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Abstract: In this paper, the existence of limit cycles for the specific bilinear systems is explored. Based on the Bellman-

Gronwall inequality approach, not only the exponentially stable limit cycles phenomenon of such systems can be certified 

but also the oscillation behaviors of such systems can be correctly predicted. Finally, a numerical example is provided to 

illustrate the feasibility and effectiveness of the obtained result. 

INTRODUCTION   

Nonlinear system can offer oscillations with fixed ampli-
tude and fixed frequency. These oscillations are named limit 
cycles, e.g., an RLC electrical circuit with a nonlinear resis-
tor and Van der Pol equation. Limit cycles are singular phe-
nomenon of nonlinear systems and have been a main interest 
of the researchers over the years; see, for example, [1-9], and 
the references therein. Prediction of limit cycles is very im-
portant, because limit cycles can appear in any kind of 
physical system. Ordinarily, a limit cycle can be desirable. 
This is the case of limit cycles in the electronic oscillators 
utilized in laboratories. There are at least two approaches to 
explore the phenomenon of limit cycles, namely describing 
function method and Poincare-Bendixson theorem. The dis-
advantages of the describing function approach are related to 
its approximate nature, and include the possibility of incor-
rect predictions. Besides, the Poincare-Bendixson theorem 
only offers a necessary condition to guarantee the existence 
of limit cycles. Consequently, if any one of the conditions of 
the Poincare-Bendixson theorem is not satisfied for some 
system, it can be guaranteed that there exists no limit cycles 
in such system. Conversely, even the conditions of the Poin-
care-Bendixson theorem are satisfied for some system, the 
existence of limit cycles cannot be guaranteed for such sys-
tem [9]. 

In this paper, based on the Bellman-Gronwall inequality 
approach, the exponentially stable limit cycles for the spe-
cific bilinear control systems can be guaranteed. Further-
more, an estimate of the guaranteed convergence rate is also 
derived for such systems. 

PROBLEM FORMULATION AND MAIN RESULT   

In this paper, we consider the following bilinear control 
systems [10]: 
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with 0r , da, , 0w , and ( ) .00tz   Specially, the 

feedback control law is selected as follows 
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with  0>k . Thus the closed-loop systems are deduced as 
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it can be obtained that  

 

&x1(t) = wx2 (t) x1(t) x1
2 (t)+ x2

2 (t) k2 ,

&x2 (t) = wx1(t) x2 (t) x1
2 (t)+ x2

2 (t) k2 , t t0 .
    (3) 

Obviously, 0=x  is an equivalent point of system (3), i.e., 

the solution of system (3) is given by 0)( =tx  if ( ) 00 =tx  

(or equivalently ( ) 00 =tz ). To avoid the trivial case of 

( ) 00 =tx , in the following, we only consider the system (1) 

under the case of ( ) 00tx . 

DEFINITION [9] 

Consider the system (1). The closed and bounded mani-

fold 0)( =zs , in the 21 zz  plane, is said to be an exponen-

tially stable limit cycle if there exist two positive numbers  

and  such that the manifold of 0)( =zs  along the trajecto-

ries of system (1) satisfies the following inequality  
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( ) ( )[ ] .,exp)( 00 tttttzs  

In this case, the positive number  is called the guaran-
teed convergence rate. 

Now, we present the main result for the existence of limit 
cycles of system (1) as follows. 

Theorem 1. 

For the feedback bilinear systems (1), all of phase trajec-

tories tend to the exponentially stable limit cycle 
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in the time domain, with the guaranteed convergence rate 
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Proof. Define a smooth manifold 0)( =xs  and a continuous 
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Then the time derivatives of )(xs  and )(x  along the trajec-

tories of system (3) is given by  
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which imply 

( ) ( ) 00)( += ttwtx .                           (5) 

In the following, there are three cases to discuss the tra-
jectories of the feedback control system of (3). 
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In this case, by (4) and (5), it can be obtained that 
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Hence we conclude that  

( )[ ] ;,cos)( 0001 ttttwktx +=  

( )[ ] ;,sin)( 0002 ttttwktx +=  
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in view of (5) and (6). Thus, from (2), it can be shown that 
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 In this case, by (4), it can be obtained that ( ))(txs  is a 

strictly decreasing function of t with ( ) 0,0)( tttxs , and  
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Applying the Bellman-Gronwall inequality with above 
differential inequality, one has 

0 s x(t)( ) s x(t0 )( ) exp 2k2 t t0( ) , t t0 ,  

which implies 

s x(t)( ) s x(t0 )( ) exp 2k2 t t0( ) , t t0;         (7a) 
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Consequently, by (5) and (7), we conclude that 

x1(t) k cos w t t0( )+ 0

s x(t0 )( ) exp k2 t t0( ) , t t0;
 

x2 (t) k sin w t t0( )+ 0

s x(t0 )( ) exp k2 t t0( ) , t t0;
 

s x(t)( ) s x(t0 )( ) exp 2k2 t t0( ) , t t0 .  

Thus, from (2), it can be shown that 
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Consequently, by (5) and (8), we conclude that 

x1(t) k cos w t t0( )+ 0

s x(t0 )( ) exp k0
2 t t0( ) ;  

x2 (t) k sin w t t0( )+ 0

s x(t0 )( ) exp k0
2 t t0( ) .  

From (2), it results that 
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This completes our proof. 

Remark 1. 

Obviously, by Theorem 1, the state of ( )tx1  can be repre-

sented as nonlinear oscillator with the amplitude 21 ak +  

and the frequency secradw . The state of ( )tx2  can be also 

represented as nonlinear oscillator with the amplitude k  and 

the frequency secradw . Such oscillations are generally 

independent of the initial condition and limit cycles of such 

oscillation are not influenced by parameter variation. 

ILLUSTRATIVE EXAMPLE 

Consider the bilinear control system of (1) with 

3,2,1 ==== drwa , 00 =t , 

and z(0) = 4 4[ ]
T

. By Theorem 1 with 2=k  and the con-

trol law 
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we conclude that the exponentially stable limit cycle is given 
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with the guaranteed convergence rate 160= . Furthermore, 

the states )(1 tz  and )(2 tz  exponentially track, respectively, 

the trajectories ( ) ( )46.02sin246.02cos2 +++ tt  and 

( )46.02sin2 +t , in the time domain, with the guaranteed 

convergence rate ( ) 802

20
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2010 =++ zazz . Some state trajec-

tories of the feedback-controlled system are depicted in Fig. 

(1) Fig. (3). 
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Fig. (1). )(1 tz  of the feedback-controlled system. 
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Fig. (2). )(2 tz  of the feedback-controlled system. 
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Fig. (3). )(1 tz  and )(2 tz  of the feedback-controlled. 

 

CONCLUSIONS   

In this paper, the existence of limit cycles for the specific 
bilinear control systems has been explored. Based on the 
Bellman-Gronwall inequality approach, not only the 
exponentially stable limit cycles phenomenon of such 
systems has been certified but also the oscillation behaviors 
of such systems has been correctly predicted. A numerical 
example has also been given to illustrate the feasibility and 
effectiveness of the obtained result. It is interesting to 

of the obtained result. It is interesting to consider the oscilla-
tor design problem with more general systems. 
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