some material on Linear Algebra useful in the context of
the paper. The references [27] and [28] are on functional
analytical methods used in the author's work. Finally, [29] is
a useful reference book on numerical solution methods of
ordinary differential equations consulted by the author in his
work.

11. OUTLOOK ON FUTURE WORK

The question naturally arises as to whether the method
presented for the IVP X = Ax,x(z,) = x, in this paper can be

carried over to more general differential equations. In order
to assess the chances to be able to do this, we want to look
back to what was possible in the past work. What can be said
is the following: In [12], it was possible to treat problems
with  periodic  system  matrix, i.e  the IVP
X =A@)x,x(t,) =x, with A(t)=A(z+¢,) in a similar way
as for x = Ax,x(t,) = x,, more precisely, it was possible to
derive an upper bound on x(¢) of the same form as for the
case of a constant matrix. Further, in [7], the same held for
the quasilinear IVP %= Ax+ h(t,x),x(t,) = x, . Therefore,
one can be optimistic to carry over the results of the present
paper to the case of an 1\VVP with periodic system matrix and

to the case of a quasilinear 1VP. These issues will be the
subject of the author's pertinent future scientific work.
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