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Abstract: The usefulness of ground based air quality monitoring data for diagnostics of uncertainties in gridded emission 

inventories is examined. A general probabilistic procedure for comparison of levels of uncertainties in different emission 

datasets is developed. It implies the evaluation of the agreement between modeling results obtained with these emission 

datasets and corresponding measurements. This procedure is applied to the evaluation of different datasets for European 

gridded nitrogen oxide (NOx) emissions by using the AirBase monitoring data and the CHIMERE chemistry-transport 

model. Numerical experiments are performed for two different types of spatial distributions of emission uncertainties and 

five different types of monitors. The results are also generalized for various levels of uncertainties in simulated and meas-

ured data. It is found, in particular, that most informative, from the point of view of diagnostics of NOx emission uncer-

tainties, are the measurements of NO2 at rural background sites and measurements of ozone at suburban sites situated in 

the vicinity of intensive sources of emissions. A more precise conclusion regarding the relative accuracy of two emission 

datasets can be drawn with a larger number of monitors in a network and a higher accuracy of the model and measure-

ments. For example, with a network of 50 rural background NO2 monitors, the probability of choosing the more certain 

emission data set is more than 90 percent, if differences in uncertainty of two sets are more than 50 percent. Practical rec-

ommendations for designing or evolving surface measurement networks, in light of the study results, are given. 

Keywords: Nitrogen oxide emissions, tropospheric ozone, monitoring networks, inverse modeling. 

1. INTRODUCTION 

 Emissions of gases and particulate matter into the atmos-

phere are one of the major factors controlling the atmos-

pheric composition and its changes. Emission inventories 

provide inputs into the atmospheric models, which are 

widely used in order to understand complex physical and 

chemical processes in the atmosphere, to develop air quality 

management strategies and to predict variations in climate. 

Numerous studies pointed out the uncertainties in available 

emission data as an important source of inaccuracies in 

model results [1-8]. Thus it is not surprising that significant 

efforts are devoted to the development of emission invento-

ries on urban regional, continental and global scales [9-17]. 

A common way of elaborating emission estimates involves 

the processing of available statistical information regarding 

different activities, such as industry, energy production, 

transport and others. An alternative approach is based on the 

inverse methods, which are intended to optimize emission 

parameters in atmospheric models by reducing the difference 

between simulated and measured concentration fields. Be-

cause neither of these approaches is free from potential un-

certainties in resulting emission estimates, and because dif-

ferent assumptions and input data used in emission invento-

ries may lead to substantially different emission estimates, it  
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is important to have an independent way for validating 

and/or comparing different emission data. 

 It is not uncommon that available emission estimates are 

validated by comparing simulations performed with a model 

(in which the respective emission data are used as inputs) 

with independent measurements [18-21]. A general goal of 

such validation is to demonstrate that one emission dataset is 

more accurate than another. It was also suggested [22-24] 

that independent measurements can be used for optimization 

of emission estimates obtained by means of inverse model-

ing. Such optimization can be helpful because weights as-

signed to a priori information and measurements in Bayesian 

inversion schemes are usually quantified by parameters that 

are poorly known. The subjective estimation of the weights 

may lead to uncontrollable uncertainties in the a posteriori 

emissions. 

 However, it is easy to realize that improving agreement 

of model results with measurements after emission optimiza-

tion does not necessarily mean that emissions used in the 

model are also improved. Indeed, it is probable that even 

perfect emission data can be “optimized” further so as to 

compensate model and measurement errors. Therefore, there 

is a general problem concerning the significance of an im-

provement in agreement between simulated and measured 

concentration fields as a measure of improvement of an 

emission inventory. To the best of our knowledge, this prob-

lem has not been yet addressed in a peer-reviewed literature. 
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 In this paper, we propose a general statistical framework 

that permits quantification of statistical significance of a 

conclusion regarding the relative accuracy of two (or more) 

emission datasets, which can be made after comparing the 

measured and simulated data. More specifically, a main goal 

of this study performed in the framework of the GeoMon 

EC/FP6 project is to quantify the usefulness of ground based 

monitoring of nitrogen dioxide (NO2) and ozone (O3) near-

surface concentrations for selection of the best dataset of 

nitrogen oxide (NOx) emissions among from those available. 

A complementary goal is to optimize parameters of a surface 

network (e.g. density and location of monitors), having in 

mind its possible application for diagnostics of NOx emission 

inventories. In particular, the dependence of results on the 

number and type (rural, urban, etc.) of sites will be dis-

cussed. Nitrogen oxides are known to be among the major 

pollutants responsible for photochemical smog events. They 

also have a strong impact on the oxidizing capacity of the 

troposphere, and in this way they can affect concentrations 

of some green-house gases, such as methane and ozone. 

Studying NOx emissions is made easier due to availability of 

sufficiently accurate satellite measurements of tropospheric 

NO2 column amounts (see, e.g., [25, 26]) which allow elabo-

ration of measurement based NOx emission estimates [20, 

23, 24, 27-29]. The statistical framework discussed here can 

be used in studies of emissions of other species, such as car-

bon dioxide, methane, carbon monoxide and aerosols, which 

are intensively measured both by the ground based networks 

and from space. 

2. METHOD 

2.1. Problem Definition and Summary of the Method 

 Let us assume that we have two datasets for seasonally 

averaged gridded NOx emissions. These emissions are used 

as inputs for a chemistry transport model which can provide 

simulated concentrations of certain species. Let us assume 

also that we have a dataset of measured concentrations of the 

same species. We can further define and evaluate some 

measure of agreement between the simulated and measured 

concentrations. Ideally, it could be expected that more accu-

rate emissions would provide better agreement between the 

simulations and measurements. However, because of model 

and measurement errors, the result may be opposite. Such a 

situation is illustrated in Fig. (1), where it is assumed that a 

model is perfect but a measurement is not: the emissions E2 

are obviously less accurate but produce better agreement 

with measurements than emissions E1. 

 In the following, we do not separate the model and meas-

urement errors, but consider them in combination, as it is 

common in inverse modeling studies (see, e.g., [30] (It is 

indeed hardly possible to quantify them separately, particu-

larly because observed differences between simulations and 

measurements may include a representativeness error, which 

can be attributed both to a model and measurements). The 

problem is therefore to quantify the probability of the erro-

neous conclusion regarding the relative accuracy of a pair of 

emissions datasets, given a combined model and measure-

ment error and relative difference in the accuracies of the  

 

 

Fig. (1). An illustration demonstrating that a model (which is as-

sumed here to be perfect) with better emissions (E1) does not neces-

sarily yield better agreement with an imperfect measurement than 

the model with biased emissions (E2). It is easy to imagine a similar 
situation when there are both model and measurement errors. 

emission datasets. It is reasonable to expect that the decision 

- error probability will be smaller in situations where differ-

ences in the accuracies of the emission datasets are larger. 

The solution presented here is based on the Monte Carlo 

method. We use the data of a typical “bottom-up” emission 

inventory (here, this is the EMEP emission inventory [16]) 

as a substitute for unknown true emissions. Such emissions 

are referred below to as the standard emissions and the 

model results obtained with such emissions are referred to as 

the reference case. We consider all other possible emission 

data sets as random realizations from statistical ensembles 

characterized by the assumed level of uncertainties in a given 

emission inventory. In order to simulate such a statistical 

ensemble, we add random perturbations (which are inde-

pendent of time) to the standard emissions. It seems clear 

that by adding random perturbations to gridded emissions, 

we probably get less accurate emissions. All emission 

datasets obtained in such a way are used to simulate near 

surface concentrations of NO2 and O3, which are then com-

pared with corresponding measurements. Finally, we assess 

the required probability of the decision error as a fraction of 

cases, for which the perturbed (i.e. worse) emissions pro-

duced better results in terms of pre-defined statistics, such as 

the mean square error (MSE) or coefficient of determination 

(R
2
). This is done for different set-ups of surface networks 

(species, number and type of sites). The numerical experi-

ments were performed with the CHIMERE chemistry trans-

port model (http://euler.lmd.polytechnique.fr/chimere/). We 
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used one of the standard CHIMERE domains, CONT3, 

which covers the Western and Central Europe with a resolu-

tion of 0.5
0
x0.5

0
 and includes 3082 grid cells. The meteoro-

logical conditions and the anthropogenic emissions were 

specified for the summer season (June-August) of 2005. 

2.2. Basic Definitions and Formulations 

 Let E0 and Et be the vectors of the standard gridded NOx 

emission rates assigned in the model and true (unknown) 

emissions, respectively. Here and below, all emission vectors 

represent average NOx emission rates over three summer 

months (June-August). Taking into account that emissions 

are strictly positive values, it is more convenient to deal with 

their natural logarithms: e0=et+ 0, where 0 is the emission 

estimate error. Then the uncertainty of the standard emis-

sions can be quantified by means of the following variance: 

U0
2

=
1

N 0i
2

i=1

N

             (1) 

where i is the index of a grid cell and N is the total number 

of grid cells. Following the probabilistic approach, we con-

sider uncertainties of a given dataset of emissions as a sam-

ple from some probability distribution having a certain 

mean, < 0> with <> denoting the average over the ensem-

ble), and variance, 0
2
. Accordingly, Uo

2
 should also be con-

sidered as a random variable. If the probability distribution 

of 0 (vector of 0i values for grid points i=1,…N) is close to 

the normal distribution (a reasonable assumption), then the 

variance of Uo
2
 is, asymptotically, inversely proportional to 

N. This observation means that for typical grids used in 

emission inventories with N>10
3
, the variance of U0

2
 is 

likely quite negligible in comparison with the value of U0
2
 

itself, and any sample value of U0
2
 characterizes the average 

variance of 0: 

U0
2 1

N 0i
2

i=1

N

             (2) 

 We generate the perturbed emissions, ep, by adding ran-

dom perturbations, p, to e0. After repeating this operation 

many times, we can get a sufficiently large statistical ensem-

ble of the perturbed emission datasets, {ep}. The uncertainty 

of a given set of the perturbed emissions can be quantified 

similar to Eq. (1): 

Up
2

=
1

N 0i + pi( )
2

i=1

N

            (3) 

 Let p
2
 be the variance of p and p

2
 be the average of 

p
2
 over the grid: 

p
2

=
1

N pi
2

i=1

N

             (4) 

 If 0 and p are statistically independent variables (we 

can require this by definition), then, using Eqs. (2), (3) and 

(4), we obtain: 

Up
2 U0

2
+ p

2
              (5) 

 This relation means, in particular, that the perturbed 

emissions are more uncertain than the standard emissions. It 

should be kept, in mind however, that this conclusion is valid 

only if the covariance of 0 and p is, on average, much 

smaller than both U0
2 

and p
2
. This would not be the case if, 

for example, both the standard emissions were uniformly 

biased and < p> were not zero. 

 Similar to (5), we can derive: 

p
2 1

N
epi e0i( )

2

i=1

N

           (6) 

 The ensemble of emission datasets {Ep} can be used in 

the model to generate a corresponding ensemble of simulated 

concentrations, {Cm}, which are extracted from model re-

sults to be linked with available observations, Co. The com-

ponents of the matrixes Cm and Co represent concentrations 

of a given species from a set of certain locations and days. 

 The agreement between Cm and Co can be measured by 

means of some standard statistics, Z. Here we employ two 

statistics, defined as follows: 

Z1 =
1

LM

Cm
jk Co

jk Cm
k

+ Co
k

( )
2

Co
k2

j=1

M

k=1

L

         (7) 

=

=

L

k

kR
L

Z

1

2
2 )1(

1
           (8) 

where k and j are indexes of the monitoring station and of the 

day of observation, respectively, L and M are the total num-

bers of the monitoring stations and the days of observations 

considered, R
2
 is the coefficient of determination defined for 

time series of the measured and simulated concentrations at a 

given location, and a horizontal bar above the symbol of con-

centration denotes the average over the entire period (here, 

three summer months) considered. We consider daily average 

and daily maximum concentrations for nitrogen dioxide and 

ozone, respectively. The first statistics is the centered and 

normalized mean square error (NMSE), which is an analog of 

the root mean square error (RMSE), while the second statistics 

is based on the standard coefficient of determination. While 

choosing these statistics we took into account that RMSE is 

one of the most commonly used statistics and that the nor-

malization enables, at least to some degree, equalizing contri-

butions from locations with different levels of air pollution. 

Accounting for the bias in the simulated concentrations is in-

tended to accentuate the differences in temporal variations of 

concentrations, rather than discrepancies of their means. The 

coefficient of determination is also a quite commonly used 

statistics, and it is also expected to be rather insensitive to dif-

ferences in the mean concentrations. Meanwhile, it is known 

that RMSE and R
2 

may lead, sometimes, to rather different 

conclusions [31-33]. Accordingly, our experiments allow us to 

test to what extent the considered probability of the decision 

error is sensitive to the choice of the comparison statistics. 
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 Since the perturbed emissions are more uncertain (see 

Eq. (5)), we could expect that both Z1 and Z2 calculated with 

the perturbed emissions would be larger than the same statis-

tics quantified with the standard emissions. That is, ideally, 

we should always get Z(Ep)>Z(E0). However, because of 

model and observation errors, it may not always be the case. 

Accordingly, our task is to quantify the probability, err, of 

obtaining Z(Ep)<Z(E0). If the comparison of simulated and 

measured concentrations is used to identify the best emission 

inventory, then err can be considered as the probability of a 

wrong conclusion regarding the comparative accuracy of two 

databases, one of which has larger uncertainty than the other. 

More formally, 

err=p(Z(E2)<Z(E1)| U2
2
-U1

2
= p

2
)           (9) 

where E1 and E2 is a pair of emission datasets with unknown 

uncertainties U1 and U2 defined similarly to (1) and (2). In 

other words, given an estimate p of the difference in uncer-

tainties in the pair of available emission datasets E1 and E2 

and the fact that Z(E1)>Z(E2), the conclusion that E1 is more 

uncertain than E2 may be wrong with the probability equal to 

err. 

 In the framework of the method considered here, the 

probability err is simply estimated as the fraction of cases, 

for which Z(E0) is larger than Z(Ep). In other words, given 

the ensemble { p
1
, p

2
,…, p

K
} of K perturbations of the 

standard emissions E0 and the number J of the cases for 

which Z(E0)>Z(Ep), the decision-error probability err is es-

timated as follows: 

err
J

K
                        (10) 

 It may be useful to note that p can be estimated from the 

above as: 

p max
2 1

N
e2i e1i( )

2

i=1

N

         (11) 

 This estimation (see also Eq. (6)) stems from the assump-

tion that the emission datasets contain both some common 

and independent errors. It is easy to see that the root mean 

square difference of independent errors equals pmax. Along 

with the statistics defined in accordance with Eq. (7) and (8), 

we have considered also a somewhat different statistics. The 

aim is to evaluate the statistics Z1 and Z2 for each site sepa-

rately (L=1) and then to count the number of sites for which 

Z1,2(Ep)-Z1,2(E0)>0. The ratio of this number to the total 

number of sites gives us a kind of a nonparametric statistics. 

On average, this ratio should be larger than 0.5. The deci-

sion-error probability can then be estimated as a fraction of 

cases for which this ratio is smaller than 0.5. 

2.3. Numerical Experiment Settings 

 Obviously, the response of the concentration fields to 

emission perturbations may depend not only on the magni-

tude of these perturbations but also on their spatial structure. 

Since we cannot consider here all imaginable distributions of 

emission uncertainties, in order to test the role of this factor 

we considered two different cases denoted below as RAN 

and COV. 

 The RAN case represents a situation when the emission 

uncertainties in different grid cells are statistically independ-

ent. The standard deviation of emission perturbations in each 

grid cell is defined to be the same, and equals p. 

 The COV case is intended to test the role of spatial co-

variances in emission uncertainties. Such covariances may 

arise due to systematic biases in assumed emission factors or 

activity data. The nature and magnitude of such covariances 

may be different for different emission inventories. Here we 

assumed that the emission uncertainties are the same for the 

same country and the same SNAP (Selected Nomenclature 

for Air Pollution) sectors. Accordingly, the same random 

perturbation is applied, in the COV case, to all gridded an-

nual data of the EMEP NOx emission inventory that is attrib-

uted to the same SNAP sector and the same country. Such 

perturbed annual emissions are then processed in a standard 

way (see Section 3.2) by the CHIMERE emission preproces-

sor to yield values of total anthropogenic NOx emissions in a 

given grid cell. As a consequence, emission perturbations in 

different grid cells (inside the same country) where most of 

emitted NOx is associated with the same type of activity are 

quite similar. 

 Note that we also considered a situation when one of the 

analyzed emission inventories is derived from satellite data 

by means of inverse modeling. Specifically, we evaluated 

uncertainties in different grid cells by means of a Monte-

Carlo experiment described in [23]. We found that the esti-

mates of err obtained are rather similar to those obtained for 

the RAN case, and for that reason this situation is not con-

sidered below separately. 

 We performed 30 model runs for each case and 3 differ-

ent levels of the standard deviation p of the perturbations: 

0.1, 0.4 and 0.6. Note that according to our estimations [23], 

the logarithmic standard deviation of emission uncertainties 

in the NOx emissions specified in the CHIMERE CTM 

(based on the EMEP inventory) is about 0.6. Therefore, 

simulations with p>0.6 could hardly present any practical 

interest. It was argued also, in the same paper, that the use of 

satellite data enables considerable reduction of uncertainties: 

the uncertainty in the a posteriori emissions was estimated to 

be about 0.4. This means that a typical value of p corre-

sponding to the situation where the surface measurements 

are employed in order to prove that the emissions derived 

from satellite data are indeed more accurate than the a priori 

emissions is, probably, in the range from 0.4 to 0.5. 

 Lognormal perturbations to emission rates lead to a shift 

of the total emissions; that is, the average of perturbations in 

emissions, <exp( pi)>, is larger than unity. In order to test the 

effect associated with this shift, special cases are additionally 

considered, in which Z(Ep) are compared with Z(E0<exp 

( p)>). That is, in these cases, we scaled the standard emis-

sions, such that the average of random perturbation, consid-

ered relative to the scaled emissions, would be zero. 
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2.4. Measurements 

 We use the data of measurements of near surface concen-

trations of nitrogen dioxide and ozone obtained from the Air-

Base air quality database system (http://air-climate.eionet. 

europa.eu/databases/airbase/). AirBase contains air quality 

monitoring information submitted by the participating Euro-

pean countries. NO2 and O3 measurements are reported on 

daily and hourly basis, respectively. We considered only those 

monitors that provided data for at least 90 percent of the days 

in the considered period (summer of 2005). In the case of 

ozone measurements, a day was accounted for only if at least 

22 hour data were provided. Based on these criteria, we se-

lected 1893 NO2 monitors and 1395 O3 monitors. 

 Originally, the monitors were classified according to the 

zone of location and the type of environment. The zones de-

fined in the AirBase stations are rural, suburban and urban, 

while the types are background, industrial and traffic. Taking 

into account the goals of our study, we considered the follow-

ing five categories: (1) rural background, (2) suburban back-

ground, (3) urban background, (4) suburban-sources, and (5) 

urban-sources. That is, we excluded the rural stations situated 

near industrial units and big roads, and do not make the dis-

tinction between “industrial” and “traffic” monitors. The loca-

tion of selected monitors is shown in Fig. (2). 

 

Fig. (2). The locations of the selected NO2 (upper panel) and O3 

(lower panel) monitors presented in the Airbase database. Rural 

background, suburban background, urban background, “suburban-

sources” and “urban-sources” monitors are marked in green, blue, 
red, purple, and brown, respectively. 

2.5. Simulations 

 We used the CHIMERE CTM [34], which is a Eulerian 

3D model designed to simulate and predict air pollution on 

the urban and continental scales. This model has already 

been successfully used in numerous studies, and so we men-

tion below only its basic features essential for this study. A 

detailed description of CHIMERE and related references are 

available on the web at http://euler.lmd.polytechnique. 

fr/chimere/. We used the latest version (V200709) of CHI-

MERE available at the time when this study was started, 

which features the support of parallel computing, NetCDF 

input/output interface and accounting for deep convection. In 

this study, the simulations are performed on 0.5
0
x0.5

0
 hori-

zontal resolution, with 12 layers defined as hybrid coordi-

nates; the top of the upper layer is fixed at 200 hPa pressure 

level. Meteorological input data were calculated off-line with 

horizontal resolution of 50 50 km
2
 using the MM5 non-

hydrostatic meso-scale model (http://www.mmm.ucar.edu/ 

mm5/). MM5 was initialised with GFS (Global Forecast 

Model) rotating forecast data (http://www.cpc.ncep.noaa. 

gov/products/wesley/ncep_data/). Lateral boundary condi-

tions were prescribed using monthly average values of cli-

matological simulations by the LMDz-INCA model (see 

http://www-lsceinca.cea.fr/welcome_real_ time.html). The 

MELCHIOR2 simplified chemical mechanism was used, 

which includes 44 species and about 120 reactions. 

 The anthropogenic emission data used in this study are 

based on the “expert” annual data of the EMEP emission 

inventory [16] for the year 2005. The annual EMEP emis-

sions are processed by the standard CHIMERE interface to 

yield hourly emissions for the summer season. Daily, weekly 

and seasonal factors applied to the annual data are provided 

for different SNAP sectors by IER, University of Stuttgart 

[35]. Biogenic emissions of isoprene, pinene and NO are 

parameterised as proposed in [36], using distributions of tree 

species on a country basis provided in their work and the 

inventory of NO soil emissions in [37]. 

3. RESULTS 

 The results of our study are presented below in the fol-

lowing order. Firstly, we analyze to what degree different 

monitors located within a given distance from each other can 

be considered as independent with respect to the information 

on NOx emission uncertainties provided by their measure-

ments. Such analysis allows us to define certain criteria in 

the monitor selection in order to insure that the results of this 

study are not sensitive to a specific configuration of a moni-

toring network. The results of this analysis are also of inter-

est in the context of monitoring network design. Next, we 

consider some basic characteristics of the probability distri-

bution of the error statistics Z (see Eqs. 7 & 8). In particular, 

we consider their scaling properties with respect to changes 

of the number of monitors in a network. After that, we pre-

sent the main results of this study, which concern the evalua-

tion of the probability of wrong conclusions regarding the 

relative accuracy of the two emission datasets. Finally, we 

show how the decision-error probability could change if the 

level of uncertainties in the simulated and measured concen-

trations was different. 
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3.1. Geostatistical Analysis of Spatial Distributions of the 
Error Statistics 

 It seems obvious that when two monitors of the same 

type are situated close to each other, they can only provide 

essentially the same information as a single monitor. There-

fore, the usefulness of the monitoring network for diagnos-

tics of emission uncertainties may depend on the distance 

between monitors. Rather than considering all possible con-

figurations of the network, it seems more reasonable to focus 

on the analysis of a network of essentially independent 

monitors. Accordingly, as a first step, we have to define 

conditions under which the monitors can be considered as 

independent. A common way to study the degree of correla-

tion within spatial random fields proceeds by the calculation 

of the variogram [38]. Spatial scales of variability of air pol-

lution have already been analyzed earlier, but in a different 

context [39, 40]. For convenience, we consider here a nor-

malised variogram, n, defined as follows: 

n (d) =

Z1(x) Z1(y)[ ]
2

Z1(x)2
+ Z1(y)2

         (12) 

where Z1 is one of the statistics defined by Eq. (7) and (8), x 

and y are coordinates of the monitors and d=||x-y|| is the dis-

tance between the monitors, and averaging is performed over 

the ensemble of runs with randomly perturbed emissions. If 

the emission perturbations in different grid cells and corre-

sponding perturbations of Z1 become statistically independ-

ent as d increases, the variogram should approach unity. We 

evaluated n for each possible pair of monitors of the same 

category. We then calculated a running average over differ-

ent pairs as a function of d. The running window included 50 

data points. The results of the analysis are presented in Fig. 

(3). It can be seen that in the case with spatially uncorrelated 

emission perturbations (RAN), the monitors can be regarded 

as being independent from a distance of about 50-70 km in 

the case of NO2 and 100-200 km in the case of ozone. Note 

that our analysis is limited by the relatively coarse resolution 

(0.5
0
x0.5

0
) of the CHIMERE simulations. Specifically, it can 

hardly provide the reliable information on the degree of in-

dependence of monitors separated by a distance smaller than 

the model grid size (~ 50 km). 

 In the COV case, the critical distance is not so well de-

fined and anyway, significantly larger, as would have been 

expected, because the distance of covariation of the emission 

perturbations is also larger. The differences between results 

for different categories of monitors are small in the RAN 

case, but rather considerable in the COV case. Evidently, 

urban monitors are more independent than rural and subur-

ban. This is in agreement with the intuitive expectation that 

concentrations of nitrogen dioxide and (especially) ozone are 

more sensitive to changes of local (large) emission rates in 

urban locations than in rural regions. In contrast to urban 

areas, concentration fields in rural background locations tend 

to be determined predominantly by transport rather than by 

local emissions. We also performed a similar analysis with 

the Z2 statistics, but the results were quite similar to those 

with Z1 statistics, and so they are not presented here. 

 

Fig. (3). Normalized variograms (see Eq. (12)) evaluated for per-

turbations of the error statistics Z1 caused by random perturbations 

in the standard NOx emissions. The results for all different pairs of 

monitors (not shown) are averaged using the running average 

method (with 50 data points in the window). Variograms are pre-

sented for different pollutants, different types of spatial distribu-

tions of emission perturbations, and for different categories of 
monitors (see legends in the figures). 
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 As a consequence of this analysis, in all experiments dis-

cussed below, we consider randomly selected subsets of the 

monitors, such that the distance between each pair of moni-

tors is greater than 100 km. Such a defined “critical” dis-

tance is in agreement with the results discussed above for the 

RAN case. Unfortunately, the existing network does not al-

low us to select a sufficiently large number of independent 

monitors in the COV case. Thus it is necessary to keep in 

mind that the monitors considered in the COV case are not 

quite independent. 

3.2. Some Properties of Probability Distributions of the 

Error Statistics 

 Fig. (4) presents examples of the histograms of the dif-

ference Z1(E)-Z1(E0) calculated for an ensemble of model 

runs with the randomly perturbed emissions. We performed 

30 “random” runs, but the histograms are also plotted using 

only 20 runs in order to check if the available sample of 30 

values is sufficiently representative of the probability distri-

bution of Z1(E)-Z1(E0). The histograms are presented only 

for the RAN case, but for all categories of the monitors. Val-

ues of Z1 are evaluated for a set of 50 randomly selected 

monitors satisfying the requirement defined in the previous 

section. In this study, we are interested mainly in the nega-

tive branch of these distributions as we have to evaluate the 

probability of Z1(E)-Z1(E0)<0. This probability can be 

roughly estimated as the total area confined by the histogram 

on the left of the zero line (Z1(E)-Z1(E0)=0). 

 It can be seen that the shape of the distributions for dif-

ferent categories of monitors is rather different, and it hardly 

resembles any theoretical probability distribution. As evident 

from the comparison of the histogram calculated with the 

samples of 20 and 30 values, we can hardly claim that these 

histograms represent the real probability distributions suffi-

ciently well. Nevertheless, the cumulative probability of 

Z1(E)-Z1(E0) being negative is rather insensitive to the size 

of the sample. Furthermore, we made sure that the major 

conclusions of this study did not change if an ensemble of 20 

model runs were considered instead of 30. Based on the re-

sults of the test shown in Fig. (4) and other similar tests we 

concluded that the uncertainty in estimates of err obtained 

with 30 model runs is about 0.1. Accordingly, it is unlikely 

that the results presented below would significantly change if 

we performed much more model runs. It is obvious that the 

decision error probability is related to the width of the distri-

bution of Z: if the width increased from zero to infinity, err 

would increase from zero to 0.5. In turn, the width of the 

distribution can be quantified by means of the variance. 

 It is well known that the variance of the mean of N un-

correlated random variables which have the same standard 

deviation is inversely proportional to N. Similarly, we can 

expect that the sample variance of values Z obtained for a set 

of N independent monitors will decrease proportionally to N
-1

.  

Such a decrease indeed shows up in Fig. (5), which presents 

values of the normalized (sample) standard deviation of Z1, 

z1, calculated with p=0.4: 

z1 =

Z1 Z1
2

Z1(E0 )2

1/2

           (13) 

 

Fig. (4). The histograms of the difference Z1(E)-Z1(E0) calculated 

for ensemble of 30 and 20 model runs with the randomly perturbed 
emissions in the RAN case. 
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 Values of z1 shown in Fig. (5) are calculated as the av-

erage over sets of N monitors selected randomly from the 

AirBase network. The process of selection is repeated many 

times until stable results are reached. 

 However, when considering differences between the 

curves for different categories of monitors, it is necessary to 

be aware that these differences are determined, to a large 

extent, by the differences in NMSE, which is used as the 

normalizing factor, rather than differences in the sensitivity 

of concentration fields to changes in emissions. Note that 

without the normalization, the magnitude of standard devia-

tion of Z1 would depend strongly on the level of the meas-

ured concentrations, which is very different for different 

types of monitors. 

 Ideally, the decision probability error, err, should also 

decrease as the number of monitors increases. However, this 

is not necessarily so if <Z(Ep)> is smaller than <Z(E0)>. Ex-

amples of the dependencies of err on N ( p=0.4) are shown 

in Fig. (6). It is seen that in most cases, the decision prob-

ability error does indeed decrease as N increases, but in some 

cases does not. The factors that determine err and the differ-

ences between results for different categories of monitors are 

discussed in the next sections. Here it is important to note 

that, in majority of cases, the dependence of err on N, at least 

between N=10 and N=50, is quasi-logarithmic.  

 This is an important observation because it allows us to 

simplify any further presentation. Below, we are going to 

present values of err obtained only with N=10 and N=50. If 

necessary, the reader can estimate the decision probability 

error for intermediate values of N using the following ap-

proximate relationship: 

err (N )
(p(10) p(50))

log(5)
(1 log N ) + p(10)       (14) 

 This empirical dependence can also be used in order to 

roughly estimate err when N>50. 

3.3. The Decision-Error Probability Estimated Using the 
Error Statistics Z1 and Z2 

 Figs. (7) and (8) present estimates of err as a function of 

the standard deviation of emission perturbations, p, in the 

case of the NO2 monitoring network. Not surprisingly, err 

decreases, in most cases, with the increase of p, although 

this decrease is, sometimes, rather irregular. That is, the 

more uncertain the perturbed emissions are, the “easier” they 

can be distinguished. Unfortunately, due to large computa-

tional costs, it was not feasible to estimate err for a larger 

number of values of p. In Figs. (7) and (8), results are com-

pared for randomly perturbed emissions and for cases where 

the reference emissions were scaled to match the average of 

the perturbed emissions. The difference between straight and 

dashed curves in these figures thus corresponds to effect of 

the uniform emission changes. 

 It is rather unexpected that err can be so sensitive to uni-

form changes in emissions, in particular because these 

changes are, on average, much smaller than respective ran-

dom perturbations. Furthermore, it is seen that the impact of 

uniform changes in the standard emissions on err can be 

very different for different categories of monitors and for 

different error statistics. For example, such a change causes 

an increase of err for rural monitors but a strong decrease for 

urban monitors (in case of the Z1 statistics). The interpreta-

tion of these results is hampered by the fact that both  

 

Table 1. Basic Statistical Characteristics of the Measured and Simulated Daily Mean Concentrations of Nitrogen Dioxide and 

Daily Maximum Concentrations of Ozone Averaged Over All Monitors of a Given Category 

 

NO2 O3 Statistics/Monitor 

Type 
Cob Cm NRMSE r Cob Cm NRMSE r 

rural-background 8.88 
6.89 

(8.16) 

0.421 

(0.459) 

0.356 

(0.348) 

103.6 

 

104.1 

(104.8) 

0.161 

(0.162) 

0.779 

(0.775) 

suburban-

background 
17.4 

8.51 

(10.0) 

0.370 

(0.379) 

0.397 

(0.385) 

102.4 

 

106.7 

(107.3) 

0.164 

(0.165) 

0.809 

(0.806) 

urban background 19.6 
7.50 

(8.86) 

0.348 

(0.354) 

0.381 

(0.367) 

97.6 

 

105.0 

(105.4) 

0.169 

(0.170) 

0.784 

(0.779) 

suburban-sources 23.0 
6.39 

(7.41) 

0.379 

(0.386) 

0.397 

(0.380) 

100.4 

 

111.1 

(111.8) 

0.179 

(0.182) 

0.699 

(0.694) 

urban-sources 36.7 
8.42 

(9.91) 

0.318 

(0.320) 

0.385 

(0.371) 

95.0 

 

112.2 

(112.7) 

0.192 

(0.196) 

0.713 

(0.707) 

The seasonal (June-August) averages of the measured and simulated concentrations, Cob and Cm, are given in units of μg/m3. The normalized centered RMSE (NRMSE) is calculated 

in accordance to Eq. (7); r is Pearson’s correlation calculated for daily time series. Values of the statistics are provided for the standard emissions and (in brackets) for the COV case 

(in which the response of concentrations to changes of NOx emissions is larger than in the RAN case) with p=0.6. 
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Fig. (5). The normalized (sample) standard deviation of Z1 (see Eq. 

(13)), z1, calculated with p=0.4. The dashed lines shows the theo-

retical dependence ( z1~N
-1/2

); these lines begin here from arbitrary 
values. 

 

 

 

 

Fig. (6). The dependencies of the decision-error probability on the 

number of monitors in the network. The dependencies are calcu-

lated for the statistics Z1 and p=0.4. 
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Fig. (7). Estimates of the decision-error probability as a function of 

the standard deviation of emission perturbations, p, in case of a 

network of 10 NO2 monitors. The results are provided for two error 

statistics Z1 and Z2 which are based on NMSE and R
2
, respectively 

(see figure legends). The dashed curves present the results for the 

cases where the standard emissions were scaled so that to account 

the change of the total emissions as a result of logarithmic perturba-

tions. 

 

Fig. (8). The same as in Fig. (7) but for a network of 50 monitors. 
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statistics, Z1 and Z2, by definition should be relatively insen-

sitive to changes of the mean level of the simulated concen-

trations which could take place as a result of uniform 

changes in emissions. Probably, the lower decision-error 

probability obtained for urban monitors in the cases with the 

uniformly increased emissions is due to the fact that the 

model strongly underestimates the observed concentrations 

at urban areas (see Table 1). In this situation, the uniform 

increase of NOx emissions improves not only the average 

level of the simulated concentrations but their temporal vari-

ability as well (very small average concentrations of NO2 

would be, obviously, associated with small absolute variabil-

ity). The underestimation of the measured concentrations is 

much smaller in rural areas, and the uniform scaling of NOx 

emissions deteriorates the temporal variability of the simu-

lated concentrations. A part of the sensitivity of err to a uni-

form emission change may be an artifact of the limited num-

ber of simulations; although our preliminary analysis (see 

Sect. 3.2) indicates that the respective “random” effects 

should not be large. 

 The estimates of err obtained using the second error sta-

tistics, Z2 (which is based on the coefficient of determina-

tion), are rather different from those obtained with the first 

statistics. These differences are again not easy to explain, but 

it is clear that some of them are related to the fact that 

NMSE is quite sensitive to the differences in absolute values 

of the simulated and measured concentrations, while R
2
 can 

be large even if one of the concentrations is strongly biased 

(multiplicatively) but temporal variations of both concentra-

tions are still synchronous. In general, the Z1 statistics pro-

vides better results than the Z2 statistics with a few excep-

tions (such as in the case of the “urban-source” category). 

 The differences between the results for different kinds of 

spatial distribution of emission uncertainties (RAN and 

COV) are also noticeable, although, on the whole, not very 

large. This shows that a spatial covariance in emission uncer-

tainties has little impact on the decision-error probability if it 

is evaluated using NO2 measurements. 

 Figs. (9) and (10) present the same kind of estimates as 

shown in Figs. (7) and (8) but obtained using ozone meas-

urements. It can be seen that the decision error probabilities 

are in general much larger than for NO2 monitors. Results for 

different types of monitors are even more diverse than in the 

case of nitrogen dioxide measurements. The sensitivity to the 

changes of the average level of emissions is also much 

larger. This large sensitivity is, however, not surprising since 

it is well known that ozone has a relatively long lifetime, and 

so its concentration in a given grid cell is a cumulative result 

of emissions over many grid cells. In particular, rural moni-

tors provide err which are about or even larger than 0.5 

(when no uniform scaling is introduced). This result (see 

green solid lines on the figures) can be caused by the fact 

that CHIMERE tends to underestimate the ozone level when 

(or where) the observed ozone concentration is high [24]. 

The increase of the total emission rate over the domain as a 

result of logarithmic perturbations of emissions increases the 

ozone formation rate and, consequently, improves the  

 

 

Fig. (9). The same as in Fig. (7) but for a network of 10 O3 moni-
tors. 
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Fig. (10). The same as in Fig. (9) but for a network of 50 O3 moni-
tors. 

agreement between the simulated and modeled ozone con-

centrations. When this change in the total emission rate is 

compensated (see green dashed lines), err evaluated with the 

rural monitors becomes lower. In case of “urban-source” 

monitors, the situation is reverse: the model tends to overes-

timate the observed ozone level (see Table 1), since it insuf-

ficiently resolves large point sources that control ozone con-

centration via titration. Accordingly, emission perturbations 

worsen the performance of the model, as it was intended. 

The estimates of err obtained with “urban-source” monitors 

after compensation for the change in the total emission sig-

nificantly differ for the two different statistics; such “irregu-

lar” differences are, probably, a result of a complex interac-

tion of several factors. The differences between the results 

obtained for different kinds of spatial distributions of emis-

sion uncertainties and for different levels of magnitudes of 

uncertainties are of a complex nature and will not be ana-

lyzed here. This large effect of uniform emission changes 

makes ozone measurements less suitable than NO2 meas-

urements to discern differences in the random uncertainty of 

emissions. 

 Note that, the sensitivity of estimates of err to changes in 

the total emission rate is smallest for “suburban-source” 

monitors, although values of err in this case are still larger 

than for rural NO2 measurements. Therefore, on the one 

hand, our results suggest that the “suburban-source” moni-

tors can still be useful for diagnostics of uncertainties in spa-

tial distributions of NOx emissions. However, on the other 

hand, the large differences between the results for the “ur-

ban-source” and “suburban-source” monitors, which can 

only be explained by differences in systematic errors in the 

model (see Table 1), indicate that the relatively good results 

for the “suburban-source” monitors may be partly due to 

specific features of the model used, and that they may not be 

easily reproducible with another model. 

 Accordingly, more research is needed to assess the use-

fulness of the ozone monitors; their use in the networks 

aimed at diagnostics of NOx emission uncertainties cannot be 

unambiguously recommended at the moment. 

 The results obtained with the nonparametric statistics 

which count the number of sites demonstrating improvement 

or deterioration in the agreement between the simulations 

and measurements (in terms of RMSE or R
2
) were found to 

be essentially the same as those obtained with the respective 

statistics Z1 or Z2 and, for that reason, are not presented here. 

 The only noticeable difference is that the decision-error 

probability are, in general, slightly larger with the non-

parametric statistics. This can be caused by some asymmetry 

of this kind of statistics due to the special situation when the 

number of sites for which the agreement is improved is equal 

to the number of sites for which it is reduced. Such a situa-

tion would be counted as associated with the wrong decision 

thus increasing the decision-error probability. On the whole, 

it may be concluded that the nonparametric statistics do not 

demonstrate any obvious advantages. They can, neverthe-

less, be used effectively instead of or in parallel with the 

basic statistics considered here. 
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3.4. The Dependence of the Decision-Error Probability 
on the Level of Uncertainties in the Model Results and 

Measurements 

 The results presented above are obtained with a certain 

model (CHIMERE) and certain monitors (those presented in 

AirBase). It is obvious, that any other models and measure-

ments which feature different levels of uncertainties can 

yield different values of the decision-error probability. Ac-

cordingly, in order to make the results of this study more 

general, it is useful to consider how the decision probability 

error depends on the uncertainties in the simulations and 

measurements. Following an approach common for inverse 

modeling studies, we do not consider the model and meas-

urements errors separately, but, rather, characterize their 

total error by means of one parameter. Although such an 

approach does not allow us to take into account possible dif-

ferences in statistical properties of measurement and model 

errors (such as the differences in their spatial and temporal 

covariances), these properties are generally not sufficiently 

well known anyway. Moreover, the results of our experi-

ments cannot depend on the error covariances when the error 

statistics considered here are determined by local concentra-

tion changes caused by spatially uncorrelated emission per-

turbations (as for the RAN experiments). 

 The main idea of the subsequent analysis is to replace the 

real measurements with synthetic data obtained as a combi-

nation of the modeled and observed concentrations: 

os= (Co-Cm)+Cm,          (15) 

where  is a constant scaling coefficient. It is easy to check 

that 

RMSEs= RMSE0,          (16) 

where RMSEs and RMSE0 are the standard RMSE calculated 

with the synthetic and real measurements, respectively. This 

relation holds also if RMSE is defined as square root from 

the centered mean square error defined by Eq.(3). Figs. (11) 

and (12) present estimates of the decision-error probability 

as a function RMSE defined as follows: 

RMSE =

1

LM
Cm

jk Co
jk Cm

k
+ Co

k
( )

2

j=1

M

k=1

L
1/2

      (17) 

 The decision-error probability has been calculated with 

=0.25;0.5;0.75;1;1.5. Results corresponding to these values 

are marked in figures by symbols. 

 It can be seen that, in most cases, err logarithmically 

increases with the increase of RMSE. Significant deviations 

from the logarithmic law are observed mainly when the err 

is rather small, below 0.1. 

 Note that, when results are compared for different cate-

gories of monitors, err tends to be larger for those categories 

for which RMSE is larger (for a given value of ). For ex-

ample, urban monitors are associated with both larger RMSE  

 

 

Fig. (11). Estimates of the decision-error probability as a function 

of the RMS difference between the measured and simulated con-

centrations for networks of 10 NO2 and O3 monitors. The estimates 

are based on the error statistics Z1. The estimates are shown for the 

cases with p=0.4 (solid lines) and p=0.6 (dashed lines). 
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Fig. (12). The same as in Fig. 11 but for networks of 50 monitors. 

and err than rural monitors. This relation could indeed be 

expected since the model and measurement errors are the 

only reason for possible decision errors. However, it is obvi-

ous also that differences in RMSE cannot explain all the dif-

ferences between values of err for different categories of 

monitors. For example, “suburban-sources” NO2 monitors 

are associated with larger RMSE than urban background 

monitors; nevertheless, they tend to yield smaller err. 

3.5. Practical Implications 

 The results presented above can be used in practice in 

several ways. First, the estimates of err can be used for test-

ing different hypotheses regarding the relative accuracy of 

two emission datasets. Second, they can be used to optimize 

the choice of values of a priori uncertainty in emissions and 

observations, needed for optimal estimation of updated emis-

sions. Third, the results can be used to guide the design of 

networks with respect to their ability to minimize errors in 

emissions. 

 For example, if we assumed (based, e.g., on results of the 

inverse modeling) that the difference in the accuracy of two 

emission datasets is p, then it would be straightforward to 

test whether or not this assumption is consistent with inde-

pendent measurements: the error statistics for a presumably 

more accurate emission dataset should be smaller, otherwise, 

we would have to conclude (with the probability err depend-

ing on p, the category and the number of monitors) that our 

assumption is wrong. In a more general case, we could hy-

pothesize that p is distributed, with some probability density 

( p), inside a certain interval [ p
min

, p
max

]. In that case, we 

could evaluate the cumulative decision-error probability, Perr, 

as follows: 

Perr = err ( p )

p
min

p
max

( p )d p          (18) 

 Here err can be approximated as a function of p using, 

e.g., a linear interpolation between its estimates for fixed 

values of p. A value of pmin
 
can be put to zero, while pmax 

can be estimated as the difference of the emission logarithms 

in accordance to Eq. (11). Of course, a simple comparison of 

model results obtained with two different emission fields 

will unlikely lead, in a general case, to a definite conclusion 

about the relative quality of the emission datasets. Indeed, 

there is always a possibility that two datasets can be very 

different but have the same level of uncertainties. The deci-

sion might be more definite if not only the mere fact that 

Z(E1) is different from Z(E2) is taken into account but also 

the magnitude of the difference between them. In principle, 

the estimation of Perr in such a situation could be made using 

essentially the same method (and the results of the same 

model runs) as discussed here. However, in practice, this 

would be a rather daunting task, since it would require tabu-

lating the probability distributions of |Z(E1)- Z(E2)| for all 

probable values of p. 
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 Some conclusion about the relative accuracy of two 

emission datasets can be made also in a much simpler way, 

namely by considering the distribution of signs of differ-

ences Z(E2)-Z(E1) calculated for individual measurement 

sites. Let us denote the number of sites for which Z(E2)-

Z(E1)>0 as J and the total number of sites as L. If the level of 

uncertainties in E1 and E2 is the same and if the considered 

sites can be treated as being independent (this condition 

means that they should satisfy the criteria discussed in Sec-

tion 4.1), then we can expect that the probability of the ratio 

of J to L being larger than 0.5 can be described, approxi-

mately, by the binomial distribution. Accordingly, by per-

forming a standard binomial test, we can estimate the prob-

ability, Pr, that the actual differences between the results 

obtained with two emission datasets are completely random 

and, therefore, that the accuracy of E1 and E2 is essentially 

the same. If the emissions E1 are significantly better than E2, 

it is probable that the ratio of J to L is much larger than 0.5 

and Pr is small. It should be noted, however, that the mean-

ing of Pr is quite different from that of Perr. Indeed, Perr is 

defined so that to take into account, at least in ideal, all pos-

sible realizations of errors in emission data and in the simu-

lated and measured concentrations, while Pr is itself a ran-

dom number which may be different for different random 

realization of uncertainties in E1 and E2. Even if E2 is better 

than E1, there is still some probability that the ratio of J and 

L would be equal or even smaller than 0.5. Nevertheless, the 

simple binomial test can be really helpful; in fact, it has al-

ready been used in several inverse modeling studies [21, 23, 

24]. 

 The results of this study can also be helpful in the context 

of the network design, assuming that the purpose of a moni-

toring network is not only to register the level of air pollu-

tion at a limited number of sites, but also to provide informa-

tion elucidating the sources of the observed pollution. Our 

results indicate that rural NO2 background monitors are most 

“powerful”, among the considered categories of NO2 and O3 

monitors, with respect to the detection of uncertainties in 

NOx emission datasets. The existing network already allows 

detecting the emission uncertainties corresponding to p=0.4 

(~50% emission uncertainty) with the probability of the error 

smaller than 0.1. However, more monitors are needed in or-

der to further reduce this detection threshold, in particular if 

smaller differences in emission uncertainties need to be de-

tected. In Western Europe, the increase of the number of 

rural NO2 monitors should be particularly encouraged in 

France, Great Britain, Italy, Spain and Portugal, where the 

existing networks are sparse, especially when compared with 

the rural NO2 monitoring network in Germany. Of course, 

developing of air quality monitoring in Eastern Europe, 

where it is now almost absent, is an especially pressing issue. 

 New rural sites will be most efficient if they satisfy the 

requirements which were discussed in Section 3.1. Specifi-

cally, the distance between the neighboring monitors should 

not be smaller than 100 km in order to assure independent 

measurements; and moreover, taking into account that the 

uncertainties in the spatial distribution of emissions may 

covariate (as in the COV case), it can be recommended to 

keep an even larger minimum distance. On the other hand, 

there is no risk that the density of a monitoring network can 

ever become really excessive, even when it will be no longer 

possible to locate new monitors sufficiently far from existing 

ones. The “power” of individual monitors will be smaller 

than that in the case of sufficiently sparse network, but still 

the efficiency of the whole network will continue to increase 

as new monitors are introduced. Meanwhile, in case of a 

very dense network, it is especially important that the moni-

tors should be distributed homogeneously. 

 Although, in accordance to our results, ozone measure-

ments are less efficient indicators of the NOx emission uncer-

tainties, they still can be useful, at least, as a source of sup-

plementary information which could enable more reliable 

conclusions regarding NOx emission uncertainties. In par-

ticular, we found that the most useful information in the 

given context is provided by suburban ozone monitors situ-

ated in the vicinity of strong sources. Probably, the major 

effect detected by these monitors is the titration of ozone by 

freshly emitted nitrogen monoxide; this explains why they 

are so sensitive to local changes of NOx emissions. Note that 

monitors of such a type are rather rare in many European 

countries (e.g., in France, Great Britain, and Italy). However, 

as it was emphasized in Section 3.3, more research is yet 

needed in order to investigate to what extent the estimates of 

err are independent of specific features of the model (e.g., of 

its spatial resolution). In general, ozone measurements can 

be considered as less useful, because the differences in re-

sults with and without total emission adjustment show large 

spread. 

 Our results show that the efficiency of the monitoring 

network depends not only on the number of monitoring sites 

but also on the accuracy of the measurements and the model. 

The disagreement between the model and measurements is 

especially large in the case of NO2 concentrations (see Table 

1). On the one hand, a significant part of this error is likely 

associated with the representativeness of the measurements 

and can be diminished through the choice of more represen-

tative locations of monitoring sites and the increase of reso-

lution of the model. The results of this study could be used to 

find a compromise (through optimizing err) between a larger 

network with larger observational errors and a smaller net-

work with a smaller error. On the other hand, rather low cor-

relation between the modeled and measured time series indi-

cates that there may also be other serious reasons for the 

strong disagreement between the model and the measure-

ments. It is obvious that further significant efforts should 

also be devoted to both the model development (including 

chemistry, physics and the spatial-temporal allocation of 

pollution sources) and advancements in the measurement 

techniques. 

4. CONCLUSIONS 

 It is not uncommon that measurements of near surface 

concentrations of different species are used in combination 

with respective modeled concentrations for validation or 

comparison of different emission datasets. Ideally, it is ex-

pected that better emission estimates should yield better 

agreement between the simulated and measured concentra-

tions. However, due to the presence of model and measure-
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ment errors, an opposite result is also probable. In this re-

port, we propose a general probabilistic procedure aimed at 

quantification of the statistical significance of the conclusion 

regarding the relative quality of two (or more) emission 

datasets, which can be drawn from comparison of measure-

ments with model results obtained with corresponding emis-

sion datasets. We applied this procedure to the case of Euro-

pean gridded NOx emissions by using the AirBase monitor-

ing data for nitrogen dioxide and ozone concentrations and 

the CHIMERE chemistry-transport model. We quantified the 

probability that better agreement between the simulated and 

measured concentrations is obtained using more uncertain 

emission dataset for five categories of monitors, such as “ru-

ral-background”, “suburban-background”, “urban-background”, 

“suburban-sources” and “urban-sources”. We used different 

error statistics which are based on the use of the mean square 

error and the coefficient of determination. The numerical 

experiments were performed for three different types of spa-

tial distributions of emission uncertainties, including the dis-

tribution of uncertainties of NOx emission estimates derived 

from satellite measurements. 

 As a result, it is found, in particular, that, among the con-

sidered categories of monitors, the measurements of NO2 at 

rural background sites provide the most efficient and reliable 

information from the point of view of diagnostics of NOx 

emission uncertainties. It is shown also that relatively small 

changes in the total emissions can have a larger impact on 

the accuracy of the simulated concentrations than uncertain-

ties in the spatial distribution of emissions. This effect is 

especially important in case of ozone measurements. This is 

why these measurements can be considered as less suitable 

than NO2 measurements for the purpose of our study. 

 The results of this study can also be considered in the 

context of the monitoring network design and planning. In 

particular, our results indicate that more rural NO2 monitors 

are needed. While the rural NO2 network is very sparse in 

some Western European countries (France, Great Britain, 

Italy, Spain and Portugal), the corresponding measurements 

are almost totally absent in Eastern Europe. In order to in-

sure the efficiency of the monitoring network with the re-

spect of detection of uncertainties in NOx emission data, it 

could be recommended to distribute monitors rather homo-

geneously in space, such that the distance between neighbor-

ing monitors would be about 100 km or more. As it could be 

expected, our analysis has shown that the information pro-

vided by a pair of ozone monitors is less independent than 

the information provided by a pair of NO2 monitors located 

in a similar environment within the same distance from each 

other, although the difference between corresponding charac-

teristics of O3 and NO2 monitors turned out, rather unexpect-

edly, to be quite small. 

 It is found that the probability of wrong decision regard-

ing the relative accuracy of two emission datasets can be 

reduced at the expense of larger number of monitors in a 

network and higher accuracy of a model and measurements. 

With the given model and measurements, the decision error 

probability is found to be rather significant in some practi-

cally interesting cases, and therefore, further development of 

models and measurement techniques should be encouraged. 

The dependence of the decision-error probability on the 

number of monitors and RMSE (combining the model and 

measurement errors) is, commonly, rather weak (logarith-

mic). 

 The next steps in this direction may include the analysis 

of the utility of surface NO2 and O3 measurements for vali-

dation of estimates of multi-annual changes in NOx emis-

sions. The similar probabilistic procedure can also be used in 

case of other species, such as carbon monoxide, methane, 

and carbon dioxide which are measured both from the 

ground and from the space. 

ACKNOWLEDGEMENTS 

 The authors acknowledge the support provided the Euro-

pean Commission through the GEOMON FP6 project. I.B. 

Konovalov also acknowledges the support of the Russian 

Foundation for Basic Research (grant No. 08-05-00969- ) 

and Russian Academy of Sciences (in the framework of the 

Programme for Basic Research “Physics of Atmosphere; 

Electrical Processes, Radiophysical Methods of Research”). 

The authors acknowledge the use of helpful routines created 

by G. Curci (Centre of Excellence for the forecast of Severe 

Weather (CETEMPS), Dipartimento di Fisica, Università 

degli Studi dell'Aquila, Coppito - L'Aquila, Italy) which fa-

cilitated the work with the AirBase data. The help of G. 

Foret (LISA/CNRS) with providing meteorological data for 

the CHIMERE simulations is also much appreciated. The 

authors are grateful to the anonymous reviewers for their 

useful remarks and suggestions. 

REFERENCES 

[1] Hanna SR, Chang JC, Fernau ME. Monte Carlo estimates of uncer-

tainties in predictions by photochemical grid model (UAM-IV) due 
to uncertainties in input variables. Atmos Environ 1998; 32: 3619-

28. 
[2] Bergin MS, Noblet GS, Petrini K, Dhieux JR, Milford JB, Harley 

RA. Formal uncertainty analysis of a Lagrangian photochemical air 
pollution model. Environ Sci Technol 1999; 33: 1116-26. 

[3] Placet M, Mann CO, Gilbert RO, Niefer MJ. Emissions of ozone 
precursors from stationary sources: a critical review. Atmos Envi-

ron 2000; 34: 2183-204. 
[4] Beekmann M, Derognat C. Monte-Carlo uncertainty analysis of a 

regional-scale transport chemistry model constrained by measure-
ments from the Atmospheric Pollution Over the Paris Area (ES-

QUIF) campaign. J Geophys Res 2003; 108(D17): 8559. 
[5] Taghavi M, Cautenet S, Arteta J. Impact of a highly detailed emis-

sion inventory on modeling accuracy. Atmos Res 2005; 74: 65-88. 
[6] Deguillaume L, Beekmann M, Menut L. Bayesian Monte Carlo 

analysis applied to regional-scale inverse emission modeling for re-
active trace gases. J Geophys Res 2007; 112: D02307. 

[7] Eyring V, Stevenson DS, Lauer A, et al. Multi-model simulations 
of the impact of international shipping on Atmospheric Chemistry 

and Climate in 2000 and 2030. Atmos Chem Phys 2007; 7: 757-80. 
[8] Pison I, Menut L, Bergametti G. Inverse modeling of surface NOx 

anthropogenic emission fluxes in the Paris area during the Air Pol-
lution Over Paris Region (ESQUIF) campaign. J Geophys Res 

2007; 112: D24302. 
[9] Butler TM, Lawrence MG, Gurjar BR, van Aardenne J, Schultz M, 

Lelieveld J. The representation of emissions from megacities in 
global emission inventories. Atmos Environ 2008; 42: 703-19. 

[10] Dentener F, Stevenson D, Cofala J, et al. The impact of air pollut-
ant and methane emission controls on tropopspheric ozone and ra-

diative forcing: CTM calculations for the period 1990-2030. Atmos 
Chem Phys 2005; 5: 1731-55. 



248    The Open Atmospheric Science Journal, 2008, Volume 2 Konovalov and Beekmann 

[11] Klimont K, Cofala J, Amann M, Streets DG, Ichikawa Y, Fujita S. 

Projections of SO2, NOx, NH3 and VOC emissions in East Asia up 
to 2030. Water Air Soil Pollut 2001; 130: 193-8. 

[12] Olivier JGJ, Berdowski JJM. Global emissions sources and sinks. 
Guicherit R, Heij BJ, Eds. The Climate System; Balkema Publish-

ers/Swets, Zeitlinger Publishers: Lisse, The Netherlands 2001; pp. 
33-78. 

[13] Olivier JGJ, van Aardenne JA, Dentener F, Ganzeveld L, Peters 
JAHW. Recent trends in greenhouse gas emissions: regional trends 

and spatial distribution of key sources. Environ Sci 2000; 2: 81-99. 
[14] Pulles T, van het Bolscher M, Brand R, Visschedijk A. Assessment 

of global emissions from fuel combustion in the final decades of 
the 20th century. Application of the emission inventory model 

TEAM. Technical Report A-R0132B, Netherlands Organisation for 
Applied Research (TNO): Apeldoorn, The Netherlands 2007. 

[15] Samaali M, Francois S, Vinuesa JF, Ponche JL. A new tool for 
processing atmospheric emission inventories: Technical aspects 

and application to the ESCOMPTE study area. Environ Model 
Softw 2007; 22: 1765-74. 

[16] Vestreng V, Breivik K, Adams M, et al. Inventory Review 2005, 
Emission Data reported to LRTAP Convention and NEC Directive, 

Initial review of HMs and POPs, Technical report MSC-W 1/2005, 
2005. 

[17] Zhang Q, Wei Y, Tian W, Yang K. GIS based emission inventories 
of urban-scale: A case study of Hangzhou, China. Atmos Environ 

2008; 42(20): 5150-65. 
[18] Pétron G, Granier C, Khattatov B, et al. Monthly CO surface 

sources inventory based on the 2000-2001 MOPITT satellite data. 
Geophys Res Lett 2004; 31: L21107. 

[19] Müller JF, Stavrakou T. Inversion of CO and NOx emissions using 
the adjoint of the IMAGES model. Atmos Chem Phys 2005; 5: 

1157-86. 
[20] Martin RV, Sioris CE, Chance K, et al. Evaluation of space-based 

constraints on global nitrogen oxide emissions with regional air-
craft measurements over and downwind of eastern North America. 

J Geophys Res 2006; 111: D15308. 
[21] Konovalov IB, Beekmann M, Burrows JP, Richter A. Satellite 

measurement based estimates of decadal changes in European ni-
trogen oxides emissions. Atmos Chem Phys 2008; 8: 2623-41. 

[22] Krakauer NY, Schneider T, Randerson JT, Olsen SC. Using gener-
alized cross-validation to select parameters in inversions for re-

gional carbon fluxes. Geophys Res Lett 2004; 31: L19108. 
[23] Konovalov IB, Beekmann M, Richter A, Burrows JP. Inverse mod-

elling of the spatial distribution of NOx emissions on a continental 
scale using satellite data. Atmos Chem Phys 2006; 6: 1747-70. 

[24] Konovalov IB, Beekmann M, Richter A, Burrows JP. The use of 
satellite and ground based measurements for estimating and reduc-

ing uncertainties in the spatial distribution of emissions of nitrogen 

oxides. arXiv: physics/0612144 (www.arxiv.org). 2006. 
[25] Richter A, Burrows JP. Tropospheric NO2 from GOME measure-

ments. Adv Space Res 2002; 29: 1673-83. 
[26] Martin RV, Chance K, Jacob DJ, et al. Koelemeijer RBA: An 

improved retrieval of tropospheric nitrogen dioxide from GOME. 
J Geophys Res 2002; 107(D20): 4437. 

[27] Leue C, Wenig M, Wagner T, Klimm O, Platt U, Jahne B. Quanti-
tative analysis of NOx emissions from GOME satellite image se-

quences. J Geophys Res 2001; 106: 5493-505. 
[28] Martin RV, Jacob DJ, Chance K, Kurosu T, Palmer PI, Evans MJ. 

Global inventory of nitrogen oxide emissions constrained by space-
based observations of NO2 columns. J Geophys Res 2003; 108: 

4537. 
[29] Jaeglé L, Martin RV, Chance K, et al. Satellite mapping of rain-

induced nitric oxide emissions from soils. J Geophys Res 2004; 
109: D21310. 

[30] Tarantola A. Inverse problem theory; methods for data fitting and 
model parameter estimation; Elsevier 1987. 

[31] Taylor KE. Summarizing multiple aspects of model performance in 
a single diagram. J Geophys Res 2001; 106: 7183-92. 

[32] Konovalov IB, Beekmann M, Vautard R, et al. Comparison and 
evaluation of modelled and GOME measurement derived tropo-

spheric NO2 columns over Western and Eastern Europe. Atmos 
Chem Phys 2005; 5: 169-90. 

[33] Tilmes S, Brandt J, Flatoy F, et al. Comparison of five Eulerian air 
pollution forecasting systems for the summer of 1999 using the 

German ozone monitoring data. J Atmos Chem 2002; 42: 91-102. 
[34] Schmidt HC, Derognat C, Vautard R, Beekmann M. A comparison 

of simulated and observed ozone mixing ratios for the summer of 
1998 in western Europe. Atmos Environ 2001; 35: 6277-97. 

[35] GENEMIS (Generation of European Emission Data for Episodes) 
project. EUROTRAC Annual Report 1993, Part 5, EUROTRAC 

International Scientific Secretariat. Garmisch-Partenkirchen: Ger-
many 1994. 

[36] Simpson D, Winiwarter W, Borjesson G, et al. Inventorying emis-
sions from nature in Europe. J Geophys Res 1999; 104: 8113-52. 

[37] Stohl A, Williams E, Wotawa G, Kromp-Kolb H. A European 
inventory of soil nitric oxide emissions on the photochemical for-

mation of ozone in Europe. Atmos Environ 1996; 30: 3741-55. 
[38] Wackernagel H. Multivariate Geostatistics; Springer 2003. 

[39] Tilmes S, Zimmermann J. Investigation on the spatial scales of the 
variability in measured near-ground ozone mixing ratios. Geophys 

Res Lett 1998; 25(20): 3827-30. 

[40] Ito K, Thurston GD, Nadas A, Lippmann M. Monitor-to-monitor 

temporal correlation of air pollution and weather variables in the 
North-Central U.S. J Expos Anal Environ Epidem 2001; 11: 21-32. 

 
 

Received: June 30, 2008 Revised: September 11, 2008 Accepted: October 7, 2008 

 

© Konovalov and Beekmann; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


