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Abstract: In this paper, a novel procedure to reconstruct the lightning channel-base current starting from the measurement 

of the induction field generated by it is presented. The procedure is based on a suitable mathematical manipulation of the 

equation expressing the induction field in the time domain, in order to transform it into a Volterra-like integral equation. 

Such kind of equations can be easily numerically solved without resorting to any sort of regularization techniques as they 

are not affected by the typical ill-conditioning of the inverse problems. The developed algorithm has been validated by 

means of several numerical simulations, which have shown its effectiveness also in presence of measurement noise on the 

induction field values. 
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1. INTRODUCTION 

 A detailed model for the return stroke current is impor-

tant in the context of the lightning general research, since it 

allows to evaluate properly the related electromagnetic fields 

and, in turn, the voltages and currents induced on overhead 

power lines. 

 The term return stroke current refers to the current wave 

that propagates from the ground to the cloud, after the 

stepped leader has reached the ground. When assessing 

lightning interactions e.g. with power lines and related risks 

of potential damage or fault, attention is typically focused on 

the return stroke phase of the lightning phenomenon, as it is 

during this phase that lightning effects are usually more in-

tense and thus more dangerous. A model for the return stroke 

current is a function that relates the current i in the discharge 

channel to the time t and the channel axial coordinate l’ [1-

8]. 

 Rakov and Uman [3] divided the return stroke models 

into four categories, according to the kind of equations that 

have to be solved in order to obtain the expression for the 

return stroke current. Such categories are: 

1. Gas discharge or physical models: the current can be 

found as the solution of a system involving also hy-

drodynamic equations (in terms of temperature, pres-

sure and mass density). 

2. Electromagnetic models: the lightning channel is con-

sidered as a vertical antenna and the channel current 

is obtained solving the Maxwell equations with a nu-

merical technique. 

3. Distributed circuit models: the current is determined 

as the solution of a suitable distributed parameter cir-

cuit, which approximates the behavior of the system. 
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4. Engineering models: they directly provide an expres-

sion for the current in the lightning channel, whose 

parameters have numerical values that can be deter-

mined comparing the simulated results with the 

measured data. In these models, the channel current is 

related to the channel-base one by means of a suitable 

attenuation function P of the discharge channel axial 

coordinate l’.

 In this paper, the attention is focused on the engineering 

models and a new procedure to obtain information on the 

lightning current starting from induction field measurements 

is presented and discussed. 

 Typically, the validation of the engineering models con-

sists of a direct procedure, in which, starting from a given 

expression for the current, the electromagnetic fields are 

calculated and then compared with the measured ones. The 

numerical values of the model parameters are then modified 

in order to make the difference between the two field wave-

forms minimum. 

 In recent works [9, 10], an inverse algorithm, which does 

not make any assumption on the height dependent attenua-

tion function P, but calculates it solving the integral equation 

expressing the link between the electromagnetic fields and 

the return stroke current was proposed. The primary aim of 

such algorithm was to derive the attenuation function P,

given an expression for the channel-base current. It is impor-

tant to highlight that practical application of the algorithm 

was hampered by its frequency domain nature, requiring the 

evaluation of a reliable Fourier spectrum of the measured 

fields. Unfortunately, experimental data are typically avail-

able in a time interval much less than that necessary for the 

field to vanish, as it would be required to compute an accu-

rate Fourier transform. 

 Furthermore, the height dependent attenuation function P

does not exhibit great influence on field values for measure-

ments relatively near to the lightning impact point. In such 

cases therefore it would be much more significant to recon-
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struct the channel-base current, assuming a given expression 

for P.

 In light of these considerations, a complete reformulation 

of the methodology derived in [9, 10] is presented in this 

paper, in order to develop a simple and efficient inverse pro-

cedure able to identify the lightning channel-base current 

directly in the time domain. The key point of the algorithm is 

the mathematical manipulation of the equation expressing 

the induction field in the time domain, in order to transform 

it into a Volterra-like integral equation [11], which can be 

numerically solved without resorting to any sort of regulari-

zation techniques, as it is not affected by the typical ill-

conditioning of the inverse problems. 

 Estimates of lightning peak currents from measured 

lightning electromagnetic fields can be obtained by way of 

empirical formulas [12, 13], statistical equations [14] and 

model-based theoretical equations [15] relating the electro-

magnetic field and the lightning current. 

 The present paper aims at bringing a contribution to the 

last category (model-based theoretical equations). Indeed, 

available theoretical equations are all based on expressions 

relating far electromagnetic fields and associated return 

stroke currents at the channel base, which have been derived 

in the literature for various lightning return stroke models 

[14]. The proposed approach makes it possible to derive the 

channel base current for a given engineering model relaxing 

the far-field assumption. 

 The paper is organized as follows: in section 2, the Vol-

terra-like integral equation expressing the link between the 

induction field and the lightning channel-base current is de-

rived starting from the time domain expression of the induc-

tion field at ground level. Next, in section 3, the numerical 

treatment of such integral equation is presented and dis-

cussed. Then, in section 4, several numerical simulations are 

performed in order to test and validate the proposed algo-

rithm. Finally, in section 5, some concluding remarks are 

drawn and the perspectives of future work outlined. 

2. DERIVATION OF THE VOLTERRA-LIKE INTE-
GRAL EQUATION 

 In the following, the expression of the induction field at 

ground level as a function of the channel base current i
0
(t)

will be manipulated in order to obtain a relation similar to 

that of a Volterra integral equation. 

 The mathematical manipulations are similar to that car-

ried out in [16] and, as in this latter paper, the TL model is 

used (i.e., the current propagates along the channel without 

attenuation). With reference to Fig. (1), at the observation 

point P, placed (without loss of generality) along the x-axis 

at distance  from the origin, the induction field is along the 

y-axis and reads [16, 17]: 
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Fig. (1). Problem geometry. 

where: 

R( ) = 2
+

2 cos( )sin( )           (2) 

is the distance between the point along the channel at ab-

scissa l and the observation point P.

 In the previous relations, i
0
(t)  is the time domain deriva-

tive of the channel base current, c is the speed of light, v is 

the current wavefront speed, l is the abscissa along the 

lightning channel, 0 is the vacuum permeability; finally, is 

the azimuth,  is the elevation and L(t) is the upper integra-

tion limit depending on geometry, speed and time. In equa-

tion (1), it is assumed that the current starts propagating up-

ward at t=0 and that i
0
(t) = 0  for t<0, so the induction field 

in P “starts” at t= /c; therefore it is convenient to perform 

the following change of variable and function: 

t = t
c

B t( ) = B
y

t +
c

           (3) 

 Substituting (3) in (1) we can rewrite it as: 

B t( ) = 0
cos( )

2

1

R3( )
i
0
(t

R( )

c v
)d

0

L( t )

+

+
1

cR2 ( )
i
0
(t

R( )

c v
)d

0

L( t )

          (4) 

where L(t )  is now the upper integration limit as a function 

of t .

 This way, the time reference is set to the instant when a 

relevant measure of the induction field starts being available. 

 With reference to equation (4), the time dependent chan-

nel length can be defined as: 

L(t) s.t. t
R( )

c v
0 0, L(t)          (5) 

 The value L(t )  can be found as one of the radices of the 

equation: 
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t
R(L(t))

c

L(t)

v
= 0           (6) 

when solved for L(t ) ; this implies that, if we define: 

T( ) =
R( )

c
+

v
           (7) 

the following relation holds: 

t T(L(t)) = 0 T L(t)( ) = t .          (8) 

 Solving equation (6) and defining: 

b(t) = c( +ct)- sin( )cos( )v

r(t) = b2 (t)+(v2 -c2 )(ct+2 )ct
          (9) 

the radix expressing L(t )  reads: 

L(t) =
b(t) r(t)

c2 -v2
         (10) 

(this is the only radix that satisfies (0) 0L = ). 

 In order to simplify the notation, we define two auxiliary 

functions: 

f
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         (11) 

and we split the induction field into two terms: 

B
1

t( ) = f
1
( )i

0
( t T( ))d

0

L( t )

B
2

t( ) = f
2
( )i

0
( t T( ))d

0

L( t )

        (12) 

so that: 

B t( ) = B
1

t( ) + B
2

t( )          (13) 

 Now, with: 

2 2a 1-cos ( )sin ( )=          (14) 

we introduce: 

h ( ) = 0
cos( )

2 a

v cos( ) sin( )( )
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 This function is a primitive of f
1 ( ) :

h '( ) = f
1 ( )            (16) 

and furthermore satisfies the condition lim
+

h ( ) = 0 , al-

though this is inessential in this context. Inserting it in (12), 

the expression for B
1

t( )  can be modified as follows: 
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 Taking into account that: 
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recalling that 
0 (0) 0i =  and defining 0 (0)h h , equation (17) 

becomes: 
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 Now, it is possible to make the following change of vari-

ables: 

= T( )

obtaining: 
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 The same variable change can be applied to B
2

t( ) , ob-

taining: 
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 Summing up, if we define: 

g ( ) = h(L( )) + f
2
(L( ))L ( )         (23) 

the expression for the induction field reads: 
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0
i
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 The actual expression for g ( )  can be written as fol-

lows; with the dummy functions: 

A( ) = -cv2 +c vsin( )cos( )+r( )c-v2

B( ) = -c2 v-c v+r( )v+c2 sin( )cos( )
       (25) 

g ( )  reads: 
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 Finally, with another variable change = t ,

equation (24) becomes: 
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 Further manipulations can be applied to (27), in order to 

obtain an actual Volterra equation (i.e. with i
0
( )  under the 

integral sign, instead of i '
0
( ) ), but the solution procedure 

outlined in the next section can be conveniently applied to 

equation (27) in this form. 

3. NUMERICAL SOLUTION 

 The algorithm used to solve equation (27) is carried out 

with reference to a practical situation, in which we have N

samples of the induction field at instances 

t
n
= n t, n = 1..N , and we want to evaluate the channel 

base current at the same instances. Sampling equation (27) in 

the time instances t
n

, we have: 
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0
( )d
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 This relation can be rewritten as follows: 
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 If we use a piecewise approximation of the equation ker-

nel: 
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t

2
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g
j

g j t +
t

2
, j = 0..N 1         (31) 

and inserting this approximation in (29), the expression for 
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allowing to find the needed discrete approximation of (27): 
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 Equation (33) can be rewritten in a more compact form 

with the following definitions: 
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this way the final system of equations reads: 
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 The solution of this system can be straightforwardly 

computed as: 
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 In the expression of each current sample, the induction 

field sample at the same instant and the current samples 

evaluated in the previous equations appear: i1 can be calcu-

lated knowing B1; i2 can be evaluated from B2 and i1; i3 de-

pends on B3, i1 and i2, and so on. 

4. SIMULATIONS 

 The outlined procedure has been numerically tested 

simulating an induction field due to a lightning and trying to 

reconstruct the channel base current used to compute it. 

 A classic Heidler expression has been used for 0 ( )i t :
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with the following parameters: 0I =10 kA, 
1
=0.25 s, 

2
=2.5 s, n =2. 

 The observation point P is located at =100 m from the 

impact point, while elevation and azimuth of the lightning 

channel are respectively =20° and =30°; the induction 

field in P is reported in Fig. (2) and it is called “original”: 

1000 samples have been used in the time window 0 ÷ 5 s. 

 The results here presented aim at reaching three goals: 

1. check method consistency; 

2. show its behavior in presence of noisy data; 

3. show the effect of uncertainties on model parameters. 

 As far as the first issue is concerned, Fig. (3) shows that 

the algorithm is able to exactly reconstruct the channel base 

current from the “original” induction field of Fig. (2); this is 

not a result that can be taken for granted when dealing with 

inverse problems [18], especially without applying any sort 

of regularization: the sole presence of rounding errors very 

often leads to non negligible discrepancies between “recon-

structed” and “real” values, if not, in the worst cases, to in-

stability. This result, on the contrary, highlights the “inher-

ent” stability and well-posedness of the method. 

 To face with the second issue, random noise has been 

added to the computed induction field, obtaining the “noisy” 

waveform in Fig. (2), which has been used as a new input. 

Comparison between original and reconstructed currents is 

reported in Fig. (4); of course, the noise affecting the induc-

tion field leads to noise on the channel-base current, but the 
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algorithm does not suffer from instability and does not am-

plify the error. 

 In order to show the effect of model uncertainties, the 

procedure has been applied (with the “exact” induction field 

as input) with errors on some of the relevant model data: 

wavefront speed v and distance  have been perturbed by a 

±10% error, while on  a ±5° error has been used. 

 Obtained results are reported in Figs. (5-7), where per-

turbed parameters are marked with a prime. The main con-

sideration these results seem to highlight is that, at least in 

the condition here assumed, uncertainties on geometry (dis-

tance and also azimuth) have an importance comparable or 

greater than that on wavefront speed; this could be a concern, 

as data as channel elevation and azimuth can be (roughly) 

known for triggered lightning when video recording of the 

lightning event are available, but not for natural ones. 

 Another comment, related to this issue, concerns the pos-

sibility to infer wavefront speed, i.e. one of the key lightning 

parameters on which researchers focus their attention, from 

measured fields: one has to face with the fact that errors on 

the geometry could have an influence on measures greater 

than that of the speed itself, making it impossible to identify 

its value. 

 Finally, it should be noticed from Fig. (5) that variations 

in wavefront speed seem to mostly influence the behavior of 

the channel-base current at early times and its rise time espe-

cially. 

 This evidence suggests that in order to identify the wave-

front speed the attention should be focused on such time 

window and on the induction field derivative. 

Fig. (2). Original and noisy induction field. 

5. CONCLUSIONS AND PERSPECTIVES OF FUTURE 
WORK 

 This paper has addressed the problem of the lightning 

current identification, proposing an inverse algorithm that 

enables to reconstruct the channel-base current directly from 

the measurement of the induction field. Such algorithm is 

based on a suitable mathematical manipulation of the equa-

tion expressing the induction field in the time domain, in 

order to transform it into a Volterra-like integral equation, 

which can be numerically treated without resorting to any 

sort of regularization techniques, since it is not affected by 

the typical ill-conditioning of the inverse problems. 

Fig. (3). Original vs reconstructed channel-base current (no noise 
on induction field). 

Fig. (4). Original vs reconstructed channel-base current (noise on 
induction field). 

Fig. (5). Original vs reconstructed channel-base current (error on 
wavefront speed). 

 Several numerical simulations have been performed in 

order to validate the developed procedure and to test its ef-

fectiveness also in presence of noisy input data or of uncer-

tain model parameters. The obtained results have shown the 

robustness of the algorithm towards experimental noise in 

the induction field and have pointed out that uncertainties on 

geometry have an importance comparable or greater than 

that on the wavefront speed. 
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Fig. (6). Original vs reconstructed channel-base current (error on 

distance ). 

Fig. (7). Original vs reconstructed channel-base current (error on ). 

 Further activity is in progress in order to carry out an 

experimental validation of the proposed algorithm, by using 

real (measured) induction field waveforms and other compo-

nents of the lightning electromagnetic field (electric field, 

field derivatives). Finally, future activity will concern also 

the enhancement of the developed procedure in order to ex-

ploit measurements in different observation points to per-

form also the identification of other discharge channel pa-

rameters, as for instance the current wavefront speed. 
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