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1. LEVERAGE AND LINKAGES IN THE FINANCIAL 

MARKETS 

 The US financial crisis of 2008 involved the interaction 
of banks and security houses. The issues of “contagion” and 
debt crises became subjects of concern. The aim of this 
paper is to suggest dynamic nonlinear models of the 
interactions and optimization in financial markets, which 
explain the dynamics of contagion and the vulnerability of 
the financial sector to shocks. I compare stochastic and 
deterministic models of “optimal” debt. 

 Richard Feynman [1] compared mathematics with 
physics. “Mathematicians are only dealing with the structure 
of reasoning, and they do not really care what they are 
talking about…. In other words, mathematicians prepare 
abstract reasoning ready to be used if you have a set of 
axioms about the real world. But the physicist has meaning 
to all his phrases. That is a very important thing that a lot of 
people who come to physics by way of mathematics do not 
appreciate. Physics is not mathematics and mathematics is 
not physics…in physics you have to have an understanding 
of the connection of words with the real world.” 

 The “Quants” are a group of physicists, computer 
scientists and mathematicians who practice “financial 
engineering” in Wall Street. See Derman [2]. Substitute 
“economics, finance” for physics and one will better 
understand the errors of the “Quants” in the financial crisis 
of 2008; see Stein [3]. They assumed that physics could be 
the key to operating in financial markets, without 
understanding the economics of these markets. 

 The housing price bubble, defined as a non-sustainable 
growth in prices, in the US led to the growth of household 
debt. A bubble is dangerous insofar as it induces a non-
sustainable debt. This danger is exacerbated insofar as a 
complex financial system is based upon it. The theme of 
Stein [3] is that the application of Stochastic Optimal  
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Control (SOC) is very helpful in understanding and 
predicting the financial debt crisis of 2008, the crises of the 
1980s and an analysis of the European debt crisis. I use SOC 
to derive a theoretically founded quantitative measure of an 
optimal, and an excessive leverage/ debt/ risk that increases 
the probability of a crisis. The optimal leverage – defined as 
1 + debt/net worth - balances risk against expected growth. 
The environment is stochastic: the capital gain, productivity 
of capital and interest rate are stochastic variables. 

 In the current paper, I discuss how nonlinear dynamic 
models are useful in understanding the financial crisis. 
Several topics are discussed: (i) the interaction of securities 
firms and the shadow banking system leading to contagion, 
(ii) stochastic and deterministic approaches to evaluating 
the optimal debt of the financial sector, with an aim to derive 
early warning signals of a crisis. 

 In part 1, I sketch the US financial crisis and the 
interactions among the debtors and creditors. Thereby the 
reader has the empirical background in mind to evaluate the 
subsequent mathematical modeling. In part 2, I present a 
nonlinear model of contagion between financial institutions. 
Parts 3 and 4 are concerned with the optimal and excessive 
debt of the financial sector, where an excessive debt 
increases the probability of a debt crisis. The stochastic and 
deterministic approaches are contrasted. Part 3 concerns a 
stochastic environment, and the aim is to derive early 
warning signals of a crisis. In the stochastic approach, the 
criterion is the maximization of the expectation of the 
logarithm of net worth, subject to stochastic processes 
involving Brownian Motion (BM) diffusion terms. An 
alternative approach, taken in part 4, involves a differential 
game against Nature. The objective is to maximize the 
minimum expected growth of net worth. This is a risk averse 
strategy. No stochastic processes are involved. I contrast the 
implications of the two approaches. 

1.1. US Financial Crisis 

 A sketch of the linkages in the financial system shows 
how contagion occurs. The securitization firms and 
investment banks financed their purchases of mortgages by 
borrowing from the money market mutual funds, the shadow 
banking system. Whereas banks traditionally took money 
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from deposits to make loans and held them to maturity, the 
investment banks used money from the capital market, often 
from Money Market Mutual Funds, to make loans, package 
them into securities – securitization - to sell to investors. 

 The financial crisis was precipitated by the mortgage 
crisis. First, a whole structure of financial derivatives – 
securities whose values were ultimately derived from the 
mortgages - was based upon the ultimate debtors: the 
mortgagors. Insofar as the mortgagors were unable to service 
their debts, the values of the derivatives fell. Second, the 
financial intermediaries whose assets and liabilities were 
based upon the value of derivatives were very highly 
leveraged. Changes in the values of their net worth were 
large multiples of changes in asset values. Third, the 
financial intermediaries were closely linked – the assets of 
one group were liabilities of another. A cascade was 
precipitated by the mortgage defaults. Since the “Quants” 
were following the same rules, the markets would not be 
liquid. 

 Define infection as a situation where the firm becomes 
insolvent (assets are less than liabilities), or that the firm is 
illiquid/does not have marketable assets or collateral to 
satisfy its creditors. When the mortgagors could not repay 
their debts, the investment banks/security firms were 
infected. In turn they could not repay their debts to the 
shadow banking system. In turn, as the net worth of the 
shadow banking system declined, they were infected and 
they were more reluctant to lend/finance the activities of the 
security firms. They demanded more and better collateral 
from the securities firms. This infected the latter. Contagion 
occurs when each group infects the other. 

2. A DYNAMIC NONLINEAR DETERMINISTIC 
MODEL OF CONTAGION 

 Infection consists of either insolvency or serious liquidity 
problems. The aim in this part is to examine the contagion 
whereby one group infects the other. What will be the 
equilibrium/equilibria (x*, y*) of infection of the groups? 
What will be the trajectories to the equilibrium? My model is 
inspired by the mathematical biology literature. See Handel 
et al. [4], Stewart and Levin [5], Frank [6] and Braun [7] for 
modeling references. 

 Let there be two sets of financial institutions whose total 
numbers are B > 0 and S > 0. They could be B = banks, S = 
security houses as in the US financial crisis. Each holds 
assets in the other or has liabilities to the other. 

 The nonlinear model is described by equations (1) and 
(2). The state variables are x(t) the infected in set B and y(t) 
the infected in set S. The non-infected group is called 
“susceptible”. Thus [B – x(t)] are susceptible in set B and [S 
– y(t)] are the susceptible in set S. 

 Contagion occurs when the susceptible of one group is in 
contact with the infected of the other group. Box 1 
summarizes the framework. For example, financial 
institutions borrow short term from the Shadow Banking 
System and lend longer term to Securities houses – who buy 
longer term debt. If the securities houses are infected, cannot 
repay the banks or have liquidity problems, then the banks 
become infected – they have liquidity or solvency problems. 
Similarly, if the banks are infected, then funds to the 

securities firms are not available and the securities firms are 
infected. The infections go both ways: debtor and creditor. 

Box 1. Model of Contagion 

 

Number B  S 

Infected  x(t)  y(t) 

Susceptible  B – x(t) S – y(t) 

Contacts [B – x(t)]y(t) [S – y(t)]x(t) 

dx(t)/dt = -a1 x(t) + b1 (B – x(t))y(t)…        (1) 

dy(t)/dt = -a2y(t) + b2 (S – y(t))x(t).…        (2) 

bi > 0 = infection rate ai > 0 = recovery rate i = 1,2 

 

 The first term in equation (1) states that infection in set B 
will decrease as the infected recover at rate a1x(t), where the 
recovery may consist of some inflow of capital from an 
external source. For example, if it is a liquidity problem – 
not a solvency problem – the banks borrow from the central 
bank to tide them over. Alternatively, they obtain more 
capital by issuing stock. The second term is the infection. 
Susceptible banks (B – x(t)) which have financial relations 
with y(t) infected security houses S are infected at rate b1(B 
– x(t))y(t). This is contagion from S to B. For example, set B 
consists of creditors of set S. If S cannot pay their debts, then 
set B becomes “infected”. 

 Equation (2) is the corresponding situation for set S. 
Equation (2) states that infection in set S will decrease as the 
infected recover at rate a2y(t), where the recovery consists of 
some inflow of capital from an external source. However, 
the susceptible securities firms (S – y(t)) which meet x(t) 
infected banks B are infected at rate b2(S – y(t))x(t). This is 
contagion from B to S. Thus equations (1) and (2) are the 
nonlinear dynamics of infection from one group to another. 

 There are two equilibria – denoted by an asterisk - where 
dx/dt = 0 and dy/dt = 0. The equilibrium conditions (1a) and 
(2a) are that, for each group, the recovery rate is equal to the 
rate of new infection. 

a1 x* = b1 (B – x*)y*…         (1a) 

a2y* = b2 (S – y*)x*…         (2a) 

 One equilibrium is x* = 0 and y* = 0. The second is 
described by equations (3) and (4) where x* > 0, y* > 0. This 
condition requires that the product of the two infection rates 
b1b2BS exceed the product a1a2 of the recovery rates. These 
two equilbria correspond to different periods of financial 
stress, described in Fig. (1). The financial stress index is a 
composite index developed by the Federal Reserve Bank of 
St. Louis. The period of high financial stress is 2008 – 09, 
where the equilibrium is equations (3),(4). The periods of 
low financial stress are those where the equilibrium is 
(x*,y*) = 0. 

 Consider the periods of high financial stress. For x* > 0, 
y* > 0, require that (b1b2BS – a1a2) > 0, equations (3),(4). 

x* = (b1b2BS - a1a2 )/(a1b2 + b1b2S) > 0…         (3) 

y* = (b1b2BS – a1a2)/ (a2b1 + b1b2B) > 0…         (4) 

 The nonlinear dynamics of the model, equations (1)-(4), 
is described by phase diagram Fig. (2). The method of using 
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phase diagrams, to derive qualitative solutions of the 
dynamics, is explained in [7]. Equations (5), (6) describe the 
locus of equilibrium points (x,y) > 0. From (5),(6), (1),(2) I 
derive the trajectories in Fig. (2). This is precisely the 
method of phase diagrams. 

 The relation between [x, y], such that in equation (1), 
dx(t)/dt = -a1 x(t) + b1 (B – x(t))y(t) = 0, is equation (5). This 
equation is independent of time. 

y(x) = a1x/b1(B – x) = F(x) |dx(t)/dt = 0.…         (5) 

 F(x) is graphed in Fig. (2). This is the locus of 
equilibrium points x, for given vales of y. Along F(x), the 
value of dx/dt = 0. It is highly convex and goes from F(0) = 
0 to F(B) = + . When y is above the curve F(x) then dx(t)/dt 
> 0 and when y(t) is below the curve F(x), then dx(t)/dt < 0. 
The horizontal vectors indicate the direction of motion, 
summarized below. 

 The relation between [x, y], such that in equation (2), 
dy(t)/dt = -a2y(t) + b2 (S – y(t))x(t) = 0 is equation (6). This is 
the locus of equilibrium points y for given values of x. This 
equation is independent of time. 

y(x) = b2Sx/(a2 + b2x(t)) = G(x)| dy(t)/dt = 0…        (6) 

 This is a concave function where y(x) runs from y = 0 to 
y = S. When y > G(x) then dy/dt < 0, and when y < G(x(t)) 
then dy/dt > 0. The vertical vectors describe the dynamics, 
summarized below. 

 Table 1 summarizes the phase diagrams Figs. (2, 3). 

 In periods of high financial stress, the slope of the G(x) 
function exceeds that of the F(x) function at x = 0 if (7) or 

(7a) is satisfied. This condition is precisely the condition that 
(x*,y*) be positive – equations (3) and (4). 

(x*, y*) > 0, high financial stress if: 

G’(0) > F’(0) if  b2S/a2 > a1/b1B or …       (7a) 

b1b2BS > a1a2. …          (7b) 

 The phase diagram in Fig. (2) has been drawn such that 
the equilibrium values are positive. The vectors describe the 
trajectories to the equilibrium. For example, if set S is 
infected what will be the magnitude of the infection of set B? 
Points P(0), P(1) and P(2) are arbitrary initial conditions. 

Table 1. Summary of Trajectories in Phase Diagrams 

 

dx(t)/dt = 0, y = F(x) y > F(x) => dx/dt > 0 y < F(x) => dx/dt < 0 

dy/dt= 0, y = G(x) y > G(x) => dy/dt < 0 y < G(x) => dy/dt > 0 

 

 Start Fig. (2) at P(0) where securities houses are infected 
but not as yet the banks. Initially, the securities houses will 
start to recover, but they now begin to infect the banks. The 
trajectory leads to point P(1) in the region between the two 
curves where both are infected. If we are now at P(1) the 
trajectory to the equilibrium x*,y* is described by the curve 
from P(1) to P(2) and then to point (x*,y*). Every solution of 
equations (1)-(4) with (x(0), y(0)) > 0 will approach the 
solution x*,y*. Thus if we start with a low level of infection 
P(1), infection rates of both the sets B and the S will increase 
and reach an equilibrium (x*,y*) > 0. In the figure the 
equilibrium infection is incomplete, x* < B and y* < S. 

 

Fig. (1). Financial Stress Index. 
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 The only way to reduce the infection of set B, arising 
from infection of set S, is to reduce x* in equation (3). This 
can be done in several ways. First, if the infection is due to 
liquidity/collateral problems, where the firms in S are 
solvent, but do not have sufficient collateral, one can 
increase the recovery rates ai by temporary borrowing from 
outside sources such as the central bank. Second, the 
infection rates bi must be reduced. A high leverage means 
that a percent change in asset values produces a large 
percentage change in net worth. A lowering of the infection 
rate involves an increase in the capital requirement or a 
decline in leverage such that a decline in asset values does 
not seriously reduce net worth. 

 

Fig. (2). High financial stress periods:Trajectories to a positive 

equilibrium infection (x*, y*) > 0. Along curve y = F(x)| dx/dt = 0 

and x(t) moves towards the F curve. Along y = G(x)| dy/dt = 0 and 

y(t) moves to the G curve. The infection rates move ultimately into 

the region between the two curves. 

 In this case, where the infection rates bi(1) exceed the 
recovery rates ai(1), equations (3)(4), the economy moves to 
an equilibrium (x*,y*) > 0 where both sectors are infected. 
However, the values of the infection rates depend upon the 
state of the economy: is there a financial crisis? 

 If the financial markets are tranquil - then the infection 
rates are low and recovery rates are high. In such periods 
where there are low values of the financial stress index (Fig. 
1), the infection rates converge to the origin. This is Fig. (3). 
Formally, bi(2) is less than the recovery rates ai(2). Phase 
diagram Fig. (3) graphs the dynamics of the infection rates. 
This means that the economy converges to an equilibrium 
(x*(2), y*(2)) = 0. 

3. ANALYSIS OF DEBT CRISES: A COMPARISON 
OF STOCHASTIC AND DETERMINISTIC APPRO-
ACHES TO OPTIMAL DEBT 

 Recall that the financial crisis was precipitated by the 
mortgage crisis. First, a whole structure of financial 
derivatives – securities whose values were ultimately derived 
from the mortgages - was based upon the ultimate debtors: 
the mortgagors. Insofar as the mortgagors were unable to 
service their debts, the values of the derivatives fell. Second, 
the financial intermediaries whose assets and liabilities were 
based upon the value of derivatives were very highly 
leveraged. Changes in the values of their net worth were 

large multiples of changes in asset values. Third, the 
financial intermediaries were closely linked – the assets of 
one group were liabilities of another. A cascade was 
precipitated by the mortgage defaults. When the mortgagors 
could not repay their debts, the investment banks/security 
firms were infected. In turn they could not repay their debts 
to the shadow banking system. In turn, as the net worth of 
the shadow banking system declined, they were infected and 
they were more reluctant to lend/finance the activities of the 
security firms. They demanded more and better collateral 
from the securities firms. This infected the latter. 

 

Fig. (3). Trajectory to equilibrium (x*(2), y*(2)) = 0 from crisis 

equilibrium (x*,y*). 

 The crucial question is: What is an optimal debt of the 
housing sector – the mortgagors and the financial 
intermediaries? Stein [3] showed that “too little” debt 
decreases the growth of the economy and “too much” debt 
increases the probability of bankruptcy, illiquidity – an 
inability to repay. The latter situation led to the financial 
crisis of 2008 described in part 1. 

 The aim of this and the following sections is to compare 
two approaches: stochastic and deterministic in evaluating 
the optimum debt. Section 3 presupposes that the reader is 
familiar with the stochastic calculus and Ito equation. This 
approach is at the core of the mathematical finance 
literature. Basic references are Øksendal [8], Merton [9] and 
Fleming and Rishel [10], Fleming and Soner [11], Stein [12]. 

 The questions are: what is an optimal debt, what is an 
excessive debt that would lead to a debt crisis? The 
Stochastic Optimal Control (SOC) analysis is based upon 
stochastic processes that have drifts and Markov diffusions. 
The diffusions are Brownian Motion (BM). Thus the 
disturbances are assumed to be normal and i.i.d. The 
techniques of analysis are either the Ito equation or dynamic 
programming. 

 Since the BM assumptions are highly questionable as 
descriptions of stochastic processes, an alternative approach 
is to view the optimization process as a deterministic 
differential game against Nature. The “player” – firm, 
industry, country – selects a debt. Nature is the stronger 
player. Knowing the debt chosen, she selects a disturbance 
that minimizes the expectation of the growth of net worth. 
The player then selects a debt ratio that maximizes the 
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minimum of the expectation of the growth of net worth. This 
is a highly risk averse strategy. We then have the “optimum” 
debt ratio, which maximizes the expectation of the minimum 
growth of net worth. I conclude by comparing the 
implications of the two approaches, summarized in Table 2. 

3.1. The Stochastic Optimal Control Analysis 

 The objective function is the maximization of the 
expected logarithm of net worth. The hypothetical 
maximizer is the housing sector: the mortgagors and related 
financial intermediaries. The mathematical analysis in this 
part is based upon Stein [3, 12] and Fleming and Stein [13], 
which contain the full details. Here, I present a terse sketch 
of the results. 

 Net worth is assets less liabilities, equation (8). The 
percent change, growth, in net worth is equation (9). 

Net worth = assets - debt.          (8) 

Growth of net worth = (assets/net worth) (capital gain + return 
on assets) – (debt/net worth)(interest rate) – consumption/net 
worth.                   (9) 

 Leverage is defined as assets/net worth. Leverage and 
debt will be used interchangeably. The ratio of assets/net 
worth = leverage = 1 + debt/net worth, from (8). 

 Denote X(t) = net worth, f(t) = debt/net worth, b(t) = 
(capital gain + return on assets) and c = arbitrary constant 
consumption/net worth. The interest rate is r(t). Refer to b(t) 
as the return on investment. Thus equation (9) is (10). The 
only control variable is the debt ratio or equivalently 
leverage. The uncertainty concerns the terms in b(t) = 
(capital gain + return on assets), the interest rate r(t). 

dX(t) = X(t) [(1 + f(t)) b(t) – r(t)f(t) –c] dt       (10) 

 The growth of net worth depends upon leverage or the 
debt ratio, equation (9)/(10). The growth is increased by b(t) 
the return on investment, but decreased by the associated 
interest payments. The return on investment has two 
components: the return on assets and the capital gain on the 
assets. For example, if the assets were housing then the 
return on assets is rental income/assets and the capital gain is 
the appreciation of the price of housing. 

 Therefore, an increase in leverage or debt will increase 
expected growth of net worth if the return on investment 
exceeds the interest rate, b(t) > r(t). The productivity of 
assets is observed, but the future capital gain and the interest 
rates are unknown when the investment decision is made. 

 The return b(t) and interest rate r(t) as assumed to follow 
stochastic processes (11) and (12). This is the world of 
mathematical finance, where the stochastic calculus and Ito 
equation are essential tools. See [3, 8-10, 13]. The reader 
who is not familiar with this literature should go directly to 
the discussion around Fig. (4). 

 The stochastic processes are described by equations (11) 
and (12). Each equation has two components on the right 
hand side: a drift and a diffusion. The first is the mean and 
the second part contains a Brownian Motion term, with a 
zero mean and variance proportional to dt. 

b(t)dt = b dt + y dwy         (11) 

r(t)dt = r dt + r dwr         (12) 

 Equation (11) states that the return on investment is the 
sum of two elements. The first is a deterministic bdt. The 
second element is a stochastic term ydwy where E(dwy) = 0, 
E(dwy

2
) = dt. Equation (12) states that the interest rate r(t) is 

the sum of a deterministic term r dt plus a stochastic term 
dwr, where E(dwr) = 0, E(dwr

2
) = dt. 

3.2. Solution of the Model 

 The objective is to select a ratio of debt/net worth or 
leverage assets/net worth to maximize the expectation of the 
logarithm of net worth at some later date, subject to the 
constraints on the stochastic variables. This is a special case 
of the HARA utility function in the finance literature. The 
advantages of using the logarithmic function are discussed in 
[3, ch. 4]. Using equations (10)-(12), the change in net worth 
equation (10) is stochastic differential equation (13). Control 
variable f(t) is the debt/net worth ratio. The first set of terms 
is deterministic and the second set are stochastic. 

dX(t) = [(b-c) + (b-r)f(t)]X(t) dt + [ y(1+f(t))dwy – rf(t) 

dwr]X(t)…          (13) 

 The first set states that net worth will grow if (b-c) > 0 
the productivity of capital b exceeds the arbitrarily constant 
ratio c = C(t)/X(t) of consumption/net worth. Borrowing per 
se is neither good nor bad. A debt ratio f(t) > 0 raises growth 
if the productivity of capital exceeds the interest rate (b-r) > 
0. Thus borrowing is productive if (b-r) > 0, otherwise it 
reduces growth. 

 The second set of terms concern the stochastic elements, 
concerning the return and the interest rate. They may be 
positively or negatively correlated E[dwy dwr] =  dt, where 
correlation 1 >  > -1. 

 To solve for net worth, start with the Ito equation, 

d ln X(t) = (1/X(t))dX(t) – (dX(t)
2
)/(2X(t)

2
). 

 Using the stochastic calculus, Ito equation (See [8]), from 
(13) derive the basic stochastic differential equation (14). 
The expected change in net worth E d ln X(t) is (15), which 
is abbreviated as (15a). 

d ln X(t) = [(b-c) + (b-r)f(t)]dt +[ y(1+f(t))dwy – rf(t) dwr] 

– (1/2)[ y
2

(1+ f(t))
2

 + r
2
f(t)

2
  2 r yf(t)(1 + f(t)) ]dt.…     (14) 

E[d ln X(t)] = [(b-c) + (b-r)f(t)]dt – 
(1/2)[ y

2
(1+ f(t))

2
 + r

2
f(t)

2
  2 r yf(t)(1 + f(t)) ]dt...          (15) 

d ln X(t) = M[f(t)] – (1/2)Q[f(t)]…      (15a) 

M[f(t)] = [(b-c) + (b-r)f(t)]dt 

Q[f(t)] =[ y
2

(1+ f(t))
2

 + r
2
f(t)

2
  2 r yf(t)(1 + f(t)) ]dt. 

 These two terms are graphed in Fig. (4). The straight line 
is M[f(t)] called the mean. The intercept is (b-c) the mean 
productivity of capital less the constant consumption ratio. 
The slope is (b-r), the mean productivity of capital less the 
interest rate. If there were no debt, then the expected growth 
of net worth is (b-c). A higher consumption ratio than the 
productivity of capital reduces growth. Fig. (4) describes the 
case where (b-c) > 0 and (b-r) > 0. 

 The stochastic terms Q[f(t)] are described by the 
quadratic called risk. The minimum risk debt ratio is f(0). 
For values of the debt ratio less than f-max, the Mean 
exceeds the Risk. 
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 The optimal debt ratio is equation (16). It is the ratio 
f*(t) where the difference between the line Mean and 
quadratic is maximal. It is abbreviated as (16a). 

f*(t) = argmax [M(f(t)] – (1/2)Q(f(t))] = [(b-r) – ( y – 

r y)]/
2
…          (16) 

f*(t) = [(b-r)]/
2 

- f(0)….       (16a) 

2
 = y

2 
+ r

2
 – 2 r y. 

 From Fig. (4), it is seen that as the debt ratio f(t) exceeds 
the optimal f*(t), the expected growth declines and the risk 
rises. If the debt ratio f(t) exceeds f-max, the expected 
growth is negative. Therefore an “excessive” debt is one 
which exceeds the optimal ratio and the probability of a debt 
crisis increases. 

 

Fig. (4). The debt ratio is debt/net worth or liabilities/surplus. 

Expected growth of net worth M(f) – R(f) is maximal when the debt 

ratio is f*. R(f) is the same as Q(f). 

 Stein [3] applied this analysis to the housing market and 
financial crisis of 2008. He showed that an empirical 
measure of excess debt, actual f(t) less an estimate of the 
optimal f*(t) is a good early warning signal of the financial 
crisis of 2008. There was no significant excess debt from 
1980 to 2000. By 2004, the excess debt was two standard 
deviations above the mean. This should have alerted 
Washington and Wall Street of an impending crisis. 

4. DETERMINISTIC [MAX(MIN EXPECTED 
GROWTH)] GAME AGAINST NATURE 

 The SOC approach has limitations. Primarily, the 
Brownian Motion (BM) assumptions in the stochastic 
processes, equations (11) (12), are questionable. The 
disturbances are generally not i.i.d. An alternative approach 
is a differential game against Nature. This approach is based 
upon Fleming [14, 15]. 

 The optimizer has assets which earn income, and 
liabilties primarily to the creditors, such as the shadow 
banking system. The identity is: assets/net worth = 1 + 
debt/net worth. The optimizer selects a debt/net worth ratio f. 
Nature, knowing the choice, selects a shock/disturbance v 
that minimizes the expected logarithm of net worth of the 
optimizer. The constraint is that the greater is the absolute 
value of the shock, the less likely is it. Therefore, in the 
minimization, Nature must balance these two aspects of the 
shock to net worth: harm to the optimizer against its  
 

probability. On the basis of the optimum shock v* selected 
by Nature, the optimizer selects a debt ratio f* that 
maximizes the log of the minimum expected net worth. The 
optimal ratio protects the optimizer from the worst expected 
shock. Thus the optimal debt ratio f = debt/net worth for the 
optimizer is: Optimal debt/net worth f* = argmaxf log minv 
E(X). 

4.1. Model 

 The growth of net worth is, as before, equation (10). 
Instead of stochastic processes (11),(12) we take a 
deterministic approach, following Fleming [14, 15]. Instead 
of (11), the key variable is the return b(t). The relevant shock 
v is to the return. Positive values raise, and negative values 
lower, the return. Parameter a indicates the effect of the 
shock upon the return. For example, it will vary by periods. 
See Fig. (1) for types of periods. In tranquil periods, a is low 
and in periods f financial stress it is high. 

b(t) = b +av(t), v(t) = shock  > v > - …      (17) 

 Using (17) in (10), the differential equation for net worth 
is equation (18). The change in the logarithm is (19). Since 
the model is deterministic, the stochastic calculus is not 
used. For expositional simplicity, consider the constant 
controls case: f(t) = L/X = f, v(t) = v, C(t) = cX(t), r(t) = r. 
Integrate (18) to derive (19). 

dX/dt = X(t)[(b + av – c) + (b + av – r)f(t)]…      (18) 

d ln X(t)/dt = (1/X(t))d X(t)/dt = [(b +a v – c) + (b +a v – 
r)f(t)]…            (19) 

log X(t) = [(b +a v - c)+ (b +av - r)f]t + log X(0) 

= [(b – c) + (b – r)f + (1+f)av]t + log X(0)…      (20) 

 Both the optimizer and Nature are concerned with the 
logarithm of expected net worth. In effect, this involves the 
expectation of the assumed constant shock v to net worth. In 
this deterministic model, there is no probability distribution 
function. Instead, let q be an inverse measure of the liklihood 
of shock |v(t)|. It looks like, but is not, the inverse normal 
variable. The liklihood function is equation (21) or (22) for 
the constant controls case. This is based upon Fleming [14] 
equation (5.7). As v

2
 rises, the liklihood decreases. Consider 

for simplicity constant values of the shock v. 

ln qt(v) =(1/2)  vs
2
 ds = (1/2)v

2
 t…  0 < s <t       (21) 

qt(v) = exp [(1/2)  vs
2
 ds] = exp [(1/2) v

2
 t]…      (22) 

q(0) = 1 is a maximum “probability measure” 

 Instead of Brownian Motion, the “liklihood” variable, the 
shock v, is chosen by the “minimizer”/stronger 
player/Nature. 

4.2. Nature’s Optimization 

 The expected net worth is equation (23), in the constant 
controls case. 

log qX = = {log X(0) + [(b - c) + (b - r)f + (1+f)av + (1/2) 
v

2
]t}…            (23) 

 Nature, knowing the debt ratio f selected, chooses a 
constant control disturbance v that minimizes the logarithm 
of expected net worth. This is equation (24), Fleming [15] 
equation (5.10). 
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min v log E(x) = min v log qt(v) x(t) = min v [log x(t) + (1/2)  vs
2
 ds]…    (24) 

 Consider for simplicity constant values of the shock: v(t) 
= v constant. The optimum shock for Nature is v*, the shock 
that minimizes the expectation of the logarithm of net worth. 
This is called min-plus expectation [15]. It is not the mean of 
a probability distribution, but a deterministic concept. 

v* = argminv log qX = argminv [(1+f)a v + (1/2) v
2
] = -a

2
 (1+f),…        (25) 

 Leverage is defined as the ratio of assts/net worth. 
Equation (25) states that Nature selects a negative shock to 
the rate of return that that is minus leverage. The greater the 
leverage, the greater the negative shock that Nature selects. 
The maximum expected harm to the optimizer is 
proportional to the square of leverage. This implies that the 
minimum of the terms involving Nature is equation (26). 

minv [(1+f) v + (1/2) v
2
] = - (1/2) a

2
(1+f)2…       (26) 

4.3. Optimization 

 The optimizer therefore selects a debt ratio that 
maximizes the minimum of the logarithm of expected net 
worth. This is equation (27), the maximum of the minimum 
of expected growth of net worth. 

maxf minv E(X) = maxf minv log qX 

= max f {log X(0) + [(b-r)f + (b-c) - (1/2) a
2
(1+f)2]t}…   (27) 

 The minimum expected growth, the terms in brackets, is 
graphed in Fig. (5). Minimum Expected Growth (f), 
equation (28), is a quadratic function of the debt ratio f or of 
leverage (1+f). It has a maximum at f = f*, equation (29). At 
debt ratio f-max, the minimum expected growth is zero, and 
it is negative for debt ratio greater than f-max. Thus the 
maximum leverage consistent with positive growth is 1 + (f-
max). 

(f) = [E log x(t) – log X(0)]/t = [(b-r)f + (b-c) - (1/2) 
a

2
 (1+f)2]...               (28) 

(0) = (b-c) - (1/2) a
2
…       (28a) 

d /df = (b-r) - a
2
 (1+f*) = 0, ” < 0.      (28b) 

(f-max) = 0…        (28c) 

 The optimal debt ratio is (29). Optimum leverage is (1 + 
f*). 

f* = argmax [(b-r)f - (1/2) a
2

 (1+f)
2
] = [(b-r)/ a

2 - 1]…    (29) 

 The Max min expected growth is (30) 

(f*) = (r-c) + (1/2)(b-r)
2
/ a

2
 …       (30) 

 Therefore, the maximum of the minimum of expected 
growth is equation (30). It is a linear combination of two 
terms: the interest rate less the consumption rate (r-c) and 

one half of the square of (b – r), the productivity of assets 
when v = 0 less the interest rate. 

 

Fig. (5). Minimum Expected Growth (f), equation (28), is a 

quadratic function of the debt ratio. It has a maximum at f = f*, 

equation (29). At debt ratio f-max, minimum expected growth is 

zero. 

6. CONCLUSION 

 As a result of the US financial debt crisis of 2008, 
regulators have focused upon banks and financial 
intermediaries and asked if they have sufficient net worth to 
withstand losses. Net worth is assets less liabilities. Leverage 
is the ratio of assets/net worth equal to (1 + debt/net worth). 
Therefore, the question is whether the debt ratio, or leverage, 
is too high. One can respond to this question by using the 
two approaches to optimal debt ratio, summarized in Table 
2. 

 The philosophies of the stochastic optimal control and 
the differential game against Nature are quite different. 
However, the same basic conclusion concerning the 
optimum debt/net worth applies to both. The stochastic 
optimal control (SOC) approach aims to maximize the 
expectation of the logarithm of net worth at some later date. 
This is a risk averse strategy. It requires probability estimates 
of declines in net worth. Explicit attention is paid to the 
variabilities and correlations of the diffusion terms. 
Deficiencies of this approach are that one cannot be too 
confident that he knows the probability distribution function, 
that it is constant and that the stochastic terms are i.i.d. The 
failure of Long Term Capital Management LTCM and the 
errors of the Quants in the housing price bubble (see [3] 
chapter 3) stemmed from these erroneous assumptions. 

 The differential game against Nature is designed to 
protect the optimizer against the liklihood that a negative 
shock that will harm net worth. It is a conservative 
philosophy that attempts to maximize the minimum 

Table 2. Summary/Comparison of SOC and Differential game for f* = Optimal Debt/Net Worth 

 

 Stochastic Optimal Control Differential Game 

Optimization 

X = net worth 

Maxf E ln X(T) Maxf Min v E[ln X(T)] 

Optimal debt/net worth f* 

Leverage = assets/net worth = 1 + debt/net worth 

f* = (b-r)/ 2 – f(0). f* = (b – r)/ a2 - 1 

b = productivity of assets, r = interest rate f(0) and 2 involve variances and covariance’s deterministic 
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expectation of growth or level of net worth. There are no 
questionable stochastic processes nor Brownian Motion 
diffusions. The only assumption is that the liklihood of the 
shock is symmetrical around zero and the large absolute 
values are less likely than small ones. 

 The net results concerning the optimal ratio of debt/net 
worth f* or leverage have similar forms, summarized in 
Table 2. Both stress that the debt ratio should follow (b-r). 
Thus if the productivity of assets is falling relative to the 
interest rate, the debt ratio or leverage should be reduced. 
The difference is that the SOC approach also stresses that the 
variabilities of growth and interest rate should reduce the 
optimal ratio. In both cases, an early warning signal of 
difficulties is that the debt ratio exceeds f* the optimal ratio. 
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