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1. INTRODUCTION 

 The central issue of this paper is the investigation and the 
computation of the positive definite solutions of the matrix 
equation 

X
s
+ A

*
X

! s
A =Q,  (1) 

where the nonsingular matrix A !M
n
,  M

n
 denotes the set 

of all n ! n  matrices with complex or real entries, A
*  

stands for the conjugate transpose of A,  Q !M
n

 is a 
positive definite matrix and s  is an integer. The matrix 
equation of the form (1) arises in many applications in a 
wide variety of research areas including control theory, 
ladder networks, dynamic programming, stochastic filtering 
and statistics, see [1-3] and the references given therein. In 
the case that A  is nonsingular and s =1 , necessary and 
sufficient conditions for the existence of a positive definite 
solution of the matrix equation (1) have been investigated by 
many authors [1, 2, 4-6] and formulas for the computation of 
Hermitian and non-Hermitian solutions can be found in [4]. 

 The more general equation Xs
+ A

*
X

! t
A =Q , with A  

nonsingular, has been considered in [7-9] (see also 
references therein), when s, t  are positive integers and in 
[10] when s ! 1, 0 < t " 1  and 0 < s ! 1, t " 1 ; there some 
existence conditions and properties of its positive definite 
solutions are obtained. Also, in some papers numerical 
methods for computing the extreme solutions and several 
effective iterative algorithms have been proposed [9-12] and 
a perturbation analysis of the positive definite solutions has 
been presented. 

 To describe our results, we introduce some notations and 
definitions. For A,B !M

n
,  the notation A > B(A ! B)   
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means that A  and B  are Hermitian matrices and A ! B  is 
a positive definite (semidefinite) matrix, which is denoted by 
A ! B > 0(A ! B " 0) . For A !M

n
,  !

i
(A)  denotes an 

eigenvalue of A , ! (A)  the spectrum of A , 

!(A) = max{| "
i
(A) |: "

i
(A)#$ (A)}  

 
! A != max{ !

i
(A

*
A): !

i
(A

*
A)"# (A

*
A)}  

denotes the spectral radius and spectral norm of A , 
respectively, and 

 
r(A) = max{| x

*
Ax |: for each vector x !!

n
, with x

*
x =1} (2) 

the numerical radius of A . Let A !M
n
 be a Hermitian 

matrix, !
i
(A)"# (A)  are indexed in increasing order 

 
!
min
(A) = !

1
(A) " !

2
(A) "! " !

n
(A) = !

max
(A).  It is also 

known [1, 3-6] that, when the matrix equation (1) for s =1  
has a positive definite solution X,  then there exist minimal 
and maximal solutions X

min
 and X

max
,  respectively, such 

that 0 < X
min

! X ! X
max

 for any positive definite solution 
X.  The minimal and maximal solutions are referred as the 

extreme solutions. Moreover, the existence of a positive 
definite solution depends on the numerical radius of the 
matrix Q!1/2

AQ
!1/2
,  [5, Theorem 5.2]. 

 Note that, setting in (1) 

Y = X
s  (3) 

we obtain 

Y + A
*
Y

!1
A =Q.  (4) 

 Furthermore without loss of generality, s  in (1) may be 
assumed to be a positive integer. Indeed, in the case that 
s ! "1  setting Z = X !1  the equation (1) takes the form 

Z
! s
+ A

*
Z
s
A =Q" Z

s
1 + A

*
Z

! s
1A =Q, for s

1
# 1.  
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 In this paper, we focus on the computation of the positive 
definite solutions of the matrix equation (1), with A !M

n
 a 

nonsingular matrix, Q > 0  and s  an integer with s ! 1 . In 
Section 2, necessary and sufficient conditions for the 
existence of positive definite solutions of (1) are obtained, a 
new inequality for the spectral radius of A,Q  is presented 
and in Theorem 7 a formula for computing all the positive 
definite solutions of (1) is given; when the matrices A,Q  
have special properties, more specific necessary and 
sufficient conditions for the existence of solutions of (1) are 
discussed, related to some new inequalities for their 
eigenvalues. In Section 3, bounds for the eigenvalues of the 
minimal solution of (1) are given; an algebraic method for 
computing the positive definite solutions is proposed, based 
on the algebraic solution of the corresponding discrete time 
Riccati equation and the exact number of positive definite 
solutions of (1) is computed, when these exist. In Section 4, 
a numerical result is given to illustrate the efficiency of the 
proposed method and finally, concluding remarks are given 
in Section 5. 

2. EXISTENCE AND FORMULA OF THE POSITIVE 
DEFINITE SOLUTIONS OF Xs

+ A
*
X

! s
A =Q  

 In the first part of this section, we utilize the concept of 
numerical radius in order to derive necessary and sufficient 
conditions for the existence of positive definite solutions of 
(1). We need the following lemma. 

 Lemma 1 [13, Theorem 7.2.6] Let A !M
n
 be a positive 

semidefinite matrix and let s ! 1  be a given integer. Then 
there exists a unique positive semidefinite matrix B  such 
that Bs

= A . 

 Theorem 2 Let A !M
n

 be a nonsingular matrix and 
Q !M

n
 with Q > 0.  The equation Xs

+ A
*
X

! s
A =Q  has a 

positive definite solution X !M
n

 if and only if for the 
numerical radius of Q!1/2

AQ
!1/2  holds 

r(Q
!1/2
AQ

!1/2
) "
1

2
.  (5) 

 Proof. Since the solving of the matrix equation (1) is 
equivalent to (4) by (3), according to Lemma 1 assuming 
that Y !M

n
 is a positive definite solution of (4), then there 

exists a unique s th root of Y !M
n

, which is X > 0  and 
solves the equation (1). Hence, it is needed the proof of the 
equivalence between the numerical radius in (5) and the 
solving of (4), which follows essentially the same lines as 
the proof of Theorem 5.2 of Engwerda et al. [5] and is 
omitted.  

 Remark 1 Consider that for the matrices A,Q !M
n

 of 

the nonlinear matrix equation (1) holds r(Q!1/2
AQ

!1/2
) "
1

2
.  

According to Theorem 2 and [8, Theorem 3.3] it is easy to be 
proved that for the eigenvalues of A

*
A,Q !M

n
,  the 

following inequality holds: 

!
min
(A

*
A) "

1

4
#(Q)( )

2  

 The following result presents the relation of spectral radii 
of A,Q  in (1); the conclusion is the same as in [7, Theorem 
3.1] without the assumption that the matrices satisfy 
AQ

1/2
=Q

1/2
A . 

 Theorem 3 Let A !M
n

 be a nonsingular matrix, 
Q !M

n
 with Q > 0.  If the matrix equation 

X
s
+ A

*
X

! s
A =Q  has a positive definite solution, then 

!(A) "
1

2
!(Q).  (6) 

 Proof. Let !(A)"# (A)  and x  its corresponding 
eigenvector. Multiplying the equation (1) on the left and on 
the right by x*  and x  respectively, due to Ax = !(A)x , we 
take : 

x
*
X

s
x + x

*
A
*
X

! s
Ax = x

*
Qx  

x
*
X

s
x+ | !(A) |

2
x
*
X

" s
x = x

*
Qx  (7) 

 Since X > 0 , there exists a unitary matrix V !M
n
 and a 

positive real diagonal matrix 
 
D = diag{!1(X),!,!n (X)} , 

!
i
(X)"# (X), (1 $ i $ n) , such that X =VDV * . Using the 

above notation, the equation (7) can be rewritten as 

x
*
VD

s
V
*
x+ | !(A) |

2
x
*
VD

" s
V
*
x = x

*
Qx.  

 Setting the nonzero vector 
 
y =V

*
x !!

n  we have 

y
*
D

s
y+ | !(A) |

2
y
*
D

" s
y = y

*
V
*
QVy,  

which implies 

| !(A) |
2
=
y
*
V
*
QVy " y

*
D

s
y

y
*
D

" s
y

#
!max (Q)y

*
y " y

*
D

s
y

y
*
D

" s
y

= i=1

n

$ | yi |
2
(!max (Q) " !i

s
(X))

i=1

n

$ | yi |
2
!i

" s
(X)

.

 (8) 

 Consider the function f (t) = t
s
(!max (Q) " t

s
) , with 

t ![0,+") . It is monotonically increasing on 

0,
!
max
(Q)

2

"
#$

%
&'
1/s(

)
*
*

+

,
-
-

, and monotonically decreasing on 

[
!
max
(Q)

2

"
#$

%
&'
1/s

,+() , and fmax = f (
!max (Q)

2

"
#$

%
&'
1/s

) =
!max

2
(Q)

4
, 

[8, Lemma 3.1]. Thus, for every t ![0,+")  holds 

f (t) !
"max

2
(Q)

4
# "max (Q) $ t

s
!
"max

2
(Q)

4t
s
.  

 Application of this inequality for t = !
i
(X),  

 
i =1, 2,…,n,  and substitution in (8) yields: 
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| !(A) |
2
" i=1

n

# | yi |
2
(!max (Q) $ !i

s
(X))

i=1

n

# | yi |
2
!i

$ s
(X)

"
1

4

i=1

n

# | yi |
2
!max

2
(Q)!i

$ s
(X)

i=1

n

# | yi |
2
!i

$ s
(X)

=
!max

2
(Q)

4
.

 

 Since Q > 0,  clearly denote !
max
(Q) = "(Q) , thus the 

above inequality yields (6).  

 In the following, we discuss necessary and sufficient 
conditions for the existence of solutions of the nonlinear 
matrix equation (1) utilizing the property of numerical 
radius, when the matrices A,Q  have special properties. 

 Proposition 4 Let A !M
n
 be a normal matrix. The 

equation Xs
+ A

*
X

! s
A = aI ,  (a > 0),  has a positive definite 

solution X !M
n

 if and only if A  satisfies one from the 
following inequalities: 

(i) 
 

! A !!
a

2
 

(ii) !(A) "
a

2
 

 Proof. It is well known [14, p. 45] that for a normal 
matrix A  holds: 

 
r(A) = !(A) = ! A !  (9) 

 By Theorem 2, the existence of a positive definite 
solution X !M

n
 of the matrix equation Xs

+ A
*
X

! s
A = aI  

is equivalent to 

r((aI )
!1/2

A(aI )
!1/2
) = r(a

!1
A) =

1

| a |
r(A)

=
1

a
r(A) "

1

2
# r(A) "

a

2

 (10) 

 Hence, combining (10) and (9) arises either (i) or (ii) 
inequality.  
 Remark 2 The above Proposition 4 can be viewed as a 
generalization of [8, Corollary 4.1] and [2, Theorems 11,13], 
which are special cases of it. 

 We need the following lemma in order to give a new 
estimate for the eigenvalues of a normal matrix A  and 
Q > 0  in (1). 

 Lemma 5 [8, Lemma 4.2] Let A !M
n
 be a normal and 

nonsingular matrix. If Q !M
n

 is a Hermitian matrix with 
AQ =QA , then there exist the diagonal matrices D

A
,D

Q
 

and a unitary matrix V , such that 

V
*
AV = DA and V

*
QV = DQ ,  

that is, A,Q  are simultaneously diagonalizable from a 
unitary matrix V. 

 Proposition 6 Let A !M
n
 be a normal matrix, Q !M

n
 

with Q > 0  and AQ =QA . If the equation (1) has a positive 
definite solution, then 

1!i!n
max{

| "
i
(A) |

"
i
(Q)

, "
i
(A)#$ (A), "

i
(Q)#$ (Q)} !

1

2
.  (11) 

 Proof. Suppose that there exists a unitary matrix 
V !M

n
, which simultaneously diagonalizes the matrices 

A,Q  as in Lemma 5, let A =VD
A
V
* , with 

 
D

A
= diag{!1(A),…,!

n
(A)} , !

i
(A)"# (A)  and 

Q =VD
Q
V
* , where 

 
D
Q
= diag{!1(Q),…,!

n
(Q)} > 0  due to 

!
i
(Q)"# (Q)  are positive real numbers. The diagonal form 

and the unitary similarity invariance property of numerical 
radius of the matrices A,Q  [14], that is 

r(A) = r(VDAV
*
) and r(Q) = r(VDQV

*
),  

allow us to write 

r(Q
!1/2
AQ

!1/2
) = r VD

Q

!1/2
V
*
(VD

A
V
*
)VD

Q

!1/2
V
*( )

= r(VD
A
D
Q

!1
V
*
) = r(D

A
D
Q

!1
),

 (12) 

with 
 

D
A
D
Q

!1 = diag{
"1(A)

"1(Q)
,…,

"
n
(A)

"
n
(Q)
}.  The validity of (11) 

now follows from (12), the inequality (5) of Theorem 2 and 
the definition of numerical radius of D

A
D
Q

!1  by (2).  

Remark 3 

1. Assume that the unitary matrix V , which 
simultaneously diagonalizes the matrices A,Q  in 
proof of Proposition 6, gives the diagonal matrices 
D

A
,D

Q
 with !

i
(A)"# (A),!

i
(Q)"# (Q) , such that 

the corresponding eigenvalues are indexed in 
increasing order 

 
0 <| !

min
(A) |=| !

1
(A) |"| !

2
(A) |"!  

!| "
n
(A) |=| "

max
(A) |= #(A)  and 0 < !

min
(Q) = !

1
(Q) "  

 
!
2
(Q) "! " !

n
(Q) = !

max
(Q) = #(Q),  respectively. 

Since A  normal holds (9), thus (11) leads to 
inequality 

 
!(A)

!(Q)
"
1

2
,  

i.e., (6) can be written equivalently 

 
 

! A !!
1

2
"(Q).  (13) 

 Hence, if the matrix equation (1) has a positive 
definite solution with the matrices A,Q !M

n
 

satisfying the assumptions of Proposition 6 and the 
unitary matrix V  is as above, then, for the largest 
eigenvalues of A*A,Q,  the inequality (13) allow us to 
write 
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 !
max
(A

*
A) "

1

4
#(Q)( )

2
.  (14) 

 Since A
*
A > 0 , it follows 0 ! "

min
(A

*
A) !  

 
!
2
(A

*
A) "… " !

max
(A

*
A)  consequently (14) gives an 

upper bound for ! (A*A) . 

2. The unitary matrix V , which simultaneously 
diagonalizes A,Q , does not in general fulfil the 
assumptions in the preceding remark as presented in 
[7, Corollary 3.2] and [8, Theorem 4.1]. 

3. Note that in the special case that Q = aI , a > 0,  the 
spectral radius is !(Q) = a,  therefore (13) is exactly 
(i) or (ii) inequality of Proposition 4. Then (14) is 
rewritten 

 !
max
(A

*
A) "

a
2

4
,  

that the eigenvalues of A*A  lie in the interval 0, a
2

4

!
"#

$

%
& . 

 In the following theorem, a formula for the positive 
definite solutions of (1) is given, when the above exist. 

 Theorem 7 Let A !M
n

 be a nonsingular matrix, 

Q > 0,  with r(Q!1/2
AQ

!1/2
) "
1

2
 and Y !M

n
 be a positive 

definite solution of the equation (4). Then for each Y  there 
exist a unitary matrix U !M

n
,  which diagonalizes Y ,  and a 

unique positive definite solution X !M
n

 of (1), such that 

 
X =Udiag{!1

1/s (Y ),!2
1/s (Y ),…,!

n

1/s (Y )}U *,  (15) 

where 
 
!
i
(Y )"# (Y ), i =1, 2,…,n.  

 Proof. Since r(Q!1/2
AQ

!1/2
) "
1

2
, according to Theorem 2 

the equation (1) has at least one positive definite solution; 
also, the same condition guarantees the existence at least one 
positive definite solution of (4) from [5, Theorem 5.2], 
which is denoted by Y !M

n
. According to the spectral 

theorem for Y , there exists a unitary matrix U !M
n

 such 
that 

Y =UDU
*
,  (16) 

where 
 
D = diag{(!1(Y ),…,!

n
(Y )}  and !

i
(Y )"# (Y )  are 

positive real numbers. Combining the equation in (3) with 
the above diagonal form of Y  in (16), we define the matrix 
X !M

n
 as 

 
X =UD1/s

U
* =Udiag{!1

1/s (Y ),…,!
n

1/s (Y )}U *,  

where the unique positive s th root is well defined in each 
case due to !

i
(Y ) > 0 . Clearly, using the diagonal forms of 

X,Y  from (15), (16), we derive : 

 

X
s
+ A

*
X

! s
A =Udiag{"1

1/s (Y ),…,"
n

1/s (Y )}sU *

+ A
*
U
*( )

!1

diag{"1
1/s
(Y ),…,"

n

1/s
(Y )}

! s
U

!1
A

 

=UDU
*
+ A

*
U
*( )

!1

D
!1
U

!1
A = Y + A

*
Y

!1
A =Q  

Hence, X  consists a solution of (1), which is a positive 
definite due to !

i
(Y ) > 0,  and unique by Lemma 1.  

3. RICCATI EQUATION SOLUTION METHOD FOR 
THE COMPUTATION OF POSITIVE DEFINITE 
SOLUTIONS OF XS + A*X−S A = Q 

 Let r(Q!1/2
AQ

!1/2
) "
1

2
 and Y  be a positive definite 

solution of (4). Working as in [1] and [4], we are able to 
derive a Riccati equation, which is equivalent to the matrix 
equation (4). In particular, the matrix equation (4) can be 
written as 

Y =Q ! A
*
Y

!1
A,  

whereby the following equivalent equation arises : 

Y =Q ! A* Q ! A*Y !1
A"# $%

!1
A

=Q ! A*A!1
A
*( )

!1
QA

!1 !Y !1"
#

$
%

!1

A
*( )

!1
A

 

=Q + A
*
A

!1
Y

!1
+ (! A

*( )
!1
QA

!1
)"

#
$
%

!1

A
*
A

!1( )
*

 

 Substituting in the above equation 

F = A
*
A

!1
and G = ! A

*( )
!1

QA
!1  (17) 

the related discrete time Riccati equation is derived : 

Y =Q + F Y
!1
+G( )

!1

F
*  (18) 

 Therefore (4) is equivalent to the related discrete time 
Riccati equation (18), for the solution of which the algebraic 
Riccati Equation Solution Method can be used [15]. 
 More specifically, from the Riccati equation's parameters 
in (17), the following matrix is formed 

! =
A

"1
A
* "A"1

QA
"1

QA
"1
A
*

A
*
A

"1 "QA"1
QA

"1

#

$

%
%

&

'

(
(
,  (19) 

which satisfies !
*
J! = J,  where 

 
J =

O !I

I O
"

#
$
$

%

&
'
'
,  i.e., 

!  is a symplectic matrix. All the eigenvalues of !  are 
non-zero ( 0 !" (#) ) and it may be diagonalized in the form 

! =WLW
"1
,  

where L  is a 2n ! 2n  diagonal matrix with diagonal entries 
the eigenvalues of !  

 
L =

L
1

O
O L

2

!

"

#
#

$

%

&
&

 (20) 
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and W  contains the corresponding eigenvectors 

W =
W
11

W
12

W
21

W
22

!

"

#
#

$

%

&
&
.  (21) 

 In the case that (4) is solvable, then all its solutions Yj
,  

 
j =1, 2,…, 2n  are given by the formulas: 

Yj =W21
W
11

!1
and Yj =W22

W
12

!1
,  (22) 

where the block matrices W
11
,W

12
,W

21
,W

22
 are defined by 

the partition of W  in (21) following every different 
permutation of its column [4, Propositions 1,2]. Among Yj  
there exist positive definite solutions for some 

 
j =1, 2,…, 2n , therefore there exist unitary matrices Uj

,  
and 

 
D = diag{!1(Yj

),…,!
n
(Y

j
)} "M

n
,  with !i (Yj

)"# (Y
j
)  

such that 

 
Y
j
=U

j
diag{!1(Yj

),…,!
n
(Y

j
)}U

j

*.  

 Hence, due to the fact that the assumption of Theorem 7 
holds, combining the last relation with (15) each positive 
definite solution of (1) is given by 

 
X =U

j
diag{!1

1/s (Y
j
),…,!

n

1/s (Y
j
)}U

j

*.  

 We remind that !  is a symplectic matrix and its 
eigenvalues occur in reciprocal pairs. Therefore, we may 
arrange them in the diagonal matrix L  in (20) so that L

1
 to 

contain all the eigenvalues of !,  which lie outside the unit 
circle, and L

2
= L

1

!1
.  The above process defines a 

corresponding (special) arrangement of eigenvectors of !  
in W ,  which we denote by 

Ŵ =
Ŵ
11

Ŵ
12

Ŵ
21

Ŵ
22

!

"

#
#

$

%

&
&
.  

 Using the matrix Ŵ ,  the unique positive definite 
solutions of the discrete time Riccati equation in (18) 
coincide with the extreme solutions of (4) and these are 
formed : 

Y
max
= Ŵ

21
Ŵ
11

!1
and Y

min
= Ŵ

22
Ŵ
12

!1  

 Furthermore, it is well known [1, 6] that the minimal 
solution Y

min
 of (4) and the maximal solution Z

max
 of the 

following equation 

Z + AZ
!1
A
*
=Q  (23) 

satisfy the relation: 

Y
min
=Q ! Z

max
 (24) 

 Thus from (24), it becomes obvious that the minimal 
solution of (4) can be derived via the maximal solution of the 
equation (23), which is of type (4). 

 Note that if A  is Hermitian, then the matrix equations (4) 
and (23) coincide, consequently from (24) the minimal 
solution is given 

Y
min
=Q !Y

max
.  (25) 

 In the following theorem, bounds for the eigenvalues of 
the minimal solution of (1) are derived, which are related to 
the eigenvalues of the maximal solution. 

 Theorem 8 Let A !M
n
 be a Hermitian and nonsingular 

matrix and Q !M
n

 with Q > 0.  If the equation (1) has a 
positive definite solution and !

max

s
(X

max
) " !

min
(Q) , then 

!
max
(Q) " !

max

s
(X

max
)s # !

max
(X

min
) # !

max
(Q) " !

min

s
(X

max
)s ,  (26) 

!
min
(Q) " !

max

s
(X

max
)s # !

min
(X

min
) # !

min
(Q) " !

min

s
(X

max
)s ,  (27) 

where X
max
,  X

min
 are the extreme solutions of (1). 

 Proof. Since A  is Hermitian and (1) has a positive 
definite solution, it is clear that there exists at least one 
positive definite solution of (4) as well as the extreme 
solutions Y

max
 and Y

min
 [5, 6]. According to Weyl's Theorem 

[13, Theorem 4.3.1] for the Hermitian matrices Q,Y
max

 and 
the formulas (25) and (3) we write : 

!k (Q) " !max (Ymax ) # !k (Q "Ymax ) # !k (Q) " !min (Ymax )  

!k (Q) " !max (Xmax

s
) # !k (Xmin

s
) # !k (Q) " !min (Xmax

s
)  

!k (Q) " !max

s
(Xmax ) # !k

s
(Xmin ) # !k (Q) " !min

s
(Xmax )  (28) 

 Setting in (28) k = max , due to X ! X
max

!Q
1/s  [12, 

Theorem 2.1], it is obvious that !k (Q) " !max

s
(Xmax ) # 0,  thus 

(26) arises immediately. The validity of (27) is based on 
hypothesis and (28) for k = min .  

 Moreover, it is well known [1, 4] that, when A !M
n

 is 
nonsingular, the existence of a finite number of Hermitian 
solutions of the matrix equation (4) depends on the 
eigenvalues of the matrix !.  In the following, V (!

i
("))  

denotes the eigenspace corresponding to the eigenvalue 
!
i
(")  and dim(V (!

i
(")))  denotes its dimension. 

 Theorem 9 Let A !M
n

 be a nonsingular matrix, 
Q !M

n
 with Q > 0,  and !  be the matrix in (19) and 

assume that the matrix equation Xs
+ A

*
X

! s
A =Q  has at 

least one positive definite solution. If dim(V (!
i
("))) = 1  for 

every eigenvalue !
i
("),  

 
i =1, 2,…, 2n,  with | !

i
(") |# 1,  

then there exists a finite number of positive definite solutions 
(h.p.d.s.) of (1). Their number is equal to 

#h.p.d.s. =
j=1

m

!(nj +1);  (29) 

if A,Q  are real matrices, then among the h.p.d.s. there exist 
real symmetric solutions (r.p.d.s.) of (1) with 
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#r.p.d.s. =
k=1

p+q

!(nk +1),  (30) 

where m  is the number of the distinct eigenvalues of !,  
that lie outside the unit circle, with algebraic multiplicity 
n
j
,  

 
j =1, 2,…,m,  p  is the number of real distinct 

eigenvalues of !  lying outside the unit circle, q  is the 
number of complex conjugate pairs of eigenvalues lying 
outside the unit circle, with algebraic multiplicity n

k
,  

 
k =1, 2,…, p + q.  

 Proof. Assume that X !M
n

 is a positive definite 
solution of (1); according to Theorem 7 every positive 
definite solution X  of (1) is related to a unique positive 
definite solution Y !M

n
 of (4) by (15). Hence, the unique 

symplectic matrix !  in (19) corresponds to the two matrix 
equations (4) and (1), and consequently the total number of 
Hermitian (real symmetric) positive solutions of (1) is the 
same as in [4, Theorem 9] and given by (29)-(30).  

4. NUMERICAL RESULT 

 In this section, we implement the proposed method to 
solve the matrix equation (1) and illustrate the main 
conclusions of the present paper. The proposed method 
computes the positive definite solutions using Matlab 6.5. 
 Example 1 Let the matrices 

A =
0.5 0.2i

!0.3 0.4

"

#
$
$

%

&
'
'
, Q =

1.2 !0.3

!0.3 2.1

"

#
$
$

%

&
'
'

 

in the equation Xs
+ A

*
X

! s
A =Q,  s ! 1.  Obviously, A  is a 

nonsingular matrix, with  

! (A) = {"
1
(A) = 0.2731+ 0.1696i,"

2
(A) = 0.6269 # 0.1696i},

and | !1(A) |= 0.3215, | !2 (A) |= 0.6494,  while Q  is a 
positive definite matrix with ! (Q) = {1.1092, 2.1908}.  

 Since r(Q
!1/2
AQ

!1/2
) = 0.4371,  Theorem 2 guarantees 

the existence of positive definite solutions of (1), hence the 
inequality (6) of Theorem 3 is verified. The spectrum of 
matrix !  in (19) is  

! (") = {#1(") = $13.7403+16.3306i,

#2 (") = $2.9676 $ 0.8804i,

#3(") = $0.3097 $ 0.0919i,

#4 (") = $0.0302 + 0.0359i},

  

with 

!1(") = 21.3421, !2 (") = 3.0954,

!3(") = 0.3231, !4 (") = 0.0469,
 

thus !  has m = 2  eigenvalues outside the unit circle, the 
algebraic multiplicity of which is n

1
= n

2
= 1.  According to 

Theorem 9 the Riccati Equation Solution Method can be 
applied, because its assumptions are verified; the number of 
solutions is computed by (29) 

#h.p.d.s. =
j=1

m

!(nj +1) = 4.  

 The corresponding eigenvectors of !  are the columns 
of the matrix 

W =

!0.0030 ! 0.2982i 0.6443 0.8989 0.6064 ! 0.1393i

0.3927 ! 0.0398i !0.1241! 0.1102i 0.0449 ! 0.2869i 0.7793

!0.1105 ! 0.3081i 0.6056 + 0.0438i 0.2843+ 0.0464i 0.0674 ! 0.0108i

0.8051 !0.4118 ! 0.1382i !0.1322 ! 0.0851i 0.0293! 0.0037i

"

#

$
$
$
$

%

&

'
'
'
'

.

 

 The positive definite solutions of (4) are computed by 
(22); according to Theorem 7 and (15) the corresponding 
positive definite solutions of (1) are derived : 

Y
1
= Y

min
=

0.3108 ! 0.1554 + 0.0417i

!0.1554 ! 0.0417i 0.1659

"

#
$

%

&
' ,  

U1 =
0.8398 0.5243! 0.1408i

!0.5243! 0.1408i 0.8398

"

#
$

%

&
' ,

D1 = diag{0.4148, 0.0619},

 

X
1
= X

min
=U

1

0.4148
1/s

0

0 0.0619
1/s

!

"
#
#

$

%
&
&
U
1

*
,

(minimal solution)

 

Y
2
=

0.8123 !0.5456 + 0.1314i

!0.5456 ! 0.1314i 0.4857

"

#
$

%

&
' ,  

U2 =
0.7998 0.5836 ! 0.1405i

!0.5836 ! 0.1405i 0.7998

"

#
$

%

&
' ,

D2 = diag{1.2335, 0.0645},

 

X
2
=U

2

1.2335
1/s

0

0 0.0645
1/s

!

"
#
#

$

%
&
&
U
2

*  

Y
3
=

0.4715 !0.2323! 0.45i

!0.2323+ 0.45i 1.7066

"

#
$

%

&
' ,  

U3 =
0.9416 !0.1544 ! 0.2992i

0.1544 ! 0.2992i 0.9416

"

#
$

%

&
' ,

D3 = diag{0.2905,1.8877},

 

X
3
=U

3

0.2905
1/s

0

0 1.8877
1/s

!

"
#
#

$

%
&
&
U
3

*  

Y
4
= Y

max
=

0.9099 !0.2623! 0.1202i

!0.2623+ 0.1202i 1.9568

"

#
$

%

&
' ,  

U4 =
0.9684 !0.2266 ! 0.1038i

0.2266 ! 0.1038i 0.9684

"

#
$

%

&
' ,

D4 = diag{0.8356, 2.0310},

 

X4 = Xmax
=U4

0.8356
1/s

0

0 2.0310
1/s

!

"
#
#

$

%
&
&
U4

*
,

(maximal solution)
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 It is also verified that: 0 < X
min
< X

max
.  

5. CONCLUSIONS 

 In this paper, we investigate the positive definite 
solutions of the nonlinear matrix equation Xs

+ A
*
X

! s
A =Q.  

We derive necessary and sufficient conditions for the 
existence of the positive definite solutions, which are related 
to the theory and properties of the numerical radius of 
Q

!1/2
AQ

!1/2 . Some properties of the solutions are discussed 
as well as necessary and sufficient conditions for the 
existence of the positive definite solutions for special 
matrices A,Q  are derived. An algebraic method for 
computing all the positive definite solutions is proposed, 
which is based on the algebraic solution of the corresponding 
discrete time Riccati equation and the exact number of the 
positive definite solutions is found. The method provides 
simple formula for computing the solutions, as verified 
through a numerical result. 
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