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Abstract:

Background:

In the context of climate change scenario in Nepal with rise in average surface air temperature, an ecological time series study has
been conducted to examine and assess the effect of climate related variables on some specific disease burdens covering areas of all
the eco-belts of Nepal.

Objective:

The study is conducted to examine several health effects associated with climate sensitive variables separately between the three eco-
belts of Nepal and estimate environmental burden of diseases that can be attributed to temperature as the main climate variable.

Method:

The study is based upon daily meteorological data including temperature, rainfall, relative humidity and wind speed collected from
the Department of Hydrology and Meteorology, Kathmandu and hospitalizations including water-borne (enteric fever, diahrreoal
diseases  and hepatitis),  vector-borne (malaria,  dengue,  encephalitis,  leishmaniasis  and filarisis),  urinary system (chronic  kidney
diseases,  urinary  tract  infections  and  renal  failure)  and  heart  diseases  (ischemic  heart  disease  including  angina  pectoris,
cardiovascular arrest, cardiac failures and other cardiovascular diseases) and mortality (all cause and diseases specific) are collected
from the leading hospitals of the study area for 5 years in between 14 April 2009 and 13 April 2014.

Results:

Results  of  generalized  linear  modelling  accounting  distributed  lag  effects  showed  varied  health  effects  between  eco-belts  and
hospitalization/death types such as 2.1% to 7.3% rise in the considered hospitalizations per 1°C rise in temperature, 0.9% to 8.2%
rise in all cause deaths per 1°C change in temperature below or above 20°C, -8.7% to 2.4% change in hospitalizations/deaths per 1
mm rise in rainfall, -1.6% to 7.3% change in hospitalizations/deaths per 1% rise in relative humidity and -23.6% to 35% change in
hospitalization/deaths per 1 m/s rise in wind speed which can be attributed to many significant differences that prevail between the
eco-belts of Nepal.

Conclusion:

Even though health effects are due to many factors, climate conditions are significant factors in affecting health of people and climate
change is bound to affect the health burden of Nepalese people for which Nepal needs suitable preparedness and adaptation policies
to counter and minimize the hazards of climate change in years to come.

Keywords: Attributable burden, Attributable fraction, Climate change, Distributed lag effects, Environmental burden of diseases,
Statistical modelling.
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1. INTRODUCTION

Scientific  studies  in  the  recent  past  have  revealed  climate  change  with  increase  in  global  average  surface
temperature and changes in nature, intensity and frequency of precipitation [1, 2] which has resulted in global warming,
gradual  melting  of  snow  and  icebergs,  rise  in  sea  levels,  increased  evidences  of  floods,  landslides,  drought  and
desertification,  etc.  Studies  in  Nepal  have  also  found  increase  in  temperature  and  shifts  in  rainfall  pattern  [3  -  6].
According to a report  published by the Department of  Hydrology Meteorology in 2007,  an increase of  around 2°C
temperature  is  projected  for  the  period  2039-2069  compared  to  1961-1990  based  upon  Regional  Climate  Model
(RegCM3)  which  implies  an  average  increase  of  0.25°C  per  decade  [7].  Similarly,  World  Bank  Climate  Change
Knowledge Portal has projected an average increase of around 0.2°C average temperature per decade in the span of
around 30 years in Nepal [8]. Other studies have indicated that from 1977-1994, mean annual maximum temperature in
Nepal increased by 0.06°C and average temperature rise is estimated at 0.5°C per decade [4, 5]. Precipitation is also
becoming  unpredictable  and  more  erratic  than  ever,  with  more  droughts  and  shorter  periods  of  heavy  rainfall  [6].
Several regions in the country are already vulnerable to unevenly distributed and erratic weather [3]. These noticeable
changes in climatic variables are certain to affect the public health concerns of Nepalese people. Many studies have
been conducted concerning this issue of climate change and health burden in Nepal [3, 9 - 12].

A  study  conducted  in  Nepal  covering  all  the  three  ecological  regions  and  based  upon  annual  data  of  26  years
(1982-2007) showed mixed results regarding occurrence of the number of incidence of malaria and diarrhoeal diseases
with  observed  rainfall  and  temperature  differences.  The  study  attempted  to  relate  between  climate  changes  and
occurrences  of  climate  sensitive  diseases  but  without  obtaining  health  effect  coefficients  [9].  The  Capacity
Strengthening in the Least Developing Countries (CLACC) working paper on climate change and health in Nepal has
reported that global climate change has serious implications for Nepal. The report mentioned that temperature has risen
in Nepal and expected to continue to rise in the coming years partly due to increases in the human population, vehicles,
development activities, and change in agricultural patterns. Vector and water-borne diseases have been found to be
increasing within the country, along with a strong identified relationship between these diseases and temperature and
precipitation [11].

Many studies  have been conducted in  various parts  of  the world in  order  to  establish linkages between climate
sensitive  variables  with  hospital  morbidities  and  mortality.  A  study  conducted  in  London  investigated  the  relation
between heat  and mortality  in  London and determined the  temperature  threshold at  which death  rates  increase  and
quantified the effect of extreme temperatures on mortality based upon 21 years of daily data [13]. A study conducted in
Vietnam  to  study  the  relationship  between  temperature  and  cardiovascular  hospital  admission  showed  that
cardiovascular disease (CVD) admission was associated with both lower and higher temperatures compared to 26°C
with the cumulative effect of cold exposure on CVD admissions was statistically significant with a relative risk of 1.12
(95%  CI:  1.01-1.25)  for  1°C  decrease  below  the  threshold.  The  cumulative  effect  of  hot  temperature  on  CVD
admissions was found to be non-significant and was estimated to be at a relative risk of 1.17 (95% CI: 0.90-1.52) for
1°C increase in the temperature [14]. Association between ambient temperature and cardiovascular morbidity was also
studied in Hong Kong based upon time series data of seven years. The study found that compared with 23.0°C, the
cumulative  relative  risk  of  emergency  CVD  hospitalization  was  1.69  (95%  CI,  1.56-1.82)  for  extreme  cold  (first
percentile) and 1.22 (95% Cl, 1.15-1.29) for moderate cold temperature (10th percentile) [15]. Another study reviewed
the  impacts  of  climate  change  on  human  health  in  South  China  which  highlighted  that  the  daily  mean  surface  air
temperatures above or below 26.4°C increases the death risk of the people in Guangzhou, China especially the elderly
are vulnerable to variations in temperature [16]. A study attempted to develop health risk-based metrics for defining a
heat-wave in Brisbane, Australia based upon Poisson generalized additive model to assess the impact of heat-waves on
mortality and emergency hospital admissions (EHAs) in Brisbane. Results showed that the higher the intensity and the
longer the duration of a heat-wave, the greater the health impacts [17].

A research article mentioned about various diseases associated with climate such as heat related deaths, cardio-
pulmonary diseases, vector-borne and water-borne diseases, malnutrition by droughts, etc and stresses the need of more
researches in this area to reduce the potential impact of climate change on public health burden including more refined
methods of quantitative risk assessment [18]. Similarly, another research article mentioned about several health impacts
of climate change and mortality associated with temperature extremes, incidence of deaths and injuries with rainfall,
dengue  with  temperature  and  rainfall  and  diarrheal  diseases  with  rainfall  [19].  Other  studies  showed  risks  of
hospitalization for fluid and electrolyte disorders, renal failure, urinary tract infection, septicemia, and heat stroke were
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statistically and significantly higher on heat-wave days relative to matched non-heat wave days. Risks were generally
highest on the heat-wave day but remained elevated for up to 5 subsequent days [20]; Checkley and colleagues used
time series regression techniques to analyze the health effects of the 1997-98 EL Niño event on hospital admissions for
diarrhea and revealed that for each 1°C increase in temperature, hospital admission increased by 8% [21]; Singh et al.
(2001) [22] used monthly data and showed that diarrhea notifications increased by approximately 3% per 1°C increase
in temperature; Raju et al. (2014) [23] linked higher occurrence of chronic kidney diseases (CKD) in warmer months
(March-May); Hansen et al.  (2008) [24] showed that admissions for renal disease and acute renal failure increased
during heat-waves compared with non-heat wave periods with an incidence rate ratio of 1.100 (95% CI: 1.003-1.206)
and 1.255 (95% CI 1.037-1.519), respectively.

In Nepal, studies based upon daily time series data to establish linkages between climate sensitive variables and
health burden are lacking. Moreover, in view of existence of significant variations between ecological belts in Nepal
emphasizes the need to account health effects separately between these regions in Nepal and explore how health effect
coefficients, relative risks, attributable factors and attributable burdens differ between the regions. Literature review of
the  studies  conducted  at  other  parts  of  the  world  also  showed  variations  in  health  effects  due  to  meteorological
parameters which suggests the need of further studies in this area. Consequently, the present study is carried out to link
climate sensitive disease burdens and weather related variables through statistical modeling of daily changes in health
burden data and corresponding changes in climate sensitive parameters like temperature, rainfall, humidity and wind
speed and estimate  the  environmental  burden of  diseases  that  can  be  attributed  to  temperature  as  the  main  climate
variable assessed separately between the eco-belts of Nepal.

2. MATERIALS AND METHODS

2.1. Study Area

The  study  covers  10  districts  from  all  the  three  ecological  belts  of  Nepal  (Fig.  1).  These  are  Dolakha  from
Mountain; Kathmandu, Lalitpur, Bhaktapur, Kavrepalanchowk and Dhankuta from Hill; and Chitwan, Sunsari, Morang
and Jhapa from Terai. According to population census 2011, the percent population coverage from the selected districts
is around 23.8% of the total population of Nepal of which 0.6% is from Mountain, 11.4% from Hill and 11.8% from
Terai. Similarly, the percent household coverage is around 27.1% of the total households of Nepal of which 0.8% is
from Mountain, 13.5% from Hill and 12.8% from Terai.

Fig. (1). Map of Nepal with selected districts, hospitals and meteorological stations.
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2.2. Basic Steps and Data

Environmental  burden  of  disease  (EBD)  is  a  measure  of  the  disease  burden  that  can  be  attributed  to  an
environmental risk factor. The basic methodology for the development of health effect coefficients and then estimation
of environmental burden of diseases (EBD) is based upon ecological time series modeling of health and weather related
data and application of the methodology developed by WHO for assessing the EBD that can be attributed to climate
change [25, 26]. In order to fulfill the objective of linking health burdens assessed by hospital morbidity and mortality
with climate sensitive variables, the following three major steps were adopted as mentioned in WHO methodology [26].

I) Data collection of meteorological parameters and hospital inpatients/deaths.

II) Exposure - response modelling.

III) Estimation of EBD attributable to main climate sensitive variable.

2.2.1. Data Collection

Data are collected for health burden and climate sensitive variables as detailed below.

2.2.1.1. Weather Data

Climate sensitive variables considered for modeling are meteorological parameters namely temperature, rainfall,
humidity  and  wind  speed.  Observed  daily  data  of  these  parameters  were  collected  for  2009-2014  from  16
meteorological stations located within the districts covered for the study which included 2 from Mountain, 8 from Hill
and remaining 6 from Terai. In each station 6 meteorological variables (maximum and minimum temperatures, relative
humidity at two different times daily, rainfall and wind) were collected for 6 years comprised of around 200,000 data
points.  From  these  meteorological  variables  4  independent  weather  variables  are  formed  for  modeling.  These  are
average temperature (average of minimum and maximum temperatures of a particular day), relative humidity (average
of relative humidity measured two times daily), rainfall and wind speed. The source of these data is the Department of
Hydrology and Meteorology (DHM), Kathmandu.

2.2.1.2. Health Burden Data

For  building  exposure-response  models,  data  on  health  effects  assumed  to  be  linked  with  climate  change  were
collected from the leading hospitals  of  the study area including government hospitals,  teaching hospitals  and some
private hospitals of the study area. Altogether 22 hospitals were referred from the selected districts which included 2
hospitals from mountain region, 13 hospitals from hill and 7 hospitals from terai. Daily data from hospital admission
and death records were collected for the reference period of 5 years collected according to Nepalese calendar starting
from the first of Baishak 2066 BS (14 April 2009) till the end of Chaitra, 2070 BS (13 April 2014). Morbidity and
mortality data were collected for water-borne (WB), vector-borne (VB), heart and urinary system diseases and also all
cause mortality. WB diseases addressed are enteric fever, diarrheol diseases including gastroenteritis/diarrhea, cholera,
dysentery and hepatitis (A & E). VB diseases include malaria, dengue, encephalitis, leishmaniasis and filarisis. Heart
diseases (HD) include mainly ischemic heart disease (including angina pectoris), cardiovascular arrest (CVA), cardiac
failures and other cardiovascular diseases. Similarly, urinary system diseases include chronic kidney diseases (CKD),
urinary tract infections (UTI) and renal failure. Mortality include all cause mortality and disease specific mortality of
the above diseases. Total disease burden for Nepal were collected from the annual reports of Department of Health
Services. Inpatient records from 22 referred hospitals showed around 50000 hospitalizations of the concerned diseases
for the study period and around 10000 all cause deaths and 435 water-borne and vector-borne disease deaths.

2.2.1.3. Confounding Variables

Confounding variables are very essential to be addressed while modeling a dependent (or response) variable on
predictor (or independent) variable(s) since if such variables are not addressed then the actual extent of effects due to
independent variable(s) on the response variable would not be found and the results would be misleading. Moreover, it
is not only the exposure variables like weather related variables that can affect health of people in time series modeling
between climatic factors and health effects but there exist other factors also such as seasonal effects, holiday effect
(Saturday)  and  trend  effect  since  these  variables  changes  along  with  observed  health  effects.  Moreover,  seasonal
dummies are considered to analyze the effects due to seasonal changes on hospitalization/death, day of week categorical
variable  is  considered  to  account  holiday  effect  since  Saturday  is  a  public  holiday  in  Nepal  and  secular  trend  is
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considered  to  address  the  trend  effect  on  a  response  variable,  if  present.  It  is  to  be  noted  that  public  holidays  are
normally associated with reduced risks of health effects like hospitalization compared to working days. This may be due
to various regions. For instance, a holiday may decrease the possibility of infection due to reduced exposures including
environmental exposures and staying in relatively safe environment. People may be more relaxed and relatively tension
free  during  holidays  which  can  reduce  the  chances  of  hospitalization  associated  with  HDs  and  risk  of  mortality
associated with heart failures. Even in relatively risky meteorological conditions people in holidays could be relatively
safer compared to working days. Consequently, it is important to include the variable in modeling health effects and
climate variables particularly in a daily time series study.

2.2.2. Exposure-response Modelling

For exposure response modeling generalized linear model (GLM) with log link function (Poisson model) is used
since  it  is  an  appropriate  choice  to  account  count  dependent  variable  whose  probability  density  function  follows
exponential family of distributions. The model or similar types of modeling techniques have been used in many similar
studies [14, 17, 22, 24, 27] Moreover, time series models have distinct advantage over cross-sectional models since
individual cofactors like socio-economic conditions, nutrition, behavior and other potential confounding factors used in
cross-sectional studies are unlikely to be confounders in these models since they are not generally associated with day
to day basis along with daily changes in weather related variables. The potential confounders are usually the variables
that vary with time such as seasonal and trend variables.

2.2.2.1. Statistical Model

The  generalized  linear  model  with  log  link  function  can  be  expressed  as  follows.  The  model  has  count  as  the
dependent variable with one or more predictor variables.

(1)

where yi is the observed value of the dependent variable (hospitalizations or deaths) for ith day and; βk is the kth (k =1,
2, …, p) parameter to be estimated which include weather variables and confounders namely trend component, day of
week and seasonal dummies (only statistically significant p-value ≤0.1 or just  above were incorporated) ;  xk1  is  the
observed value for the kth independent variable like temperature or humidity or rainfall, etc. measured on the ith day; εi is
the stochastic error term of the model associated with the ith day . Different forms of lags were considered initially and
the one which yielded higher statistical significance was finally chosen. The model can also be expressed as:

(2)

where  is the vector of unknown  parameters  and  is  the vector of independent variables including a unity for
the intercept, β0 , E( yi ) = μi and has the natural logarithm as the link function. The predictors include meteorological
parameters, seasonal dummy variables, day of week (Saturday) as a categorical variable and an annual trend variable. A
seasonal dummy is coded as 0 if a day belongs the season or 1 otherwise. For instance, Summer is coded as 0 if a day
belongs to the season otherwise coded as 1. Similarly, Saturday is coded as 0 and other days are coded as 1. Trend value
takes the value 1, 2,.., 5 for 5 consecutive years starting from 2066 BS. The model is suitable to link hospital admissions
(or  mortality  count)  with  weather  related  variables  as  mentioned  above.  Moreover,  meteorological  variables  are
reconstructed using the lag structures considered for statistical modeling for different lag periods that ranged from same
day to several weeks. Estimate of relative risk per unit increase in the jth risk factor (independent variable) is calculated
as:

(3)

The corresponding estimate of percent change in health effect is given by:

(4)

The estimate is applicable for values within the threshold values of meteorological parameters where health effects
are assumed to exist and not far away from the observed meteorological conditions. Details regarding the threshold
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values are explained below in this section. In Equation 3,  is  the  maximum likelihood estimate of βj computed using
the method of iteratively reweighted least squares in generalized linear model [28]. Estimates are obtained using the
statistical package for the social sciences (SPSS) software, version 20.

Altogether  14  generalized  linear  models  are  built.  The  response  variables  are  WB  disease  hospitalization,  VB
disease hospitalization, urinary system disease hospitalization, HD hospitalization, all cause mortality and WB & VB
disease deaths. From Mountain, only 2 models with WB disease hospitalization and all cause deaths are built due to
very low (or zero) hospitalizations in other health effects from the selected 2 hospitals. From Hill and Mountain models
are built for all the 6 considered health effects resulting in 14 models. Regarding meteorological variables, data from all
the considered parameters were taken from all the ecological regions. Models are built independently for eco-belts and
responses covering the district (s),  hospitals, and meteorological stations referred within an eco-belt through taking
daily averages of meteorological parameters except in the case of rainfall for which totals are taken instead. Daily totals
of health responses from different hospitals are considered for each eco-belt for the entire analysis period of 5 years.
The information regarding area, population, hospital and meteorological station coverage is shown in the Table 1.

Table 1. Information on study coverage.

Coverage Mountain Hill Terai Total
Area (District) 1 5 4 10
Population (% of Population of Nepal) 0.6 11.4 11.8 23.8
Hospital 2 13 7 22
Meteorological Station 2 8 6 16
Models 2 6 6 14

The models corresponding specific eco-belts and health responses are shown in Table 2.

Table 2. Model description.

Model Eco-belt Health Response Model Eco-belt Health Response
1 Mountain WB hospitalization 8 Hill All cause death
2 Mountain All cause death 9 Terai WB hospitalization
3 Hill WB hospitalization 10 Terai VB hospitalization
4 Hill VB hospitalization 11 Terai Urinary system hospitalization
5 Hill Urinary system hospitalization 12 Terai WB and VB death
6 Hill WB and VB death 13 Terai HD hospitalization
7 Hill HD hospitalization 14 Terai All cause death

2.2.2.2. Lag Effects

It is logical to assume that health effects on a particular day can depend not only the weather condition of the same
day but may have resulted due to weather conditions of previous days as well. Moreover, consideration of lag effects is
necessary while modeling health effects based upon daily time series data as shown by other daily time series studies
[29, 30]. For the purpose, several lag structures are considered namely moving average (MA), geometric decay and
arithmetic decay. Another aspect while considering lag effects is the choice of suitable lag length. For the purpose,
several extended lag effects are considered and the length which suites the best regarding extent of effects and statistical
significance is finally chosen. Additionally, incubation periods of bacteria/viruses that causes WB and VB diseases are
noted in order to choose the lag lengths for statistical modeling. It is noted that incubation period ranges between 0.5 to
14 days (excluding hepatitis) for WB diseases whereas the period ranges between few days to months/years for vector-
borne diseases [31 - 35].

2.2.2.3. Lag Structures

Several suitable lag structures were explored namely geometric (exponential) decay, arithmetic decay and moving
averages. The mathematical models for lag structures are as follows. The model used for geometric decay is:

(5)
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where wi is the assigned weight for ith lag, w 0 is a constant related to the total weight for all lags and λ is the rate of
decay. Similarly, the model for arithmetic decay is:

(6)

where k represents the total number of lags including same day lag and  [29, 30].

Lag weights depend upon the functional form of the lag structure and the lag length. In the analysis different lag
lengths are considered which resulted in different sets of lag weights for arithmetic and geometric decay lag structures.
A typical graph of lag weights used for geometric decay lag structure is shown in Fig. (2). It is constructed for w  0=
0.9832 and λ= 0.40.

Fig. (2). Geometric decay of lag weights.

2.2.3. Estimation of EBD Attributable to Average Temperature as the Main Climatic Variable

The basic approach for estimating the environmental burden of diseases is common to every environmental risk
factor. Computation of attributable fraction (AF) is done by standard methodology as mentioned in WHO literatures and
computed for total mortality and morbidities as follows [36].

(7)

where AFm is the attributable fraction (also called the impact fraction) for mth model (m=1, 2, …, 14); Pmn is the
proportion of days in nth (n=1, 2,..,r) categorized group of climatic condition out of the total number of days calculated
for the mth model; RRmn is the relative risk at exposure category n compared to the reference level or threshold value of 0
-10°C minimum temperature  depending  upon  the  response  variable  calculated  for  the  mth  model.  The  total  disease
burden for EBD assessment is based upon available annual morbidity and mortality data of 17 years collected from the
Department  of  Health  Services  (DoHS)  Annual  Reports.  For  EBD attribution,  total  morbidity  including  outpatient
morbidity are also taken into account assuming that health effect coefficients and relative risks modeled from inpatient
data would not be much different if similar models are built using outpatient data. The attributable burden for the mth

model is as follows.

 0 1iw w k i  
  

  0

1

1 2
w

k k


 

 

     
1

1

1
r

mn mn

n
m r

mn mn

n

P RR

AF

P RR














70   The Open Atmospheric Science Journal, 2016, Volume 10 Shrestha et al.

(8)

where TBm is the total burden in the mth model.

2.2.2.4. Threshold Values for Computing Relative Risks

The threshold values of  temperature for  computation of  attributable  fractions are  based upon the finding of  the
studies as mentioned below and also upon the observed frequency curve of hospitalizations at different temperatures.
Studies  have  been  conducted  to  examine  about  weather  variables  and  survival  and  development  of
bacteria/parasites/viruses and their carriers. Studies have shown that a pathogen needs a certain temperature range to
survive  and  develop.  For  instance,  a  study  showed  that  a  minimum  temperature  of  25-26°C  is  required  for  the
transmission of Japanese Encephalitis Virus (JEV) [37]. The development of malaria parasite (Plasmodium falciparum
and  Plasmodium  vivax)  ceases  when  temperature  exceeds  33°-39°C  [38].  Reproduction  of  Salmonella  increase  as
temperature rises in the range between 7°C and 37°C [39]. Similarly, since the falciparum malaria mostly exists when
temperature  is  above  16°C,  a  temperature  dropping  to  below  this  threshold  will  benefit  malaria  control  [40].  The
detailed review of publications regarding climate change and human infectious diseases including temperature threshold
values published during the period 1990-2015 has been done by Xiaoxu Wu et al. [41]. Additionally, in the present
study, the hospitalization frequency-temperature curves showed around 100 cases of water-borne hospitalization (<1%)
between 5-10°C, only around 10 cases of vector-borne (<1%) and renal disease hospitalizations (<1%) below 10°C.
Based upon the review and findings, the threshold values of minimum average temperature considered for water-borne,
vector-borne and renal disease are chosen as 5°C, 10°C and 10°C, respectively. It is to be noted that relative risks are
computed for different climate conditions which have higher risks compared to the reference level below or at the level
the  health  risks  are  assumed  more  or  less  non-existent  for  EBD  calculations.  The  upper  threshold  values  are  not
mentioned since it is not reasonable to assume that the maximum average temperatures for any day considered in data
modeling can be taken as risk free days from the considered hospitalizations or deaths regarding the climatic condition
aggregates.

3. RESULTS

Several statistical models are developed ecobelt-wise in order to link and assess health effects with climate sensitive
variables  and confounding variables  in order  to examine the differences in health effect  coefficients  between these
regions. Altogether, 14 models are developed, two from Mountain and six each from Terai and Hill accounting water-
borne, vector-borne, heart disease, urinary system disease hospitalizations and all cause and disease specific deaths.
Health effect coefficients are discussed and compared separately for different meteorological parameters and ecological
belts. The effects are presented as percent change in hospitalization/deaths per unit change in meteorological parameters
such as 1°C rise in average temperature (except in HD hospitalization/all cause death response models) or 1°C change
in average temperature below or above the overall average (20°C) (only in HD hospitalization/all cause death response
models), 1 mm increase in rainfall (all models), 1% rise in relative humidity (all models) and 1m/s rise in wind speed
(all models) and computed from Equation 4 separately for different health effects and eco-belts. For all cause death and
HD hospitalization, the percent rise in health effects due to temperature is computed differently as percent increase in
health effects due to 1°C increase or decrease in temperature compared to 20°C since risk of these health effects are
likely to increase with rising temperature difference compared to a normal or least risk condition which is taken as 20°C
in this analysis.

Prior to building statistical models, a descriptive analysis is carried out by constructing line graphs consisting of 14
panels covering all  the eco-belts and health responses to detect possible presence of associations between the main
climate variable, temperature using monthly data and corresponding health responses as shown in Fig. (3). The line
graphs showed noticeable increasing trends along with temperature for WB, VB and urinary system hospitalizations and
WB & VB and all cause deaths with substantial amounts of fluctuations. The figures indicate that even though there are
strong evidences of association between temperature and health responses, the observed fluctuations of health responses
suggest the presence of variables other than temperature affecting health responses. Moreover, substantial amounts of
variations are also detected between the models built for different eco-belts which justifies the methodology of building
models separately for different eco-belts.

                                                       m m mAB AF TB                                           
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Fig. (3). Panel graphs of hospitalization and temperature time series.

Table 3. Percent rise in effects per 1°C rise in temperature.

Health Effect Particular Mountain Hill Terai

WB hospitalization
Estimate 5.2 5.4 2.1
95% CI [3.4;6.9] [4.8;5.9] [1.5;2.7]

Lag MA 15 GEO 7 GEO 7

VB hospitalization
Estimate ▬ 6.8 7.3
95% CI ▬ [3.9;9.7] [5.9;8.8]

Lag ▬ MA 45 MA 30

Urinary system hospitalization
Estimate ▬ 3.2 2.4
95% CI ▬ [1.4;4.9] [1.0;3.9]

Lag ▬ GEO 7 MA 21
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Health Effect Particular Mountain Hill Terai

HD hospitalization
Estimate ▬ 8.2 0.9
95% CI ▬ [4.4;12.2] [-0.3;2.1]

Lag ▬ GEO 7 MA 21

All cause deaths
Estimate 8.2 2.8 0.9
95% CI [0.0;17.1] [1.3;4.2] [0.2;1.6]

Lag MA 1 MA 3 MA 30

WB & VB deaths
Estimate ▬ 5.3 5.2
95% CI ▬ [0.3;10.4] [2.1;8.3]

Lag ▬ SAME DAY MA 30
▬ implies model not built; CI implies confidence interval.

3.1. Effect of Temperature

The health effects of rise in temperature on water-borne disease hospitalization is found largest in Hill with 5.4%
rise in the hospitalization, slightly lower in Mountain with 5.2% rise but substantially smaller in Terai with 2.1% rise in
the hospitalization per 1°C rise in average temperature.  Similarly,  the effect  of rise in temperature on vector-borne
disease  hospitalization  is  relatively  higher  in  Terai  with  7.3%  rise  in  the  hospitalization  per  1°C  rise  in  average
temperature compared to 6.8% in Hill. Moreover, effects of rise in temperature in urinary system disease hospitalization
and WB & VB disease deaths are smaller in Terai (2.4%-5.2%) compared to Hill (3.2%-5.3%) though the differences
are only marginal. If effects on all cause mortality are examined, it is seen that the effect is largest in Mountain with
8.2% increase but decreases substantially to 2.8% in Hill and 0.9% in Terai per 1°C change in average temperature
below or above 20°C which demonstrate that higher coldness and hotness increases the chances of deaths in all the eco-
belts of Nepal. This also implies that the effect of extreme hotness/coldness is higher in Mountain and relatively smaller
in Hill and smallest in Terai. Examination of effects on HD hospitalization also reveals that effect of absolute difference
in temperature relative to 20°C is much higher in Hill (8.2%) compared to Terai (0.9%) (Table 3)(Fig. 4). Lag type and
lag length show that most of the lags found appropriate are moving average (MA) and geometric decay (GEO). Lag
lengths  are  found  much  higher  for  VB  hospitalization  (30-45  days)  primarily  because  incubation  period  is  higher
compared to WB hospitalization (7-15 days) which is consistent with review of literature on incubation periods of WB
and VB diseases. For other responses, lag length ranged widely from same day to 30 days. Additionally, lag length is
found much higher in Terai compared to Hill regarding urinary system and HD hospitalizations and mortality.

3.2. Effects of Rainfall

Effects  of  rainfall  are  detected  for  WB,  VB and  urinary  system disease  hospitalizations  and  found  statistically
insignificant for rest of the responses at 10% significance level. Analysis of effects of rainfall by eco-belts showed some
contrasting results with negative coefficients in Mountain and Terai regions where relatively high rainfall is associated
with relatively low WB hospitalizations. In Hill 2.4% rise in WB disease hospitalization is estimated per 1 mm rise in
rainfall. However, analysis of Mountain and Terai regions actually suggests a different scenario with 0.6% and 2.3%
decrease in WB hospitalizations in Terai and Mountain, respectively per 1 mm rise in rainfall (Table 4)(Fig. 5). Effects
of rainfall on VB hospitalizations are also found negatively associated with varied effects in magnitude with 8.7% and
1.03%  decrease  in  VB  disease  hospitalization  in  Hill  and  Terai,  respectively  per  1  mm  rise  in  rainfall.  Lastly,
examination  of  effects  on  urinary  system  disease  hospitalization  showed  negative  association  in  Terai  with  2.1%
decrease  in  urinary  system  hospitalization  but  1.2%  increase  in  the  same  per  1  mm  increase  in  rainfall  in  Hill.
Additionally, analysis of data revealed insignificant associations between mortalities and rainfall. Lag type shows all of
them following moving average (MA). Lag lengths are found to be much higher for VB hospitalization (21-45 days) as
in temperature effect compared to WB hospitalization for which lag length is found to be consistent with 15 days. For
other responses, lag length ranged widely from 15 to 21 days.

(Table 3) contd.....
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Fig. (4). Percent rise in effects per 1°C rise in temperature.

3.3. Effect of Relative Humidity

The  effects  of  relative  humidity  showed  increase  in  humidity  increases  the  chances  of  VB,  urinary  system
hospitalizations and HD hospitalization as well as all cause deaths but decreases the chances of WB hospitalization with
magnitude  of  effects  differing  between  eco-belts.  Results  indicate  that  humid  air  having  more  moisture  content  is
favorable condition to vector-borne disease carriers whereas not favorable to water-borne diseases. Results demonstrate
1.6% and 0.6% decrease in WB hospitalization in Terai and Hill, respectively per 1% rise in relative humidity. However
the effect is found insignificant in Mountain. The effect on VB is found substantially larger in Hill compared to Terai
with 7.3% rise in VB hospitalization per 1% rise in relative humidity in Hill and 2.2% rise in the hospitalization in
Terai. Urinary system hospitalization is also found increasing as humidity increases with 0.8% and 2.1% rise in the
hospitalization in Hill and Terai, respectively. Estimates revealed that 1% rise in relative humidity is not associated with
mortality in Hill whereas 0.7% rise in deaths is detected in Terai. Lastly, HD hospitalization is found to be associated
with humidity in Terai only and WB & VB deaths associated only in Hill with 0.4% and 3.2% rise in the effects per 1%
rise in relative humidity, respectively (Table 5)(Fig. 6). Lag type shows all of them following MA lag structure. Here
also, lag lengths are found to be much higher for VB hospitalization (21-45 days) compared to WB hospitalization for
which lag length is found to be consistent with 15 days. For other responses, lag length ranged widely from same day to
30 days.

Table 4. Percent change in effects per 1mm rise in rainfall.

Health Effect Particular Mountain Hill Terai

WB hospitalization
Estimate -2.3

[-3.2;-1.3]
2.4

[1.7-2.9]
-0.6

[-0.1;-0.2]
Lag MA 15 MA 15 MA 15

VB hospitalization
Estimate ▬ -8.7

[-11.3;-6.0]
-1.0

[-2.0;-0.1]
Lag MA 45 MA 21

Urinary system hospitalization
Estimate ▬ 1.2

[-0.2;2.7]
-2.1

[-3.2;-1.0]
Lag MA 15 MA 21

HD hospitalization
Estimate ▬ X -0.9

[-1.7;0.0]
Lag X MA 21

X implies not included in the model due to statistical insignificance.
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Table 5. Percent change in effects per 1% rise in relative humidity.

Health Effect Particular Mountain Hill Terai

WB hospitalization
Estimate X -0.6 -1.6
95% CI X [-1.0;-0.2] [-1.9;-1.3]

Lag X MA 15 MA 15

VB hospitalization
Estimate ▬ 7.3 2.2
95% CI ▬ [5.1;9.5] [1.3;2.9]

Lag ▬ MA 45 MA 21

Urinary system hospitalization
Estimate ▬ 0.8 2.1
95% CI ▬ [-0.1;1.8] [1.2;2.9]

Lag ▬ MA 15 MA 21

HD hospitalization
Estimate ▬ X 0.4
95% CI ▬ X [-0.2;1.0]

Lag ▬ X MA 21

All cause deaths
Estimate X X 0.7
95% CI X X [0.3;1.1]

Lag X X MA 30

WB & VB deaths
Estimate ▬ 3.2 X
95% CI ▬ [1.0;5.3] X

Lag ▬ SAME DAY X
X implies not included in the model due to statistical insignificance.
▬ implies model not built; CI implies confidence interval.

Fig. (5). Percent change in effects per 1mm rise in rainfall.

Fig. (6). Percent change in effects per 1% rise in relative humidity.
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Table 6. Percent change in effects per 1m/s increase in wind speed.

Health Effect Particular Mountain Hill Terai

WB hospitalization
Estimate -23.6 X X
95% CI [-27.3;-19.7] X X

Lag MA 15 X X

VB hospitalization
Estimate ▬ 35.0 1.7
95% CI ▬ [7.4;69.6] [-0.5;3.4]

Lag ▬ MA 45 MA 7

Urinary system hospitalization
Estimate ▬ 17.5 -4.0
95% CI ▬ [5.0;31.5] [-6.9;-1.0]

Lag ▬ MA 15 MA 21

All cause deaths
Estimate X -9.0 X
95% CI X [-14.7;-2.9] X

Lag X MA 7 X

WB & VB deaths
Estimate ▬ X -6.4
95% CI ▬ X [-11.6;-0.9]

Lag ▬ X GEO 7
X implies not included in the model due to statistical insignificance.
▬ implies model not built; CI implies confidence interval.

3.4. Effect of Wind

Examination of eco-belt-wise differences in wind effects revealed that Mountain region showed negative association
with  WB  hospitalization  but  statistically  insignificant  association  is  detected  in  Hill  and  Terai  regions  with  WB
hospitalization. The effect of wind on VB disease hospitalization is found very high in Hill with around 35% increase in
the  hospitalization  per  1m/s  increase  in  wind  speed  and  comparatively  very  low  in  Terai  with  1.7%  rise  in  VB
hospitalization. Similarly, contrasting effects are detected on urinary system disease hospitalization as well. Lastly, all
cause deaths is found associated only in Hill with 9% decrease in the deaths per 1m/s increase in wind speed and WB
and VB deaths are associated only in Terai with 12.8% decrease in the deaths per 1m/s increase in wind speed. (Table
6)(Fig. 7). Lag type shows almost all of them following MA lag structure except one following GEO decay. Lag length
vary significantly between Hill and Terai for VB hospitalization (1-45 days) whereas found consistent with 15 days for
WB hospitalization (where wind speed is included in model). For other responses lag length ranged widely from 7 to 21
days.

Fig. (7). Percent change in effects per 1m/s increase in wind speed.
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3.5. Confounding Effects

Daily hospitalizations and even deaths are found significantly associated with whether a day is a public holiday or
not. In the present analysis, a holiday is represented by Saturday since in Nepal Saturday is a public holiday. Analysis of
effects showed that a holiday is associated with reduced hospitalizations and all cause deaths with 11.8% to 37.5%
decrease in hospitalization or death compared to weekdays. Even though the extents of effects are varied across regions
and health effects, the effects are consistently in the same direction for all regions as well as for different health effects.
This implies that a holiday reduces the chances of hospitalizations or even death (Table 7).

Table 7. Percent change in effects due to public holiday.

Health Effect Mountain Hill Terai

WB hospitalization X -25.9
[-29.4;-22.3]

-11.8
[-15.9;-7.5]

VB hospitalization ▬ -29.4
[-42.1;-13.9]

-51.4
[-58.6;-42.9]

Urinary system hospitalization ▬ -37.5
[-44.7;-29.6]

-32.6
[-42.1;-21.7]

HD hospitalization ▬ -33.5
[-42.4;-23.1]

-23.9
[-30.9;-16.1]

All cause deaths X -16.3
[-22.3;-9.8] X

X implies not included in the model due to statistical insignificance.
▬ implies model not built.

Analysis  also  showed  presence  of  annual  trend  effects  which  are  statistically  significant.  WB  hospitalization
decreased annually for Terai by 12.3% but increased in Mountain and Hill regions by around 1%. VB hospitalization
decreased consistently across the regions with extent of decrease ranging between 8.5% and 15.2%. In contrast, urinary
system disease hospitalization increased by 5.5% to 10.5% across regions of Nepal. HD hospitalization decreased in
Terai by 10.5% but increased in Hill region by 4.3% (in the analysis period). Considering trend effects on mortality, it is
observed that all cause deaths decreased consistently across regions of Nepal by around 5.8% except in Mountain where
the decrease is by 55%. Similarly, WB & VB disease deaths also decreased in Hill and Terai regions by 17% to 28.9%
except in Mountain (Table 8).

Table 8. Annual percent change in effects.

Health Effect Mountain Hill Terai
WB hospitalization 1.1

[-1.0;10.1]
1.0

[-0.1;2.0]
-12.3

[-13.3;-11.3]
VB hospitalization ▬ -8.5

[-13.0;-3.9]
-15.2

[-18.2;-12.0]
Urinary system hospitalization ▬ 10.5

[7.3;13.8]
5.5

[1.6;9.5]
HD hospitalization ▬ 4.3

[1.1;7.5]
-10.5

[-12.5;-8.5]
All cause deaths -55.0

[-72.0;-27.5]
-5.9

[-7.7;-4.1]
-5.7

[-7.8;-3.4]
WB & VB deaths ▬ -17.0

[-25.2;-8.1]
-28.9

[-36.1;-20.9]
▬ implies model not built.

Seasonal dummies are created to account the effect of different seasons on health effects compared to winter season.
However, all the seasonal effects (summer, spring and autumn) may not be statistically significant compared to winter
in a specific model. Thus, if summer and spring seasons are statistically significant then the reference is the remaining
seasons i.e. winter and autumn. The percent change in health effects according to type of disease burden, eco-belt and
seasons are compared to remaining season (s). The sign and magnitude of seasonal effects are found quite dissimilar
between health  effects  as  well  as  between seasons.  Examination of  values  revealed that  the  effects  of  summer and
spring are actually negative compared to remaining seasons in a year for WB hospitalizations in Hill and Mountain with
10% to 33% decrease in summer compared to remaining months due to seasonal effect. Similarly, the coefficients are
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negative in case of urinary system hospitalization and WB & VB deaths (8.6% to 49.7% decrease). However, in case of
VB disease hospitalization, seasonal effects are found insignificant except in Hill or excluded due to multicollinearity
effects. Similarly, other seasonal effects are shown and can be interpreted accordingly as shown in Table 9.

Table 9. Percent change in effects due to seasonal differences.

Health Effect Season Mountain Hill Terai

WB hospitalization

Spring -64.4
[-68.9;-59.2]

-6.8
[-12.0;-1.3] X

Summer -33.1
[-42.7;-22.0]

-10.1
[-14.0;-5.9] X

Autumn X X -10.3

VB hospitalization

Spring ▬ X X
Summer ▬ X X

Autumn ▬ 70.2
[40.6;106.3] X

Urinary system hospitalization

Spring ▬ X X

Summer ▬ -17.5
[-29.7;-3.1] X

Autumn ▬ -15.8
[-28.9;-0.3] X

HD hospitalization

Spring ▬ 22.9
[9.1;38.4] X

Summer ▬ X X

Autumn ▬ -8.4
[-18.4;-2.8] -14.6

All cause deaths

Spring X 30.2
[17.1;44.9] X

Summer X 9.2
[-1.0;20.3] X

Autumn X 12.2
[0.7;25.0] X

WB & VB deaths

Spring - X X

Summer - -49.7
[-72.7;-7.5] X

Autumn - -30.3
[-58.9;18.1] X

X implies not included in the model due to statistical insignificance.
▬ implies model not built.

3.6. Data Heterogeneity and Model Adequacy Tests

Since  eco-belt  specific  models  are  built,  an  examination  of  data  heterogeneity  within  the  eco-belts  for  model
calibration would be informative. For the purpose, each eco-belts are further sub-divided in two groups. Since Mountain
included only two hospitals two groups are formed containing a hospital in each group. Hill is divided into a group
containing hospitals from Kathmandu Valley and another group containing hospitals from outside the valley. Lastly,
Terai is subdivided into two groups containing two hospitals in each group. In groups containing two or more hospitals,
groups are formed with hospitals with lesser assumed heterogeneity compared to hospitals of another group within a
region.  Correlations  between  temperature  (the  main  climate  variable  in  the  study  for  EBD  assessment)  and  health
responses are computed for all health responses in each group along with an overall estimate for each eco-belt region as
shown in the Table 10. The computed correlations showed nearly equal positive correlations between groups for all
cause deaths in Mountain, WB, VB and HD hospitalizations and WB & VB deaths in Hill, VB hospitalizations and WB
and VB deaths in Terai. Similarly, positive correlations with considerable amount of deviations in the magnitude for
WB hospitalization in Mountain, renal hospitalization and all cause deaths in Hill and WB hospitalization in Terai are
detected. Some contrasting results are also detected in case of urinary system and HD hospitalizations and all cause
deaths in Terai. The findings suggest that there exists definite similarities between groups (or hospitals) of each eco-
belts regarding association between temperature and health responses which justifies the mehtodology of ecobelt-wise
modeling  adopted  in  the  study.  However,  there  are  also  some  computed  dissimilarities  which  could  be  due  to
differences  other  than  climate  related  factors  within  the  eco-belts  of  Nepal.
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Table 10. Correlations between health responses and temperature.

Health Effect
Mountain Hill Terai

Overall Group1 Group2 Overall Group1 Group2 Overall Group1 Group2

WB 0.14
(0.31)

0.34
(0.02)

0.14
(0.32)

0.74
(0.00)

0.65
(0.00)

0.77
(0.00)

0.27
(0.04)

0.36
(0.00)

0.03
(0.83)

VB ▬ ▬ ▬ 0.18
(0.16)

0.19
(0.14)

0.14
(0.22)

0.50
(0.00)

0.40
(0.00)

0.53
(0.00)

Renal ▬ ▬ ▬ 0.48
(0.00)

0.04
(0.79)

0.46
(0.00)

-0.11
(0.42)

-0.37
(0.00)

0.23
(0.08)

HD ▬ ▬ ▬ 0.08
(0.52)

0.09
(0.49)

0.03
(0.83)

-0.04
(0.76)

-0.21
(0.11)

0.05
(0.73)

Deaths 0.26
(0.07)

0.22
(0.13)

0.20
(0.17)

0.13
(0.31)

0.14
(0.30)

0.01
(0.99)

0.08
(0.6)

-0.21
(0.87)

0.15
(0.25)

WB & VB
Deaths ▬ ▬ ▬ 0.11

(0.42)
0.09

(0.47)
0.11

(0.40)
0.28

(0.03)
0.24

(0.06)
0.23

(0.07)
Values in parentheses are p values.
▬ implies model not built; CI implies confidence interval.

Model adequacy tests are done related to goodness of fit, residual analysis and multicollinearity. Multicollinearity
arises due to high correlations between predictors and leads to inaccurate results. The variance inflation factor (VIF)
quantifies the extent of multicollinearity present in a linear model and provides an index that measures how much the
variance of an estimated regression coefficient is increased because of collinearity. Goodness of fit is checked through
Omnibus test [42] and found to be good with p values nearly zero for all the fitted models. Residual analysis showed
errors distributed normally for some models and non-normal for rest of the models (p value<0.1). Fitted models showed
standardized  deviance  residuals  scattered  randomly  and  with  reasonably  constant  variances  when  plotted  against
predicted values. Screening of residual autocorrelations at different lags showed low values (mostly <0.15) even though
some were significant (but less than 0.3) which could be due to a very large sample size (1826 days) and were ignored
also because the plot of standardized residual in time sequence showed no visible pattern with fairly constant spread
(Fig.  8).  There were no high multicollinearity among predictors  in the models  with VIFs smaller  than 5 for  all  the
predictors of the built models (less than 3 for 8 models; less than 4 for 12 models and less than 5 for all 14 models).
There were one or two outliers in some of the built models which were ignored since they did not affected coefficients
markedly.

Fig. (8). Scatterplot of standardized deviance residual.

3.7. EBD Attributable to Climate Sensitive Variable (Temperature)

Estimated  EBD  due  to  temperature  for  different  health  burdens  are  given  in  Table  8.  In  the  table,  attributable
fractions (AFs) along with total and attributable burdens (ABs) due to temperature rise are given. Burden per year is the
average  value  obtained  from  available  17  years  of  morbidity  and  mortality  data  reported  in  annual  reports  of
Department of Health Services (DoHS), Kathmandu (1997/98 - 2014/15). The computations of AFs and then ABs are
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based upon several assumptions. Minimum threshold values of average temperature for computation of AFs of water-
borne diseases, vector-borne diseases, renal diseases, and disease specific mortality of water and vector-borne diseases
are chosen as 5°C, 10°C, 10°C and 5°C, respectively. In case of temperature taken as absolute difference, the threshold
is 0°C. Threshold values were chosen based upon literature review as well as observed values of temperature averages
for  the  considered meteorological  stations  of  Nepal  in  the  study period and assumed that  considered health  effects
below these threshold values are negligible. Attributable fractions and corresponding attributable burdens are computed
separately  for  Mountain,  Hill  and  Terai.  In  Mountain,  results  showed  high  AFs  of  around  0.38  -  0.41  for  WB
hospitalization and all cause deaths. In Hill region, among hospitalizations, AFs ranged between 0.24 and 0.52 with
highest AF found for WB hospitalization and lowest AF found for urinary system hospitalization. Among deaths, very
high AF (around 0.51) is obtained for WB & VB deaths. However, AF for all cause death is found relatively much
lower (0.12). In Terai region, AFs ranged in between 0.07 to 0.67 with highest obtained for VB hospitalization and
lowest AF obtained for HD hospitalization/all cause deaths. Among deaths, AF for WB & VB mortality is found to be
0.54. The attributable burdens due to temperature rise are given in the last column of the Table 11. It shows high annual
attribution of WB diseases (2 lakh to 4 lakh) in Hill and Terai regions and around 64 thousand in Mountain annually.
Similarly, other attributable burdens can be seen in the Table 11.

Table 11. Attributable factors and attributable burdens.

Region Type Response Variable AF Burden/Year
(Outpatients)

Burden/Year
(Inpatients)

Total Burden /
year

Attributable Burden /
year

Mountain Hospitalization WB 0.414 153344 2290 155634 64432
Mountain Death All cause 0.3847 - - 16 6

Hill Hospitalization WB 0.5211 750831 10860 761691 396917
Hill Hospitalization VB 0.4596 10816 268 11084 5094
Hill Hospitalization Urinary 0.2424 88674 2158 90832 22018
Hill Hospitalization HD 0.3007 63960 2557 66517 20002
Hill Death All Cause 0.1233 - - 75 9
Hill Death WB&VB 0.514 - - 30 15

Terai Hospitalization WB 0.3402 668450 9668 668450 227407
Terai Hospitalization VB 0.6651 63946 1586 63947 42531
Terai Hospitalization Urinary 0.2996 68419 1665 68419 20498
Terai Hospitalization HD 0.0695 44043 1760 44043 3061
Terai Death All Cause 0.0695 - - 68 5
Terai Death WB&VB 0.5388 - - 28 15

4. DISCUSSION AND CONCLUSION

Rise in average temperature or absolute difference in average temperature with its overall average is associated with
increase in hospital morbidity and mortality of selected diseases as well as all cause mortality. This is found true for all
the  health  effects  considered  in  the  study  regarding  the  separate  effects  in  different  eco-belts  of  Nepal  though  the
magnitude of effects varied marginally or significantly from one region to another and from one health effect to another.
The effects ranged between 2.1% to 7.3% increase in the effects (WB, VB, urinary system hospitalizations and WB &
VB deaths) per 1°C increase in average temperature and 0.9% to 8.2% increase in HD hospitalization and all cause
deaths per 1°C increase in the absolute difference of average temperature with its overall average of 20°C. The presence
of varied effects due to temperature can be due to various reasons such as difference in susceptibility of people between
the  regions,  difference  in  practices  regarding  drinking  water  consumption,  etc.  The  higher  percentage  rise  in  WB
hospitalizations  in  Hill  can  be  interpreted  as  people  of  Hill  region  in  Nepal  are  relatively  more  prone  to  rise  in
temperature than those of Terai region which can be due to various reasons such as higher susceptibility of the people in
the  region,  difference  in  practices  regarding  drinking  water  consumption,  etc.  Similarly,  higher  effect  of  rise  in
temperature on VB hospitalization in Terai can be interpreted as Terai being the hottest region in Nepal with relatively
higher  average  temperature  in  all  seasons,  the  effects  of  rise  in  temperature  is  also  relatively  higher  since
survival/transmission  of  bacteria  and  viruses  that  causes  these  diseases  are  relatively  higher  in  the  conditions  that
prevail in the Terai region of Nepal. Rise in average temperature is likely to spread infectious diseases to new places
like places of Mountain region in Nepal.

Diverse and contrasting effects of rainfall are also revealed from the analysis with -8.7% to 2.4% change in health
effects  per  1mm  increase  in  rainfall.  This  may  be  due  to  significant  geographic/topographical  variations  between
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ecological belts of Nepal as well as other factors like differences in socio-economic conditions, development levels,
levels  of  exposure  and  practices,  vulnerability  and  adaptations,  etc.  One  of  the  main  reason  of  rise  in  WB
hospitalizations  in  rainy  season could  be  due  to  pathogen contamination  in  household  water  supply.  This  could  be
primarily  due  to  mixing  of  contaminated  rain  water  to  drinking  water  source/storage  through  poor  sanitation
facilities/discharges or practices and mixing up waste materials to drinking water due to rainfall which is consistent with
the findings in Hill with 2.4% rise in WB hospitalization per 1 mm rise in rainfall.

In Mountain, revelation of negative association could be due to low contamination possibilities in household water
in rainy season due to least or non-existence of mixing up phenomena through sanitation or other means with very low
population and waste material generation. Moreover, it seems that rainfall actually cleans the environment including
water storage/supply in the region. In Terai, people depend mainly upon ground water for drinking and other household
purposes. In rainy season ground water is diluted with rainfall and due to large open fields of Terai belt, mixing up of
waste materials and waste discharge to drinking water could be low. Thus, results suggest that chances of catching WB
diseases during rainfall time is relatively low compared to dry season except during occurrences of natural disasters like
floods due to extreme rainfall during when chances of infections and spread of WB diseases are naturally high. The
results demonstrate that high rainfall  actually prevents survival and transmission of carriers of VB diseases.  Heavy
rainfall may have catastrophic impacts on mosquito population since strong rainfall can sweep away their breeding sites
[43].  The findings of  varied effects  due to  rainfall  on infectious diseases  as  observed in  the present  study between
regions and between health effects are also evidenced through various studies conducted at different parts of the world.
The findings of varied effects could be due to differences in pathogens, geographical regions, types of water supply,
storage or source at different regions and seasonal atmospheric differences at different regions [44].

Effects due to relative humidity and wind are also found varied between health effects and regions. It is found that
-1.6% to 7.3% changes in health effects detected per 1% increase in relative humidity. Effects are found positive with
magnitude in the range 0.4% to 7.3% increase in VB, urinary system and HD hospitalizations, all cause deaths and WB
& VB deaths whereas negative and in the range 0.6% to 1.6% decrease in WB hospitalization per 1% rise in relative
humidity. The positive effects of humidity on VB disease hospitalization could be due to higher moisture content in
humid air which is favorable to survival and therefore transmission VB disease carriers whereas negative effects of
humidity on WB hospitalization suggests a contrasting result which calls for further research in this area. The positive
association between humidity and urinary system disease hospitalization may be partly due to increased chances of
bacterial infections causing urinary tract infections and leading to urinary system problems in relatively more humid
conditions.

Wind is found to be a principal factor affecting the transmission of pathogens of air borne diseases since pathogen
are attached with dust particles and transported from one place to another by wind [45]. Examination of effects due to
wind showed that increase in wind speed increases VB hospitalization though the magnitude of effects are substantially
varied across  regions (1.7%-35%).  Substantially  higher  rate  of  effects  of  wind speed on VB hospitalization in  Hill
compared  to  Terai  suggests  that  areas  covered  in  Hill  in  the  present  study  could  be  significantly  highly  polluted
particularly with dust particles compared to the regions covered in Terai. Such conditions with higher contents of dust
particles in ambient air are more favorable to pathogen transmissions. Additionally, increase in wind is associated with
23.6% decrease in WB hospitalization in Mountain, 9% decrease in all cause deaths in Hill and 6.4% decrease in WB &
VB deaths in Terai per 1m/s increase in wind speed.

Analysis  of  results  demonstrated  that  public  holidays  are  associated  with  reduced  hospitalizations  compared  to
working days. This may be due to various regions. For instance, a holiday may decrease the possibility of infection due
to reduced exposures and staying in relatively safe environment. People may be more relaxed and relatively tension free
during holidays which can reduce the chances of hospitalization associated with heart diseases and risk of mortality
associated with heart failures.

Analysis of EBD attributable to temperature rise with respect to different eco-belts showed substantial AFs in the
range 0.38 to 0.41 in Mountain, 0.24 to 0.52 in Hill for hospitalizations, 0.12 to 0.51 in Hill for deaths, 0.07 to 0.67 for
hospitalization and 0.07 to 0.54 for deaths in Terai. Among the highest AFs are found for VB hospitalization in Terai
(0.67), WB hospitalization in Hill (0.52), WB & VB deaths in Hill (0.51) and WB & VB deaths in Terai (0.54).

Results  of  the  study  showed  statistically  significant  effects  due  to  climate  variables  on  many  disease  burdens
assessed by hospital inpatient morbidities and mortality with rise in surface air temperature and rise in deaths and heart
disease morbidity with rising hotness and coldness i.e. extreme atmospheric conditions. Study findings demonstrated
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that substantial proportions of disease attributions can be linked to rise in surface air temperature which means that with
estimated rise in average surface air temperature by around 0.20 to 0.25°C per decade for Nepal, climate change is
bound to effect and increase public health burdens of Nepalese population, specifically in the absence of appropriate
measures to counter the effects of climate change. Apart from addressing the main cause of global warming i.e. human
activities that increase greenhouse gas concentration in air, through common and widespread use of alternate renewable
and  eco-friendly  energy  technologies,  Nepal  faces  the  challenge  and  need  to  improve  preparedness  and  adaptation
strategies  like  cleaner  surroundings  and  practices,  coping  effectively  with  diseases  through  improvement  of
infrastructure and facilities, assessing and educating the vulnerable section of our society and enforcing regulations and
laws to protect our environment as far as possible and feasible.
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