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Abstract: If the vibration problem 
 
My+ By+Ky = 0,y(t0 ) = y0 ,y(t0 ) = y0 ,  is cast into state-space form 

 
x = Ax,x(t0 ) = x0 , 

so far only two-sided bounds on x(t)  could be derived, but not on the quantities y(t)  and 
 
y(t) . By means of new 

methods, this gap is now filled by deriving two-sided bounds on y(t)  and 
 
y(t) ; they have the same shape as those for 

x(t) . The best constants in the upper bounds are computed by the differential calculus of norms developed by the author 

in earlier work. As opposed to this, the lower bounds cannot be determined in the same way since 
 
y(t) 2  and 

 
y(t) 2  

have kinks at their local minima (like | t |1/2  at t = 0 ). The best lower bounds are therefore determined through their local 

minima. The obtained results cannot be obtained by the methods used so far.  

Keywords: Initial value problem; vibration problem; state-space description; two-sided bounds; displacement; velocity; 
differential calculus of norms.  

1. INTRODUCTION  

The vibration problem 
 
My+ By+Ky = 0,y(t0 ) =  

 
y0 ,y(t0 ) = y0 ,  can be solved by writing it in the state-space 

form 
 
x = Ax,x(t0 ) = x0 . For this initial value problem, in [1, 

2], so far we have derived two-sided bounds on x(t)  of 

various forms to describe the asymptotic behavior of x(t) , 

from which it would be easy to obtain also upper bounds on 

the displacement vector y(t)  and the velocity vector 
 
y(t) . 

But, lower bounds on these quantities would not be obtainable.  

In this paper, as the main new point, we fill this gap and 

derive two-sided bounds on y(t)  and 
 
y(t)  of the same type 

as in [1, 2] for x(t) . The best constants in the upper bounds 

are computed by the differential calculus of norms developed 

by the author in earlier work, the lower bounds by their local 

minima.  

The paper is structured as follows.  

In Section 2, the initial value problem 
 
x = Ax,x(t0 ) = x0 ,  

is formulated for a general square matrix A . In Section 3, 

the two-sided bounds on x(t)  in [2] are derived in a new 

way that allows one to carry over the results from x(t)  to 

y(t)  and 
 
y(t) , in a simple manner. In Section 4, the state-

space description 
 
x = Ax,x(t0 ) = x0 ,  of 

 
My+ By+Ky = 0,y  

 
(t0 ) = y0 ,y(t0 ) = y0 ,  is given where M , B , K IRn n

 are 

the mass, damping, and stiffness matrices, as the case may be,  
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and where y(t) IRn
 is the displacement vector. In Sections 

5, 6, and 7, two-sided bounds of the same types as for x(t)  

are derived for y(t) , 
 
y(t) , and even for xS (t) , (where 

 
S {1, ,m = 2n}  is an index set), respectively. We 

mention that, in Sections 3 and 5 - 7, first the case of a 

diagonalizable matrix A  is studied and then the case of a 

general square matrix. In Section 8, applications follow. 

Here, the optimal constants in the upper bounds are 

computed by the differential calculus of norms. In Section 9, 

conclusions are drawn. In Section 10, we comment on the 

References, and in Section 11, an outlook on future research 

is given.  

2. THE INITIAL VALUE PROBLEM 
  
x = Ax,x(t0 ) = x0   

Let  A
m m

 and 
 
x0

m
. When we assume 

A IRm m
, then it is implicitly assumed that also x0 IRm

. 

We consider the initial value problem  

 
x = Ax,x(t0 ) = x0 ,            (1) 

first without any reference to a vibration problem. Later on, 
in Section 8, matrix A  will be the system matrix of a specific 
vibration model.  

3. TWO-SIDED BOUNDS ON 
 
x(t)   

In this section, we derive in a new way two-sided bounds 

on the solution x(t)  of 
 
x = Ax,x(t0 ) = x0 , obtained already 

in [1, 2]. The reason for this is that the new method allows us 

to carry over the results in a simple manner to the 

displacement vector y(t)  and the velocity vector 
 
y(t)  of the 

vibration problem 
 
My + By + Ky = 0,y(t0 ) = y0 ,y(t0 ) = y0 , 

which is our actual goal. One even obtains, in this way, two-
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sided bounds on xS (t) , where 
 
S {1, ,m = 2n}  is an 

index set. First, the case of a diagonalizable matrix A  is 

studied and then the case of a general square matrix.  

3.1. Diagonalizable Matrix  A   

a. Hypothese on A   

First, we formulate some hypotheses on matrix A .  

(H1) A IR m m
,  

(H2) 
 
T 1AT = J = diag( k )k=1, ,m , where 

 k = k (A),k =1, ,m  are the eigenvalues of A ,  

(H3) 
 i = i (A) 0, i =1, ,m ,  

(H4) 
 

i j ,i j,i, j =1, ,m ,  

(HS) m = 2n  and the eigenvectors 
 
p1, , pn; p1, , pn  

form a basis of  
m

.  

Remark: Let (H1)  be fulfilled and let Ap = p . Then, 

we have Ap = p , where the bar denotes the complex 

conjugate. So, together with ( , p) , also ( , p)  is a solution 

of the eigenvalue problem Ap = p . But, if  and p  would 

be real, then p  and p  would not be linearly independent. 

This situation cannot happen when hypothesis (HS) is 

supposed.  

Remark: In the sequel, when the special hypothesis (HS) 

is chosen, we do this in order to be specific in the 

construction of a solution basis. Other cases such as the 

model from [3], Fig. (1) with A IR 3 3
 can be handled in a 

similar manner, however. Therefore, if (HS) is supposed, this 

is done without loss of generality. Another reason to assume 

(HS) is that it is adapted to the examples in Section 8.  

b. Representation of the Basis 
 
x

k

(r)
(t), x

k

(i)
(t),k = 1, ,n   

Under the hypotheses (H1), (H2) , and (HS) , from [4], 
we obtain the following real basis functions for the ODE 

 
x = Ax :  

xk
(r ) (t) = e k

(r ) (t t0 ) cos k
(i ) (t t0 )pk

(r ) sin k
(i ) (t t0 )pk

(i ) ,

xk
(i ) (t) = e k

(r ) (t t0 ) sin k
(i ) (t t0 )pk

(r )
+ cos k

(i ) (t t0 )pk
(i ) ,

 (2) 

 
k =1, ,n , where  

k = k
(r )

+ i k
(i ) = Re k + iIm k ,

pk = pk
(r )

+ ipk
(i ) = Repk + iIm pk ,

 

 
k =1, ,m = 2n  are the decompositions of k  and pk  

into their real and imaginary parts. As in [4], the indices are 

chosen such that 
 n+k = k , pn+k = pk ,k =1, ,n .  

c. New Derivation of the Two-Sided Bounds on 
 
x(t)  by 

  e
o

(t -t
o

)
  

First, we prove the following lemma.  

Lemma 1:  

Let the conditions (H1), (H2)  and (HS)  be fulfilled and 

 
pk
(r ) = Re{pk},pk

(i ) = Im{pk},k =1, ,n . Then, the vectors 

 
pk
(r ) pk

(i ) ,k =1, ,n  are linearly independent.  

Proof: Let  

k=1

n

[ k
(r )pk

(r )
+ k

(i )pk
(i ) ] = 0.  

Then,  

k=1

n

[ k
(r ) pk + pk

2
+ k

(i ) pk pk
2i

] = 0.  

This entails  

k=1

n

[( k
(r )

2
+

k
(i )

2i
)pk + (

k
(r )

2
k
(i )

2i
)pk ] = 0.  

Now, 
 
p1, , pn;p1, , pn  are linearly independent and 

therefore,  

 

( k
(r )

2
+

k
(i )

2i
) = 0, ( k

(r )

2
k
(i )

2i
) = 0, k =1, ,n.  

This delivers  

 k
(r ) = 0, k

(i ) = 0, k =1, ,n  

Let, 
 
uk ,k =1, ,m = 2n  be the eigenvectors of A  

corresponding to the eigenvalues 
 

k ,k =1, ,m = 2n . 

Under (H1), (H2) , and (HS) , the solution x(t)  of (1) has 

the form  

x(t) =
k=1

m=2n

c1k pke
k (t t0 ) =

k=1

n

[c1k pke k (t t0 ) + c2k pke
k (t t0 ) ]  

with uniquely determined coefficients 
 
c1k ,k =1, ,m = 2n . 

Using the relations  

 
c2k = c1,n+k = c1k , k =1, ,n,           (3) 

(see [4], Section 3.1 for the last relation),then according to 

[2], the spectral abscissa of A  with respect to the initial 

vector x0 IRn
 is given by  

 

0 := x0
[A] :=

k=1, ,m=2n
max { k

(r ) (A)|x0 / uk}

=
k=1, ,m=2n
max { k

(r ) (A)|c1k 0}

=
k=1, ,n
max{ k

(r ) (A)|c1k 0}

=
k=1, ,n
max{ k

(r ) (A)|x0 / uk}

        (4) 

Index Sets  

In the sequel, we need the following index sets:  
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J
0
:= {k0 IN | 1 k0 n and k0

(r ) (A) = 0}         (5) 

and  

 

J
0
:= {1, ,n} \ J

0

 

= {k0 IN | 1 k0 n and
k0

(r ) (A) < 0}.

        

(6)

 

Starting Point: Appropriate Representation of 
 
x(t)   

We have  

x(t) =
k=1

n

[ck
(r )xk

(r ) (t) + ck
(i )xk

(i ) (t)]  

with  

 
ck
(r ) = 2Rec1k , ck

(i ) = 2Imc1k , k =1, ,n  

(cf. [4]). Thus, due to (2),  

x(t) =
k=1

n

e k
(r ) (t t0 ) fk (t)            (7) 

with  

fk (t) := ck
(r ) [cos k

(i ) (t t0 )pk
(r ) sin k

(i ) (t t0 )pk
(i ) ]

+ ck
(i ) [sin k

(i ) (t t0 )pk
(r )

+ cos k
(i ) (t t0 )pk

(i ) ],

      (8) 

 
k =1, ,n .  

Estimate from above  

From (7), (8), one has immediately  

 
x(t) X1e

0 (t t0 ) , t t0 ,            (9) 

where 
 

 is any vector norm.  

Estimate from below  

From (7), one obtains  

x(t) =
k=1

n

e k
(r ) (t t0 ) fk (t)

k J
0

e k
(r ) (t t0 ) fk (t)

k J
0

e k
(r ) (t t0 ) fk (t)

=
k J

0

fk (t) e 0 (t t0 )

k J
0

e k
(r ) (t t0 ) fk (t) , t t0

 

(10)

 

Now,  

k J
0

fk (t) 0, t t0 ,          (11) 

since 
 
pk
(r ) , pk

(i ) ,k =1, ,n  are linearly independent according 

to the above Lemma 1. Further, the functions 

 
fk (t),t t0 ,k =1, ,n  are periodic with period 

 
2 / k

(i ) ,k =1, ,n  if 
 k
(i ) 0,k =1, ,n . This entails  

 
k J

0

fk (t)
t t0

inf
k J

0

fk (t) =:X 0
> 0, t t0 ,       (12) 

which remains valid also if k
(i ) = 0  for some or all k J

0
. 

With this,  

 

k J
0

e k
(r ) (t t0 ) fk (t) =

k J
0

e
( k
(r )

0 )(t t0 ) fk (t) e 0 (t t0 )

X
0

2
e 0 (t t0 ) , t t1 t0

    

(13) 

for sufficiently large t1 t0  since k
(r )

0 < 0,k J
0

. 

From (10), (12), (13), we infer  

 

x(t)
X

0

2
e 0 (t t0 ) = X0 e 0 (t t0 ) , t t1 t0        (14) 

with  

X0 :=
X

0

2
> 0,           (15) 

for sufficiently large t1 .  

Two-sided bound on 
 
x(t)  by  e

0
(t -t

0
)
  

Summarizing, we obtain  

Theorem 2: (Two-sided bound on x(t)  by e 0 (t t0 ) )  

Let the hypotheses (H1), (H2) , and (HS)  be fulfilled. 

Then, there exist constants X0 > 0  and X1 > 0  such that  

 
X0 e

0 (t t0 ) x(t) X1e
0 (t t0 ) , t t1 t0        (16) 

for sufficiently large t1 , where the upper bound holds for 

t1 = t0 . If x(t) 0, t t0 , then t1 = t0 .  

Proof: It remains to prove the last assertion. For this, let 

x(t) 0, t t0 . Then,  

 

(
t0 t t1

min
x(t)

e 0 (t t0 )
)e 0 (t t0 ) x(t) , t0 t t1.  

d. Two-sided bound on x(t)  by 
 
(t)   

Let  

 
A uk = kuk , k =1, ,m = 2n  

and  

k (t) := (x0 ,uk )e
Re k (t t0 ) = (x0 ,uk )e k

(r ) (t t0 ) , t t0 ,       (17) 

 
k =1, ,n  as well as  

 
(t) := [ 1(t), , n (t)]

T .          (18) 

Herewith, we get  

Theorem 3: (Two-sided bound on x(t)  by 
 
(t) )  
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Let the hypotheses (H1), (H2) , and (HS)  be fulfilled. 

Then, there exist constants 0 > 0  and 1 > 0  such that  

 0 (t) x(t) 1 (t) , t t0 .        (19) 

Proof: This follows from [2], Theorem 11 and the 
equivalence of norms in finite-dimensional spaces.  

e. Determination of the Constants 
 
ck ,k = 1, ,m = 2n  

without Hypothesis 
 
(H4) , i.e., without 

 i j ,i j,i, j = 1, ,m   

We start with the representation  

x(t) =
k=1

m=2n

ck pke
k (t t0 ) .          (20) 

Using the initial condition x(t0 ) = x0 , we conclude  

x0 =
k=1

m=2n

ck pk .           (21) 

Let  

 
P := [p1, , pm ]           (22) 

and  

 
c = [c1, , cm ]

T .           (23) 

Then,  

Pc = x0 .           (24) 

Since matrix P  is regular, the solution c  of matrix 

equation (24) is uniquely determined. For the solution of 

(24), we need not (H 4) . Any solution method can be 

applied, for example, Gaussian elimination. However, under 

the additional condition (H 4) , according to paper [5], there 

is a biorthogonal system of eigenvectors 
 
{p1, , pm},{u1 , ,um}  

so that 
 
ck ,k =1, ,m = 2n  can be calculated by 

 
ck = (x0 ,uk ),k =1, ,m , which is numerically very 

effective. Without hypothesis (H 4) , one can use the 

biorthogonalization method of the paper [6] to preserve the 

formulae 
 
ck = (x0 ,uk ),k =1, ,m .  

3.2. General Square Matrix  A   

a. Hypotheses on  A   

Again, first, we formulate some hypotheses on matrix A .  

(H1') A IR m m
,  

(H2') 
 
T 1AT = J = diag(Ji ( i ))i=1, ,r  where 

Ji ( i ) C
mi mi  are the canonical Jordan forms,  

(H3') 
 i = i (A) 0, i =1, , r ,  

(H4') 
 

i j ,i j,i, j =1, , r ,  

(HS') m = 2n , r = 2 , and the principal vectors  

 

p1
(1) , , pm1

(1); ; p1
( ) , , pm

( ); p1
(1) , , pm1

(1); ; p1
( ) , , pm

( )   

form a basis of  
m

.  

We mention that for the special hypothesis (HS )  similar 

remarks hold as for (HS)  in the case of diagonalizable 

matrices A .  

Let (H1' ) , (H2' ) , and (HS )  be fulfilled and 

 
Apk

(l ) = l pk
(l )
+ pk 1

(l ) ,k =1, ,ml ,l =1, , r , where the 

indices are chosen such that 
 

+l = l ,l =1, ,  and 

 
pk
( +l ) = pk

(l )
,k =1, ,ml ,l =1, , . The vectors pk

(l )
 are the 

principal vectors of stage k  corresponding to the eigenvalue 

l  of A .  

b. Representation of the Basis 
 
xk

(l,r)
(t), xk

(l,i)
(t),  

  
k = 1, ,ml ,l = 1, , p   

Under the hypotheses (H1' ) , (H2' ) , and (HS' ) , from 

[4] we obtain the following real basis functions for the ODE 

 
x = Ax :  

 

xk
(l ,r ) (t) = e l

(r ) (t t0 ) cos l
(i ) (t t0 ) p1

(l ,r ) (t t0 )
k 1

(k 1)!
+ + pk 1

(l ,r ) (t t0 ) + pk
(l ,r )

sin l
(i ) (t t0 ) p1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + pk 1

(l ,i ) (t t0 ) + pk
(l ,i ) ,

xk
(l ,i ) (t) = e l

(r ) (t t0 ) sin l
(i ) (t t0 ) p1

(l ,r ) (t t0 )
k 1

(k 1)!
+ + pk 1

(l ,r ) (t t0 ) + pk
(l ,r )

+ cos l
(i ) (t t0 ) p1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + pk 1

(l ,i ) (t t0 ) + pk
(l ,i ) ,

 

(25) 

 
k =1, ,ml ,l =1, , , where  

pk
(l ) = pk

(l ,r )
+ i pk

(l ,i )
 

is the decomposition of pk
(l )

 into its real and imaginary part.  

c. New Derivation of the Two-Sided Bounds on 
 
x(t)   

First, we state the following lemma.  

Lemma 4: Let the hypotheses (H1' ) , (H2' ) , and (HS' )  

be fulfilled and pk
(l ,r ) = Repk

(l ) ,pk
(l ,i ) = Impk

(l ) ,  

 
k =1, ,ml ,l =1, , . Then, the vectors pk

(l ,r ) pk
(l ,i ) ,  

 
k =1, ,ml ,l =1, ,  are linearly independent.  

Proof: The proof is similar to that of Lemma 1 and 
therefore omitted.  

Now, let 
 
uk
(l )*, k =1, ,ml  be the principal vectors of 

stage k  of A  corresponding to the eigenvalue l ,l =1,  

 
,r = 2 . Under (H1' ) , (H2' ) , and (HS' ) , the solution 

x(t)  of (1) has the form  

x(t) =
l=1

r=2

k=1

ml

c1k
(l )xk

(l ) (t) =
l=1 k=1

ml

[c1k
(l )xk

(l ) (t) + c2k
(l ) xk

(l )
(t)].  

with uniquely determined coefficients 
 
c1k
(l ) ,k =1, ,ml ,l =  

 
1, ,r = 2 . Using the relations  
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c1k
(l ) = (x0 ,uk

(l )* ), k =1, ,ml , l =1, ,

 

  c2k
(l ) =

 
c1k
( +l ) = c1k

(l )
, l =1, ,        (26) 

 (see [4], Section 3.2 for the last relation), then the spectral 

abscissa of A  with respect to the initial vector x0 IRn
 is  

 

0 := x0
[A] :=

l=1, ,r=2
max { l

(r ) (A)|x0 / M
l (A )

:= [u1
(l )*, ,uml

(l )* ]}

=
l=1, ,r=2
max { l

(r ) (A)|c1k
(l ) 0 for at least one k {1, ,ml}}

=
l=1, ,
max{ l

(r ) (A)|c1k
(l ) 0 for at least one k {1, ,ml}}

=
l=1, ,
max{ l

(r ) (A)|x0 / M
l (A )

= [u1
(l )*, ,uml

(l )* ]}

(26) 

Index Sets  

For the sequel, we need the following index sets:  

J
0
:= {l0 IN |1 l0 and l0

(r ) (A) = 0}       (27) 

and  

 

J
0
:= {1, , } \ J

0

= {l0 IN |1 l0 and
l0

(r ) (A) < 0}.
   

(28) 

Starting Point: Appropriate Representation of 
 
x(t)   

We have  

x(t) =
l=1 k=1

ml

[ck
(l ,r )xk

(l ,r ) (t) + ck
(l ,i )xk

(l ,i ) (t)]  

with  

 
ck
(l ,r ) = 2Rec1k

(l ) , ck
(l ,i ) = 2Imc1k

(l ) , k =1, ,ml ,l =1, ,  

(cf. [4]). Thus, due (25),  

x(t) =
l=1

e l
(r ) (t t0 )

k=1

ml

fk
(l ) (t)         (29) 

with  

 

fk
(l ) (t) := ck

(l ,r ) cos l
(i ) (t t0 ) p1

(l ,r ) (t t0 )
k 1

(k 1)!
+ + pk 1

(l ,r ) (t t0 )+ pk
(l ,r )

sin l
(i ) (t t0 ) p1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + pk 1

(l ,i ) (t t0 )+ pk
(l ,i )

+ ck
(l ,i ) sin l

(i ) (t t0 ) p1
(l ,r ) (t t0 )

k 1

(k 1)!
+ + pk 1

(l ,r ) (t t0 )+ pk
(l ,r )

+cos l
(i ) (t t0 ) p1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + pk 1

(l ,i ) (t t0 )+ pk
(l ,i )

(31) 

 
k =1, ,ml ,l =1, , .  

Estimate from above  

From (30), (31), for every > 0 , one has immediately  

 
x(t) X1( )e

( 0+ )(t t0 ) , t t0 .        (32) 

Estimate from below  

From (30), one obtains  

  

 

     (33)

 

Now,  

l J
0
k=1

ml

fk
(l ) (t) 0, t t0 ,          (34) 

since 
 
pk
(l ,r ) , pk

(l ,i ) ,k =1, ,ml ,l =1, ,  are linearly 

independent according to the above Lemma 4. Further, the 

functions 
 
fk
(l ) (t),t t0 ,k =1, ,ml ,l =1, ,  are periodic 

with period 
 
2 / k

(i ) ,k =1, ,ml ,l =1, ,  if l
(i ) 0,  

 
k =1, , . This entails  

 
l J

0
k=1

ml

fk
(l ) (t)

t t0

inf
l J

0
k=1

ml

fk
(l ) (t) =:X

0
> 0, t t0 ,    (35) 

which remains valid also if l
(i ) = 0  for some or all l J

0
. 

With this,  

 

   (36)

 
for sufficiently large t1 t0  since l

(r )
0 < 0,l J

0
.  

Two-sided bound on 
 
x(t)  by  e

0
(t -t

0
)
  

Summarizing, from (32), (33), (35), (36), we obtain  

Theorem 5: (Two-sided bound on x(t)  by e 0 (t t0 ) )  

Let the hypotheses (H1' ), (H2' ) , and (HS1' )  be fulfilled. 

Then, there exists a constant X0 > 0  and for every > 0  a 

constant X1( ) > 0  such that  

 
X0 e

0 (t t0 ) x(t) X1( )e
( 0+ )(t t0 ) , t t1 t0      (37) 

for sufficiently large t1 , where the upper bound holds for 

t1 = t0 . If x(t) 0, t t0 , then t1 = t0 . Further, if the index 
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of every eigenvalue = (A)  with Re = 0  is equal to 

unity, then = 0  can be chosen.  

Proof: (37) has been proven; the rest is left to the reader.  

d. Two-sided Bound on 
 
x(t)  by 

  
(t)   

Let  

 

and  

 

px0 ,k 1
(l ) (t t0 ) := (x0 , p1

(l ) (t t0 )
k 1

(k 1)!
+ + pk 1

(l ) (t t0 )+ pk
(l ) ),       (38) 

 
k =1, ,ml , l =1, , r = 2  as well as  

k
(l ) (t) := px0 ,k 1

(l ) (t t0 )e l
(r ) (t t0 ) ,         (39) 

 
k =1, ,ml , l =1, , r = 2 ; further, let  

 

(l ) (t) := [ 1
(l ) (t), , ml

(l ) (t)]T ,         (40) 

 
l =1, , r = 2  and  

 
(t) := [ 1(t)

T , , r (t)
T ]T .         (41) 

Herewith, we get  

Theorem 6: (Two-sided bound on x(t)  by 
 
(t) )  

Let the hypotheses (H1' ), (H2' ) , and (HS1' )  be fulfilled. 
Then, there exist constants 0 > 0  and 1 > 0  such that  

 0 (t) x(t) 1 (t) , t t0 .        (42) 

Proof: This follows from [2], Theorem 13 and the 
equivalence of norms in finite-dimensional spaces.  

e. Determination of the Constants 
  
ck

(l)
,k = 1,  

  
,ml ,l = 1, ,r  without Hypothesis 

 
(H4

'
) ,  

i.e., without 
 

i j ,i j,i, j =1, , r   

We start with the representation  

x(t) =
l=1

r

k=1

ml

ck
(l )xk

(l ) (t), t t0 .  

Substituting t = t0  and using x(t0 ) = x0 , we conclude  

x0 =
l=1

r

k=1

ml

ck
(l )pk

(l ) .           (43) 

Let  

 

P := [p1
(1) , , pm1

(1); ; p1
(r ) , , pmr

(r ) ]         (44) 

and  

 

c(l ) = [c1
(l ) , , cml

(l ) ]T ,          (45) 

 
l =1, , r  as well as  

 
c = [c(1)T , ,c(r )T ]T .          (46) 

Then,  

Pc = x0 .           (47) 

Since matrix P  is regular, the solution c  of matrix 

equation (47) is uniquely determined. For the solution of 

(47), we need not (H 41) . Any solution method can be 

applied, for example, Gaussian elimination. However,  

under the additional condition (H 41) , according to paper  

[5], there is a biorthogonal system of principal vectors 

 

{p1
(1) , , pm1

(1); ; p1
(r ) , , pmr

(r )},{v1
(1) , ,vm1

(1) ; ;v1
(r ) , ,vmr

(r ) }  

with vk
(l ) =  

 

uml k+1
(l ) ,k =1, ,ml ,l =1, ,r . Without hypo- 

thesis (H 41) , one can use the biorthogonalization method of 

the paper [6] to construct a biorthogonal system.  

4. THE STATE-SPACE DESCRIPTION OF 

   
My + By + Ky = 0, y(t

0
) = y

0
, y(t

0
) = y

0
  

Let M ,B,K IRn n
 and 

 
y0 , y0 IRn

. Further, let M  be 

regular. The matrices M , B , and K  are the mass, damping, 

and stiffness matrices, as the case may be; y0  is the initial 

displacement and 
 
y0  the initial velocity. We study the initial 

value problem  

 
My + By + Ky = 0,y(t0 ) = y0 ,y(t0 ) = y0 ,        (48) 

where y(t)  is the sought displacement and 
 
z(t) = y(t)  the 

associated velocity.  

State-Space Description  

Let  

 

x :=
y

z
=

y

y
, x0 :=

y0
z0

=
y0
y0

,       (49) 

and  

A=
O E

M 1K M 1B
;         (50) 

x  is called state vector and A  system matrix. Herewith, (48) 

is equivalent to  

 
x = Ax,x(t0 ) = x0 .          (51) 

In the sequel, we need only the special form of x(t) .  

5. TWO-SIDED BOUNDS ON 
 
y(t)   

In this section, we derive bounds on y(t)  corresponding 
to those on x(t)  in Section 3.  

5.1. Diagonalizable Matrix  A   

a. Hypotheses on  A   

We suppose (H1), (H2) , and (HS) ; (H 3)  is not 

needed, and (H 4)  is needed only if the coefficients ck  are 

to be calculated by 
 
ck = (x0 ,uk ),k =1, ,n .  

b. Representation of the Basis 
  
yk

(r)
(t), yk

(i)
(t),k = 1, ,n   

As in [4], let  
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xk
(r ) (t) :=

yk
(r ) (t)

yk
(r ) (t)

, xk
(i ) (t) :=

yk
(i ) (t)

yk
(i ) (t)

, pk :=
qk
rk

,  

 
k =1, ,m = 2n . Then, from (2),  

yk
(r ) (t) = e k

(r ) (t t0 ) cos k
(i ) (t t0 )qk

(r ) sin k
(i ) (t t0 )qk

(i ) ,

yk
(i ) (t) = e k

(r ) (t t0 ) sin k
(i ) (t t0 )qk

(r )
+ cos k

(i ) (t t0 )qk
(i ) ,

  

(52) 

 
k =1, ,n .  

c. Derivation of the Two-Sided Bounds on 
 
y(t)  by  e

0
(t -t

0
)
  

Starting point: Appropriate representation of 
 
y(t)   

From (7), (8), we conclude  

y(t) =
k=1

n

e k
(r ) (t t0 ) gk (t)          (53) 

with  

gk (t) := ck
(r ) [cos k

(i ) (t t0 )qk
(r ) sin k

(i ) (t t0 )qk
(i ) ]

+ ck
(i ) [sin k

(i ) (t t0 )qk
(r )

+ cos k
(i ) (t t0 )qk

(i ) ],

(54) 

 
k =1, ,n .  

Estimate from above  

From (49)and (16), one has immediately  

 
y(t) 2 x(t) 2 X1,2 e

0 (t t0 ) , t t0;  

due to the equivalence of norms in finite-dimensional spaces, 

this entails  

 
y(t) Y1e

0 (t t0 ) , t t0 ,          (55) 

for a constant Y1 > 0 .  

Estimate from below  

Here, we have to investigate two cases.  

Case 1:  

k J
0

gk (t) 0, t t0 .          (56) 

We mention that the corresponding inequality (11) for 
x(t)  could be proven by use of Lemma 1. Now, from (56), it 
follows  

 
k J

0

gk (t)
t t0

inf
k J

0

gk (t) =:Y 0
> 0, t t0 .       (57) 

Similarly as for x(t) , here  

 

y(t)
Y

0

2
e 0 (t t0 ) , t t1 t0         (58) 

for sufficiently large t1 .  

 

Case 2:  

k J
0

gk (t) = 0, for at least one t t0 .        (59) 

In this case, (57) and therefore (58) remain valid only for 

Y
0
= 0 .  

Two-sided bound on 
 
y(t)  by   e

0
(t -t

0
)

  

Summarizing, we obtain  

Theorem 7: (Two-sided bound on y(t)  by e 0 (t t0 ) )  

Let the hypotheses (H1), (H2) , and (HS)  be fulfilled 

and additionally condition (56). Then, there exist constants 

Y0 > 0  and Y1 > 0  such that  

 
Y0 e

0 (t t0 ) y(t) Y1e
0 (t t0 ) , t t1 t0        (60) 

for sufficiently large t1 , where the upper bound holds for 

t1 = t0 . If y(t) 0, t t0 , then t1 = t0 . If, instead of (56), 

condition (59) is fulfilled, then the lower bound is only valid 

with Y0 = 0 . 

According to Lemma 1, a sufficient algebraic condition 

for (11) is the linear independence of pk
(r ) ,pk

(r ) ,k J
0

. 

Similarly, we have  

Sufficient algebraic condition for 
k J

0

gk (t) 0, t t0 :  

qk
(r ) ,qk

(i ) ,k J
0

 are linearly independent.  

Sufficient algebraic condition for  

for at least one t t0 :   

J
0
= {k0}  and qk0

(r ) ,qk0
(i )

 are linearly dependent, e.g.,  

qk0
(i ) = k0

qk0
(r ) .           (61) 

Because then,  

gk0 (t) := ck0
(r ) [cos k0

(i ) (t t0 )qk0
(r ) sin k0

(i ) (t t0 )qk0
(i ) ]

+ ck0
(i ) [sin k0

(i ) (t t0 )qk0
(r )

+ cos k0

(i ) (t t0 )qk0
(i ) ]

  (62) 

             
= Ak0 cos k0

(i ) (t t0 ) + Bk0 sin k0

(i ) (t t0 ) qk0
(r ) , t t0 ,

 
with  

Ak0 := ck0
(r )

+ k0
ck0
(i ) ,

Bk0 := ck0
(r )

k0
ck0
(i ) .

         (63) 

Since the factor in the bracket of gk0 (t)  takes on the 
value zero, we have proven that (61) is sufficient for (59).  

Theorem 8: (Two-sided bound on y(t)  by 
 
(t) )  

Let the hypotheses (H1), (H2) , and (HS)  be fulfilled 
and additionally (56). Then, there exist constants 0 > 0  and 

1 > 0  such that for sufficiently large t1 t0 ,  

 0 (t) y(t) 1 (t) , t t1 t0 ,        (64) 
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with (t)  defined by (18), where t1 = t0  if y(t) 0,t t0 .  

Proof: From (16) and (60), it follows  

 

Y0
X1

x(t) Y0 e
0 (t t0 ) y(t) Y1e

0 (t t0 )

Y1
X0

x(t) , t t1 t0 .
       (65) 

From (19), we infer  

 

 

t t1 t0 ; set 0 :=
Y0
X1

0  and 1 :=
Y1
X0

1 . Then, 0 > 0  

and 1 > 0 , and (64) is proven.  

5.2. General Square Matrix  A   

a. Hypotheses on  A   

We suppose (H1' ), (H2' ) , and (HS ) ; (H 3' )  is not 

needed, and (H 4' )  is needed only if the coefficients c1k
(l )

 are 

to be computed by 
 

c1k
(l ) = (x0 ,uml k+1

(l ) ),k =1, ,ml ,l =1, , .  

b. Representation of the Basis 
  
yk

(l,r)
(t), yk

(l,i)
(t),k = 1,  

  
,ml ,l = 1, , p   

As in [4], let  

 

yk
(l ,r ) (t) :=

yk
(l ,r ) (t)

yk
(l ,r ) (t)

, yk
(l ,i ) (t) :=

yk
(l ,i ) (t)

yk
(l ,i ) (t)

, pk
(l ) :=

qk
(l )

rk
(l )

,  

 
k =1, ,ml ,l =1, , . Then, from (25),  

 

yk
(l ,r ) (t) = e l

(r ) (t t0 ) cos l
(i ) (t t0 ) q1

(l ,r ) (t t0 )
k 1

(k 1)!
+ + qk 1

(l ,r ) (t t0 )+ qk
(l ,r )

sin l
(i ) (t t0 ) q1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + qk 1

(l ,i ) (t t0 )+ qk
(l ,i ) ,

yk
(l ,i ) (t) = e l

(r ) (t t0 ) sin l
(i ) (t t0 ) q1

(l ,r ) (t t0 )
k 1

(k 1)!
+ + qk 1

(l ,r ) (t t0 )+ qk
(l ,r )

+cos l
(i ) (t t0 ) q1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + qk 1

(l ,i ) (t t0 )+ qk
(l ,i ) ,

 

(66) 

 
k =1, ,ml ,l =1, , .  

c. Two-sided Bound on 
 
y(t)  by   e

0
(t -t

0
)
  

Starting Point: Appropriate Representation of 
 
y(t)   

We have  

y(t) =
l=1

e l
(r ) (t t0 )

k=1

ml

gk
(l ) (t)          (67) 

with  

 

gk
(l ) (t) := ck

(l ,r ) cos l
(i ) (t t0 ) q1

(l ,r ) (t t0 )
k 1

(k 1)!
+ + qk 1

(l ,r ) (t t0 )+ qk
(l ,r )

sin l
(i ) (t t0 ) q1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + qk 1

(l ,i ) (t t0 )+ qk
(l ,i )

+ ck
(l ,i ) sin l

(i ) (t t0 ) q1
(l ,r ) (t t0 )

k 1

(k 1)!
+ + qk 1

(l ,r ) (t t0 )+ qk
(l ,r )

+cos l
(i ) (t t0 ) q1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + qk 1

(l ,i ) (t t0 )+ qk
(l ,i )

 
(68) 

 
k =1, ,ml ,l =1, , .  

Estimate from above  

From (49) and (37), for every > 0 , there exists a 
constant X1,2 ( ) > 0  such that  

 

due to the equivalence of norms in finite-dimensional spaces, 
this entails  

        (69) 

for a constant Y1( ) > 0 .  

Estimate from below  

Here, we have to investigate two cases.  

Case 1:  

l J
0
k=1

ml

gk
(l ) (t) 0, t t0 .          (70) 

We mention that the corresponding inequality (34) for 
x(t)  could be proven by Lemma 4. Now, from (70), it 
follows  

      
(71)

 

Similarly as for x(t) , here  

 

y(t)
Y

0

2
e 0 (t t0 ) , t t1 t0         (72) 

for sufficiently large t1 .  

Case 2:  

l J
0
k=1

ml

gk
(l ) (t) = 0, for at least one t t0 .        (73) 

In this case, (71) and therefore (72) remain valid only for 
Y
0
= 0 .  

Two-sided bound on 
 
y(t)  by   e

0
(t -t

0
)
  

Summarizing, we obtain  
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Theorem 9: (Two-sided bound on y(t)  by e 0 (t t0 ) )  

Let the hypotheses (H1' ), (H2' ) , and (HS )  be fulfilled 

and additionally (70). Then, there exists a constant Y0 > 0  

and for every > 0  a constant Y1( ) > 0  such that  

 
Y0 e

0 (t t0 ) y(t) Y1( )e
( 0+ )(t t0 ) , t t1 t0       (74) 

for sufficiently large t1 , where t1 = t0  if y(t) 0, t t0 . If 

the index of every eigenvalue = (A)  with Re = 0  is 

equal to unity, then = 0  can be chosen. If, instead of (70), 

condition (73) is fulfilled, then the lower bound is only valid 

with Y0 = 0 . 

Sufficient Condition for 
  
Y

0

> 0   

We want to give a sufficient condition for Y
0
> 0 . As a 

preparation, we first introduce some abbreviations and prove 

a lemma.  

Abbreviations:  

 

j =1: q1
(l ,r ) (t) := q1

(l ,r ) ,

q1
(l ,i ) (t) := q1

(l ,i ) ,

j = 2 : q2
(l ,r ) (t) := q1

(l ,r ) (t t0 )+ q2
(l ,r ) ,

q2
(l ,i ) (t) := q1

(l ,i ) (t t0 )+ q2
(l ,i ) ,

j = ml : qml
(l ,r ) (t) := q1

(l ,r ) (t t0 )
ml 1

(ml 1)!
+ + qml 1

(l ,r ) (t t0 )+ qml
(l ,r ) ,

qml
(l ,i ) (t) := q1

(l ,i ) (t t0 )
ml 1

(ml 1)!
+ + qml 1

(l ,i ) (t t0 )+ qml
(l ,i ) ,

 

l J
0

, for every fixed t t0 . With these abbreviations, we 

have  

Lemma 10: Let the hypotheses (H1' ), (H2' ) , and (HS )  

be fulfilled. Then, for every fixed t t0 , the vectors 

 

qk
(l ,r ) (t),qk

(l ,i ) (t),k =1, ,ml ,l J
0

 are linearly independent 

if and only if the vectors 
 

qk
(l ,r ) ,qk

(l ,i ) ,k =1, ,ml ,l J
0

 are 

linearly independent.  

Proof: : Let t = t0 . Then, 
 
qk
(l ,r ) (t0 ) = qk

(l ,r ) ,qk
(l ,i )

 

 

(t0 ) = qk
(l ,i ) ,k =1, ,ml ,l J

0
 so that the assertion follows.  

: Let t t0  be fixed and let  

 

l J
0

1
(l ,r )q1

(l ,r ) (t)+ 2
(l ,r )q2

(l ,r ) (t)+ + ml

(l ,r )qml
(l ,r ) (t){

+ 1
(l ,i )q1

(l ,i ) (t)+ 2
(l ,i )q2

(l ,i ) (t)+ + ml

(l ,i )qml
(l ,i ) (t) } = 0.

 

This means  

 

l J
0

1
(l ,r )q1

(l ,r )
+ 2

(l ,r ) q1
(l ,r ) (t t0 )+ q2

(l ,r )( ){ +

+ ml

(l ,r ) q1
(l ,r ) (t t0 )

ml 1

(ml 1)!
+ + qml 1

(l ,r ) (t t0 )+ qml
(l ,r )

+ 1
(l ,i )q1

(l ,i )
+ 2

(l ,i ) q1
(l ,i ) (t t0 )+ q2

(l ,i )( )+

+ ml

(l ,i ) q1
(l ,i ) (t t0 )

ml 1

(ml 1)!
+ + qml 1

(l ,i ) (t t0 )+ qml
(l ,i ) = 0,

 

from which we infer  

 

1
(l ,r )

+ (t t0 ) 2
(l ,r )

+
(t t0 )

2

2 3
(l ,r )

+ +
(t t0 )

ml 1

(ml 1)! ml

(l ,r ) = 0,

2
(l ,r )

+ (t t0 ) 3
(l ,r )

+ +
(t t0 )

ml 2

(ml 2)! ml

(l ,r ) = 0,

ml 1
(l ,r )

+ (t t0 ) ml

(l ,r ) = 0,

ml

(l ,r ) = 0.
 

This delivers  

 
1
(l ,r ) = 2

(l ,r ) = = ml

(l ,r ) , l J
0
;  

correspondingly,  

 
1
(l ,i ) = 2

(l ,i ) = = ml

(l ,i ) , l J
0
,  

so that the assertion follows.  

Remark: The linear independence of the vectors for every 

t t0  is much a stronger statement than the linear 

independence of the associated functions.  

Corollary 11: (Sufficient condition for Y
0
> 0  or 

Y0 > 0 )  

Let 
 

qk
(l ,r ) ,qk

(l ,i ) ,k =1, ,ml ,l J
0

 be linearly independent. 

Then, 
l J

0
k=1

ml gk
(l ) (t) 0, t t0 , so that Y

0
> 0  and therefore 

Y0 = Y 0
/ 2 > 0 , where  

Proof: Assume that 

 

l J
0

k=1

ml gk
(l ) (t ) = 0  for at least 

one 
 
t t0 . From the linear independence of 

 

qk
(l ,r ) ,qk

(l ,i ) ,k =1, ,ml ,l J
0

 and Lemma 10, one infers  

 

ck
(l ,r ) cos k

(l ) (t t0 ) + ck
(l ,i ) sin k

(l ) (t t0 ) = 0,

ck
(l ,r ) sin k

(l ) (t t0 ) + ck
(l ,i ) cos k

(l ) (t t0 ) = 0,
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k =1, ,ml ,l J
0

. Thereby, we conclude ck
(l ,r ) = ck

(l ,i ) =  

0,l J
0

. This is a contradiction to c1k
(l ) =  

(ck
(l ,r ) ck

(l ,i ) ) / 2 0  for at least one 
 

k =1, ,ml ,l J
0

. 

By a proof similar to that in Lemma 1, we have Sufficient 

algebraic condition for 
l J

0
k=1

ml gk
(l ) (t) 0, t t0 :  

 

qk
(l ,r ) ,qk

(l ,i ) ,k =1, ,ml ,l J
0

 are linearly independent.  

Likewise we have Sufficient algebraic condition for 

l J
0

k=1

ml gk
(l ) (t) = 0, for at least one t t0 : J 0

= {l0}  and 

ml0
= 1  as well as q1

(l0 ,r ) ,q1
(l0 ,i )  are linearly dependent, say, 

q1
(l0 ,i ) = l0

q1
(l0 ,r ) .  

d. Two-Sided Bound on 
 
y(t)  by 

  
(t)   

Let (70) be fulfilled so that (74) holds. Then, we have  

Theorem 12: (Two-sided bound on y(t)  by 
 
(t) )  

Let the hypotheses (H1' ), (H2' ) , and (HS )  be fulfilled 

and additionally (70). Then, for every > 0  there exist 

constants 0 ( ) > 0  and 1( ) > 0  such that  

 

0 ( ) (t) e
(t t0 ) y(t) 1( ) (t) e

(t t0 ) ,

t t1 t0
      (75) 

for sufficiently large t1 , where t1 = t0  if y(t) 0, t t0 . 

Here, (t)  is defined by (41). If the index of every 

eigenvalue = (A)  with Re = 0  is equal to unity, then 

= 0  can be chosen.  

Proof: From (37),(74), it follows  

 

Y0
X1( )

x(t) e
(t t0 ) Y0 e

0 (t t0 ) y(t)

Y1( )e
( 0+ )(t t0 ) Y1( )

X0
x(t) e

(t t0 ),
       (76) 

t t1 t0 . From (42), we infer  

 

Y0
X1( )

0 (t) e
(t t0 ) y(t)

Y1( )

X0
1 (t) e

(t t0 ), t t1 t0;  

set 0 ( ) :=
Y0
X1( )

0  and 1( ) :=
Y1( )

X0
1 . Then, 0 ( ) > 0  

and 1( ) > 0 , and (75) is proven.  

6. TWO-SIDED BOUNDS ON 
  
z(t) = y(t)   

In this section, we state bounds on 
 
z(t) = y(t)  

corresponding to those on y(t)  in Section 5. However, no 

proofs are given.  

6.1. Diagonalizable Matrix  A   

a. Hypothesis on  A   

Again, we suppose (H1), (H2) , and (HS) ; further, 

(H 3)  guarantees that the vectors 
 
rk = kqk ,k =1, ,m = 2n  

are linearly dependent, if the vectors 
 
qk ,k =1, ,m  are so, 

but later we need the stronger condition (80) below; (H 4)  is 

needed only if the coefficients ck  are to be calculated by 

 
ck = (x0 ,uk ),k =1, ,m = 2n .  

b. Representation of 
   
yk

(r)
(t), yk

(i)
(t),k = 1, ,n   

From (2),  

 

yk
(r )(t) = e k

(r ) (t t0 ) cos k
(i )(t t0 )rk

(r ) sin k
(i )(t t0 )rk

(i ) ,

yk
(i )(t) = e k

(r ) (t t0 ) sin k
(i )(t t0 )rk

(r )
+ cos k

(i )(t t0 )rk
(i ) ,

 

(77)

 

 
k =1, ,n .  

Remark: Here, it is wise to take the form (77) or [4], (57), 

and not the form [4], (58) since with the form (77), it is easy 

to carry over the results of Section 5 from x(t)  to 
 
y(t) .  

c. Two-Sided Bound on 
  
z(t) = y(t)  by   e

0
(t -t

0
)
  

Starting Point: Appropriate Representation of 
  
z(t) = y(t)   

One has  

 

z(t) = y(t) =
k=1

n

e k
(r ) (t t0 )hk (t)         (78) 

with  

hk (t) := ck
(r ) [cos k

(i ) (t t0 )rk
(r ) sin k

(i ) (t t0 )rk
(i ) ]

+ ck
(i ) [sin k

(i ) (t t0 )rk
(r )

+ cos k
(i ) (t t0 )rk

(i ) ],

 (79) 

 
k =1, ,n .  

Case 1:  

k J
0

hk (t) 0, t t0 .          (80) 

Case 2:  

k J
0

hk (t) = 0, for at least one t t0 .        (81) 

Here,  

Theorem 13: (Two-sided bound on 
 
z(t) = y(t)  by 

e 0 (t t0 ) )  

Let the hypotheses (H1), (H2) , and (HS)  be fulfilled 

and additionally (80). Then, there exist constants Z0 > 0  and 

Z1 > 0  such that  

 
Z0 e

0 (t t0 ) z(t) Z1e
0 (t t0 ) , t t1 t0        (82) 

for sufficiently large t1 , where the upper bound holds for 

t1 = t0 . If z(t) 0, t t0 , then t1 = t0 . If, instead of (80), 

condition (81) is fulfilled, then the lower bound is only valid 

with Z0 = 0 .  
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Sufficient algebraic condition for 
k J

0

hk (t) 0, t t0 :  

rk
(r ) , rk

(i ) ,k J
0

 are linearly independent.  

Sufficient algebraic condition for 

k J
0

hk (t) = 0, for at least one t t0 : J 0
= {k0}  and rk0

(r ) , rk0
(i )

 

are linearly dependent, e.g.,  

rko
(i ) = μko

rko
(r ) .           (83) 

d. Two-Sided Bound on 
  
z(t) = y(t)  by 

  
(t)   

One obtains  

Theorem 14: (Two-sided bound on 
 
z(t) = y(t)  by 

 
(t) )  

Let the hypotheses (H1) , (H2) , and (HS)  be fulfilled 

and additionally (80). Then, there exist constants 0 > 0  and 

1 > 0  such that for sufficiently large t1 t0 ,  

 0 (t) z(t) 1 (t) , t t1 t0 ,        (84) 

with (t)  defined by (18), where t1 = t0  if z(t) 0,t t0 .  

6.2. General Square Matrix  A   

a. Hypotheses on  A   

We suppose (H1' ), (H2' ) , and (HS ) ; further, (H 3' )  

guarantees that the vectors 
 

rk
(l ) ,k =1, ,ml ,l J

0
 are 

linearly dependent, if the vectors 
 

qk
(l ) ,k =1, ,ml ,l J

0
 are 

so, but later we need the stronger condition (88) below; 

(H 4' )  is needed only if the coefficients c1k
(l )

 are to be 

computed by 
 

c1k
(l ) = (x0 ,uml k+1

(l ) ),k =1, ,ml ,l =1, , .  

b. Representation of the Basis 
  
yk

(l,r)
(t), yk

(l,i)
(t),  

  
k = 1, ...,ml ,l = 1, ..., p   

One gets  

 

yk
(l ,r ) (t) = e l

(r ) (t t0 ) cos l
(i ) (t t0 ) r1

(l ,r ) (t t0 )
k 1

(k 1)!
+ + rk 1

(l ,r ) (t t0 )+ rk
(l ,r )

sin l
(i ) (t t0 ) r1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + rk 1

(l ,i ) (t t0 )+ rk
(l ,i ) ,

yk
(l ,i ) (t) = e l

(r ) (t t0 ) sin l
(i ) (t t0 ) r1

(l ,r ) (t t0 )
k 1

(k 1)!
+ + rk 1

(l ,r ) (t t0 )+ rk
(l ,r )

+cos l
(i ) (t t0 ) r1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + rk 1

(l ,i ) (t t0 )+ rk
(l ,i ) ,

 

(85) 

 
k =1, ,ml ,l =1, , .  

c. Two-Sided Bound on 
  
z(t) = y(t)   

Starting point: Appropriate Representation of 
  
z(t) = y(t)   

We have  

 

z(t) = y(t) =
l=1

e l
(r ) (t t0 )

k=1

ml

hk
(l ) (t)         (86) 

with  

 

hk
(l ) (t) := ck

(l ,r ) cos l
(i ) (t t0 ) r1

(l ,r ) (t t0 )
k 1

(k 1)!
+ + rk 1

(l ,r ) (t t0 )+ rk
(l ,r )

sin l
(i ) (t t0 ) r1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + rk 1

(l ,i ) (t t0 )+ rk
(l ,i )

+ ck
(l ,i ) sin l

(i ) (t t0 ) r1
(l ,r ) (t t0 )

k 1

(k 1)!
+ + rk 1

(l ,r ) (t t0 )+ rk
(l ,r )

+cos l
(i ) (t t0 ) r1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + rk 1

(l ,i ) (t t0 )+ rk
(l ,i )

  

(87)

 

 
k =1, ,ml ,l =1, , .  

Case 1:  

l J
0
k=1

ml

hk
(l ) (t) 0, t t0 .          (88) 

Case 2:  

l J
0
k=1

ml

hk
(l ) (t) = 0, for at least one t t0 .        (89) 

We have  

Theorem 15: (Two-sided bound on 
 
z(t) = y(t)  by 

e 0 (t t0 ) )  

Let the hypotheses (H1' ) , (H2' ) , and (HS )  be fulfilled 

and additionally (88). Then, there exists a constant Z0 > 0  

and for every > 0  a constant Z1( ) > 0  such that  

 
Z0 e

0 (t t0 ) z(t) Z1( )e
( 0+ )(t t0 ) , t t1 t0       (90) 

for sufficiently large t1 , where t1 = t0  if z(t) 0, t t0 . If 

the index of every eigenvalue = (A)  with Re = 0  is 

equal to unity, then = 0  can be chosen. If, instead of (88), 

condition (89) is fulfilled, then the lower bound is only valid 

with Z0 = 0 . 

Sufficient algebraic condition for 
l J

0
k=1

ml hk
(l )

 

(t) 0, t t0 :
 

rk
(l ,r ) , rk

(l ,i ) ,k =1, ,ml ,l J
0

 are linearly 

independent.  

Sufficient algebraic condition for 
l J

0
k=1

ml hk
(l )

 

(t) = 0, for at least one t t0 : J 0
= {l0}  and ml0

= 1  as well 

as r1
(l0 ,r ) , r1

(l0 ,i )  are linearly dependent, say,  

r1
(l0 ,i ) = μl0

r1
(l0 ,r ) .           (91) 
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d. Two-Sided Bound on 
  
z(t) = y(t)  by 

  
(t)   

We have  

Theorem 16: (Two-sided bound on 
 
z(t) = y(t)  by 

 
(t) )  

Let the hypotheses (H1' ), (H2' ) , and (HS )  be fulfilled 

and additionally (88). Then, for every > 0  there exist 

constants 0 ( ) > 0  and 1( ) > 0  such that  

 0 ( ) (t) e
(t t0 ) z(t) 1( ) (t) e

(t t0 ), t t1 t0   (92) 

for sufficiently large t1 , where t1 = t0  if y(t) 0, t t0 . 

Here, (t)  is defined by (41). If the index of every 

eigenvalue = (A)  with Re = 0  is equal to unity, then 

= 0  can be chosen.  

7. TWO-SIDED BOUNDS ON 
 
xS (t)  WITH  

S 1,..., m = 2n{ }   

In this subsection, we derive two-sided bounds on xS (t)  

similar to those on x(t) , where 
 
S {1, ,m = 2n}  is any 

subset.  

7.1. Diagonalizable Matrix  A   

Important special cases of S  are as follows:  

 

S = {1, ,m = 2n} xS (t) = x(t), pS,k = pk , k =1, ,m = 2n

S = {1, ,n} xS (t) = y(t), pS,k = qk , k =1, ,n

S = {n+1, ,2n} xS (t) = y(t), pS,k = rk , k =1, ,n

S = { j0 |1 j0 n} xS (t) = yj0 (t), pS,k = (qk ) j0 , k =1, ,n

S = {n+ j0 |1 j0 n} xS (t) = yj0 (t), pS,k = (rk ) j0 , k =1, ,n
    

(93)

 

where (qk ) j0  means the j0 th component of vector qk  and so 

on.  

We suppose that (H1), (H2) , and (HS) ; instead of 

(H 3) , condition (97) below will be used here.  

b. Representation of the Basis 
  
xS,k

(r)
(t), xS,k

(i)
(t),k = 1, ,n   

From (2),  

xS,k
(r ) (t) = e k

(r ) (t t0 ) cos k
(i ) (t t0 )pS,k

(r ) sin k
(i ) (t t0 )pS,k

(i ) ,

xS,k
(i ) (t) = e k

(r ) (t t0 ) sin k
(i ) (t t0 )pS,k

(r )
+ cos k

(i ) (t t0 )pS,k
(i ) ,

    (94) 

with  

pS,k
(r ) = Re{pS,k},

pS,k
(i ) = Im{pS,k},

 

 
k =1, ,n ,  

c. Two-Sided Bound on 
 
xS (t)  by   e

0
(t -t

0
)
  

Starting point: Appropriate Representation of 
 
xS (t)   

We have  

xS (t) =
k=1

n

e k
(r ) (t t0 ) fS,k (t)          (95) 

with  

fS,k (t) := ck
(r ) [cos k

(i ) (t t0 )pS,k
(r ) sin k

(i ) (t t0 )pS,k
(i ) ]

+ ck
(i ) [sin k

(i ) (t t0 )pS,k
(r )

+ cos k
(i ) (t t0 )pS,k

(i ) ],

 (96) 

 
k =1, ,n .  

Case 1:  

k J
0

fS,k (t) 0, t t0 .          (97) 

Case 2:  

k J
0

fS,k (t) = 0, for at least one t t0 .        (98) 

Here,  

Theorem 17: (Two-sided bound on xS (t)  by e 0 (t t0 ) )  

Let the hypotheses (H1), (H2) , and (HS)  be fulfilled 

and additionally (97). Then, there exist constants XS,0 > 0  

and XS,1 > 0  such that  

 
XS,0 e

0 (t t0 ) xS (t) XS,1e
0 (t t0 ) , t t1 t0       (99) 

for sufficiently large t1 , where the upper bound holds for 

t1 = t0 . If xS (t) 0, t t0 , then t1 = t0 . If, instead of (97), 

condition (98) is fulfilled, then the lower bound is only valid 

with XS,0 = 0 .  

Sufficient algebraic condition for 
k J

0

fS,k (t) 0,  t t0 :   

pS,k
(r ) , pS,k

(i ) ,k J
0

 are linearly independent.  

Sufficient algebraic condition for 

k J
0

fS,k (t) = 0, for at least one t t0 :   

J
0
= {k0}  and pS,k0

(r ) , pS,k0
(i )

 are linearly dependent, e.g.,  

pS,k0
(i ) = S,k0

pS,k0
(r ) .         (100) 

d. Two-Sided Bound on 
 
xS (t)  by 

  
(t)   

One obtains  

Theorem 18: (Two-sided bound on xS (t)  by 
 
(t) )  

Let the hypotheses (H1), (H2) , and (HS)  be fulfilled 

and additionally (97). Then, there exist constants S,0 > 0  

and S,1 > 0  such that for sufficiently large t1 t0 ,  

    (101) 

with (t)  defined by (18), where t1 = t0  if xS (t) 0,t t0 .  

7.2. General Square Matrix  A   

Similarly as in 7.1, we have the following important 
special cases of S :  
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S = {1, ,m = 2n} xS (t) = x(t), pS,k
(l ) = pk

(l ), k =1, ,ml , l =1, ,m = 2

S = {1, ,n} xS (t) = y(t), pS,k
(l ) = qk

(l ), k =1, ,ml , l =1, ,m = 2

S = {n+1, ,2n} xS (t) = y(t), pS,k
(l ) = rk

(l ), k =1, ,ml , l =1, ,m = 2

(102)

 

and so on.  

a. Hypotheses on  A   

We suppose (H1' ), (H2' ) , and (HS' ) ; instead of (H 3' ) , 

condition (106) below is used here.  

b. Representation of the Basis 
 
xS,k
(l ,r ) (t), xS,k

(l ,i ) (t),k =1, ,ml , 

 
,l =1, ,  

From (25),  

 

xS,k
(l ,r ) (t) = e l

(r ) (t t0 ) cos l
(i ) (t t0 ) pS,1

(l ,r ) (t t0 )
k 1

(k 1)!
+ + pS,k 1

(l ,r ) (t t0 ) + pS,1
(l ,r )

sin l
(i ) (t t0 ) pS,1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + pS,k 1

(l ,i ) (t t0 ) + pS,1
(l ,i ) ,

xS,k
(l ,i ) (t) = e l

(r ) (t t0 ) sin l
(i ) (t t0 ) pS,1

(l ,r ) (t t0 )
k 1

(k 1)!
+ + pS,k 1

(l ,r ) (t t0 ) + pS,k
(l ,r )

+ cos l
(i ) (t t0 ) pS,1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + pS,k 1

(l ,i ) (t t0 ) + pS,1
(l ,i ) ,

   

(103)

 

 
k =1, ,ml ,l =1, , .  

c. Two-Sided Bound on 
 
xS (t)  by   e

0
(t -t

0
)
  

Starting point: Appropriate Representation of 
 
xS (t)   

We have  

xS (t) =
l=1

e l
(r ) (t t0 )

k=1

ml

fS,k
(l ) (t)       (104) 

with  

 

fS,k
(l ) (t) := ck

(l ,r ) cos l
(i ) (t t0 ) pS,1

(l ,r ) (t t0 )
k 1

(k 1)!
+ + pS,k 1

(l ,r ) (t t0 )+ pS,k
(l ,r )

sin l
(i ) (t t0 ) pS,1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + pS,k 1

(l ,i ) (t t0 )+ pS,k
(l ,i )

+ ck
(l ,i ) sin l

(i ) (t t0 ) pS,1
(l ,r ) (t t0 )

k 1

(k 1)!
+ + pS,k 1

(l ,r ) (t t0 )+ pS,k
(l ,r )

+cos l
(i ) (t t0 ) pS,1

(l ,i ) (t t0 )
k 1

(k 1)!
+ + pS,k 1

(l ,i ) (t t0 )+ pS,k
(l ,i )

 

(105)

 

 
k =1, ,ml ,l =1, , .  

Case 1:  

l J
0
k=1

ml

fS,k
(l ) (t) 0, t t0 .        (106) 

 

Case 2:  

l J
0
k=1

ml

fS,k
(l ) (t) = 0, for at least one t t0 .      (107) 

We have  

Theorem 19: (Two-sided bound on 
 
z(t) = y(t)  by 

e 0 (t t0 ) )  

Let the hypotheses (H1' ) , (H2' ) , (HS ) and be fulfilled 

and additionally (106). Then, there exists a constant 

XS,0 > 0  and for every > 0  a constant XS,1( ) > 0  such 

that  

 
XS,0 e

0 (t t0 ) xS (t) XS,1( )e
( 0+ )(t t0 ) , t t1 t0     (108) 

for sufficiently large t1 , where t1 = t0  if xS (t) 0, t t0 . If 

the index of every eigenvalue = (A)  with Re = 0  is 

equal to unity, i.e., ( ) = 1 , then = 0  can be chosen. If, 

instead of (106), condition (107) is fulfilled, then the lower 

bound is only valid with XS,0 = 0 . 

Sufficient algebraic condition for  

l J
0

 
k=1

ml fS,k
(l ) (t) 0, t t0 : 

 

pS,k
(l ,r ) , pS,k

(l ,i ) ,k =1, ,ml ,l J
0

 are linearly independent.  

Sufficient algebraic condition for 

k=1

ml

l J 0

fS,k
(l ) (t) 0, for at least onet t0  J

0
= {l0}  and 

ml0
= 1  as well as pS,1

(l0 ,r ) , pS,1
(l0 ,i )  are linearly dependent, say,  

pS,1
(l0 ,i ) = S,l0

pS,1
(l0 ,r ) .        (109) 

d. Two-Sided Bound on 
 
xS (t)  by 

  
(t)   

We have  

Theorem 20: (Two-sided bound on xS (t)  by 
 
(t) )  

Let the hypotheses (H1' ) , (H2' ) , and (HS )  be fulfilled 

and additionally (106). Then, for every > 0  there exist 

constants S,0 ( ) > 0  and S,1( ) > 0  such that  

 

S,0 ( ) (t) e
(t t0 ) xS (t) S,1( ) (t) e

(t t0 ) ,

t t1 t0
    (110) 

for sufficiently large t1 , where t1 = t0  if xS (t) 0, t t0 . 

Here, (t)  is defined by (41). If the index of every 

eigenvalue = (A)  with Re = 0  is equal to unity, then 

= 0  can be chosen.  

8. APPLICATIONS  

8.1. The Vibration Problem  

Consider the multi-mass vibration model in Fig. (1).  
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The associated initial-value problem is given by 

 
M y + By + K y=0, y(0) = y0 , y(0) = y0  

where 
 
y=[y1, , yn ]

T
 and  

M=

 

m1

m2

m3

mn

,  

B=

 

b1 +b2 b2
b2 b2 +b3 b3

b3 b3 +b4 b4

bn 1 bn 1 +bn bn
bn bn +bn+1

,  

K=

 

k1 + k2 k2
k2 k2 + k3 k3

k3 k3 + k4 k4

kn 1 kn 1 + kn kn
kn kn + kn+1

,  

or, in the state-space description 
 
x(t)=Ax(t), x(0) = x0 ,  

where the state vector x  is given by 
 
x = [yT , zT ]T , z = y , 

and where the system matrix A  has the form  

A =
O E

M 1K M 1B
.  

As in [2], we specify the values as  

 

mj = 1, j =1, ,n

kj = 1, j =1, ,n+1

and

bj =
1/ 2, j even

1 / 4, j odd.

 

With the above numerical values, we have M =E,  

B=

 

3

4

1

2
1

2

3

4

1

4
1

4

3

4

1

2

1

4

3

4

1

2
1

2

3

4

 

(if n  is even), and  

 

K=

2 1
1 2 1

1 2 1

1 2 1
1 2

.  

Further, let  

 
y0 = [ 1,1, 1,1, 1]

T , y0 = [0, 0, 0, 0, 0]
T

 

so that x0 = [y0
T , z0

T ]T  with 
 
z0 = y0 . We choose n=5 in this 

paper so that m = 2n =10 . Thus, M ,B,K IR5 5  and 

A IR 10 10
. Finally,  

t0 = 0.  

Here, we obtain 
 

i j ,i j,i, j =1, ,m =10 ; therefore, 

A  is diagonalizable, and = 0  can be set. Further, for 

u0 = T
1x0 , we have 

 
u0, j 0, j =1, ,m =10  so that 

 
0 = x0

[A] = [A] = maxj=1, ,10Re j (A) 0.050239  (see 

[1]). We remark that BM 1K KM 1B .  

Enumerating the eigenvalues such that j
(i ) > 0  and j

(r )
 

are increasing for 
 
j =1, , 5  as well as j+5 = j , 

 
j =1, , 5 , we obtain  

1 = 0.69976063878053+1.79598147815975i,

2 = 0.56266837404074 +1.61635870164386i,

3 = 0.37500000000000 +1.36358901432946i,

4 = 0.18733162595926 + 0.99452168646559i,

5 = 0.05023936121946 + 0.51637145071101i,

 

and thus J
0
= {5} . Further,  

 

Fig. (1). Multi-mass vibration model.  
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p5 ==
q5

r5
=   

0.25786399565391+ 0.01653656897030i
0.44351627218028 + 0.00006053419538i

0.51248089685635
0.44351627218028 + 0.00006053419538i
0.25461690120244 0.01653656897030i

0.02149393453213+ 0.13232281886012i
0.02231323233506 + 0.22901609968036i
0.02574671289524 + 0.26463050417139i
0.02231323233506 + 0.22901609968036i
0.00425277836311+ 0.13230768531127i

.
 

Here, q5
(r ) ,q5

(i )
 resp. r5

(r ) ,r5
(i )

 are linearly independent. 

Thus, the constant Y0  in Theorem 7 resp. the constant Z0  in 

Theorem 13 is positive.  

8.2. Two-Sided Bounds on 
 
y(t)   

In Section 5.1, we have derived the bounds  

 
Y0,2 e

0 (t t0 ) y(t) 2 Y1,2 e
0 (t t0 ) , t t1 t0      (111) 

and  

 
0,2 (t) y(t) 2 1,2 (t) , t t1 t0 ,     (112) 

with positive constants Y0,2 ,Y1,2  and 0,2 , 1,2 . The best 

constants Y1,2  and 1,2  are obtained by the differential 

calculus of norms. For example, the optimal constant 1,2  is 

computed from the conditions  

 

y(tc,2 ) 2 =
!

1,2 (tc,2 ) 2 ,

D
+

y(tc,2 ) 2 =
!

1,2D+
(tc,2 ) 2 ,

 

which leads to  

 

D
+

y(tc,2 ) 2

y(tc,2 ) 2

=
D

+
(tc,2 ) 2

(tc,2 ) 2

 

or  

 
D

+
y(tc,2 ) (tc,2 ) 2 D

+
(tc,2 ) 2 y(tc,2 ) = 0.  

When the point of contact tc,2  between 
 
y = y(t) 2  and 

 
y = (t) 2  has been computed from this nonlinear algebraic 

equation in tc,2 , then 1,2  is obtained from  

 

1,2 =
y(tc,2 )

(tc,2 ) 2

.  

The lower bound y = Y0,2 e 0 (t t0 )  resp. 
 
y = 0,2 (t) 2  

meets the curve 
 
y = y(t) 2  at the point tc,2 , where it has a 

kink like | t |1/2  at t = 0  (in contrast to the curve 
 
y = x(t) 2 ) 

as can be clearly seen from the plot of 
 
y = y(t) 2  for 

25 t 50  (not presented here). Therefore, tc,2  cannot be 

determined by the differential calculus of norms; instead, it 

must be computed from  

 

tc,2 =
j=1,2,
min y(t j ,2 ) 2 ,  

where 
 
t j ,2 , j =1, 2,  are the local minima of 

 
y = y(t) 2 . In 

the sequel, we use the additional index l  for lower bound 

and the additional index u  for the upper bound. In this way, 

for (111), we get  

 

tc,l ,2 27.591842,

Y0,2 0.00307318,

 

as well as  

 

tc,u,2 0.014088,

Y1,2 2.236857.

 

In Fig. (2), the curve 
 
y = y(t) 2  and the upper bound 

y = Y1,2 e 0 (t t0 )  are drawn.  

 

Fig. (2). 
 
y = y(t) 2  and optimal upper bound y =Y1,2 e 0 (t t0 )   

For (112), we obtain  

 

tc,l ,2 27.591842,

0,2 0.028839,

 

as well as  

 

tc,u,2 48.885432,

1,2 1.557559.

 

In Fig. (3), the curve 
 
y = y(t) 2  and the upper bound 

 
y = 1,2 (t) 2  are plotted, and in Fig. (4), the curve 

 
y = y(t) 2  along with the two-sided bounds 

 
y = 0,2 (t) 2  

and 
 
y = 1,2 (t) 2 . The upper bound 

 
y = 1,2 (t) 2  

depends on x0  and adapts faster to the curve 
 
y = y(t) 2  

than the upper bound y = Y1,2 e 0 (t t0 ) ; but, in the initial 
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domain, 
 
y = 1,2 (t) 2  is worse than y = Y1,2 e 0 (t t0 ) . This 

can be remedied, however, by the method described in [7].  

8.3. Two-Sided Bounds on 
  
z(t) = y(t)   

In Section 6.1, we have derived the bounds  

 
Z0,2 e

0 (t t0 ) z(t) 2 Z1,2 e
0 (t t0 ) , t t1 t0      (113) 

and  

 
0,2 (t) z(t) 2 1,2 (t) , t t1 t0 ,     (114) 

with positive constants Z0,2 ,Z1,2  and 0,2 , 1,2 . The best 

constants are computed like Y1,2 ,Y1,2  and 1,2 , 1,2  in Section 

8.2. For (113), we get  

 

tc,l ,2 42.613832,

Z0,2 0.002200,

 

as well as  

 

tc,u,2 0.688631,

Z1,2 2.758394.

 

In Fig. (5), the curve 
 
y = z(t) 2  and the upper bound 

y = Z1,2 e 0 (t t0 )  are drawn.  

For (114), we obtain  

 

tc,l ,2 24.357362,

0,2 0.016083,

 

as well as  

 

tc,u,2 0.879345,

1,2 1.632277.

 

In Fig. (6), the curve 
 
y = z(t) 2  and the upper bound 

 
y = 1,2 (t) 2  are plotted, and in Fig. (7), the curve 

 
y = z(t) 2  along with the two-sided bounds 

 
y = 0,2 (t) 2  

and 
 
y = 1,2 (t) 2 . Similar remarks to those at the end of 

Section 8.2 hold.  

8.4. Computational Aspects  

In this subsection, we say something about the used 
computer equipment and the computation time.  

 

Fig. (3). 
 
y = y(t) 2  and optimal upper bound 

 
y = 1,2 (t) 2   

 

Fig. (4). 
 
y = y(t) 2  and optimal two-sided bounds 

 
y = 0,2 (t) 2  and 

 
y = 1,2 (t) 2   

 

Fig. (5). 
 
y = z(t) 2  and optimal upper bound y = Z1,2 e 0 (t t0 )   

 

Fig. (6). 
 
y = z(t) 2  and optimal upper bound 

 
y = 1,2 (t) 2   
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(i) As to the computer equipment, the following hardware 
was available: a Pentium II CPU at 300 MHz, an 8 GB mass 
storage facility, two SDRAM 64 MB high-speed memories. 
As software package for the computations, we used 368-
Matlab, Version 4.2.c, for the generation of the figures, 
Version 6.0, in order to be able to caption them.  

 (ii) The computation time t  of an operation was 

determined by the command sequence t1=clock; operation; 

t=etime(clock,t1); it is put out in seconds rounded to two 

decimal places, by MATLAB. For example, to compute the 

points of contact and to generate the table of values 

t, y(t), yu (t), yl (t),t = 0(0.1)25  for Figs. (4 and 7), we 

obtained t4 = 2.26s  and t7 = 1.93s .  

9. CONCLUSION  

In this paper, for the vibration problem 

 
My + By + Ky = 0,y(t0 ) = y0 ,y(t0 ) = y0 , two-sided bounds on 

the displacement vector y(t)  and the velocity vector 
 
y(t)  

are derived. These bounds have the same shapes as the two-

sided bounds on the solution x(t)  of the corresponding state-

space problem 
 
x = Ax,x(t0 ) = x0 . Even two-sided bounds on 

any quantity xS (t)  where 
 
S {1, ,m = 2n}  are obtained. 

The differential calculus of norms is used to compute the 

optimal constants in the upper bounds, whereas the best 

lower bounds must be determined via the local minima since 

the curves have kinks there. Along with the papers [4-6], one 

is now able to handle the solution of the above vibration 

problem in nearly the same way as for one-mass models. 

Therefore, the papers [4-6] and this paper make a major 

contribution to Computational Engineering, especially to 

Computational Mechanics. It could turn out to be of great 

value also in Computational Electrics. In retrospect, a 

mathematician might be tempted to derive the two-sided 

bounds on xS (t)  first and to obtain the two-sided bounds on 

x(t) , y(t) , and 
 
z(t) = y(t)  as special cases. We have not 

done this here since the results are mainly of interest to 

engineers and since we think the presented way will be more 

convenient and simpler to understand for them. The method 

described here is also applicable to models with system 

matrix A IRm m
 where m  is an odd natural number such 

as A IR 3 3
from [3], Fig. 3.1, when the appropriate 

adaptations are made for the solution bases.  

10. COMMENTS ON THE REFERENCES  

The References [1, 2, 4-16] contain the most important 
contributions to the author's current research area. In [3, 17-
22] the reader finds dynamical problems of interest with 
respect to the present paper. In the References [23-26] there 
is some material on Linear Algebra useful in the context of 
the paper. The references [27] and [28] are on functional 
analytical methods used in the author's work. Finally, [29] is 
a useful reference book on numerical solution methods of 
ordinary differential equations consulted by the author in his 
work.  

11. OUTLOOK ON FUTURE WORK  

The question naturally arises as to whether the method 

presented for the IVP 
 
x = Ax,x(t0 ) = x0  in this paper can be 

carried over to more general differential equations. In order 

to assess the chances to be able to do this, we want to look 

back to what was possible in the past work. What can be said 

is the following: In [12], it was possible to treat problems 

with periodic system matrix, i.e. the IVP 

 
x = A(t)x,x(t0 ) = x0  with A(t) = A(t + t p )  in a similar way 

as for 
 
x = Ax,x(t0 ) = x0 , more precisely, it was possible to 

derive an upper bound on x(t)  of the same form as for the 

case of a constant matrix. Further, in [7], the same held for 

the quasilinear IVP 
 
x = Ax + h(t, x),x(t0 ) = x0 . Therefore, 

one can be optimistic to carry over the results of the present 

paper to the case of an IVP with periodic system matrix and 

to the case of a quasilinear IVP. These issues will be the 

subject of the author's pertinent future scientific work.  
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