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Abstract: In this study, in order to generate a sequence of desired quantum states (or quantum bits) for quantum commu-

nication and computation, it is more appealing to formulate a quantum control system as a bilinear state reference tracking 

system. An optimal tracking control is proposed to achieve the state-tracking by solving a Hamilton-Jacobi equation 

(HJE). In order to avoid the difficulty in solving the HJE with a closed-form solution, the technique of formal tensor 

power series is employed to treat with the HJE to obtain the optimal tracking control in quantum systems from the ap-

proximate design perspective. If the quantum system suffers from stochastic parameter variations, it could be modeled as 

state-dependent noise. In the situation, stochastic optimal tracking control design is also developed for quantum systems. 

Finally, several examples are given to illustrate the design procedure and to confirm the performance of the proposed 

tracking control method. 

1. INTRODUCTION   

Modeling and control of quantum mechanical systems 
have been discussed since 1980s [1-3]. One needs to control 
the dynamics of reacting atoms and molecules at the micro-
scopic level, which needs the knowledge of quantum me-
chanics for exact understanding and description of the dy-
namics. Optimal control has been used for quantum me-
chanical system [4-7] by solving the two-point boundary 
problem via Lagrange multiplier method. In the early 1980s, 
chemists have tried to control chemical reactions by properly 
arranging electromagnetic field [5, 6, 8] to increase the prob-
ability of a favorable chemical reaction. A feed-forward con-
trol was developed based on the method of “inverse prob-
lem” via the selection of Hamiltonian [9]. The chemical ex-
periments on the interaction between the electromagnetic 
field and two or three level atomic systems led to one possi-
ble generalization of controllability of quantum mechanical 
systems [10-13]. Since a quantum mechanical system can be 
regarded as a family of unitary operators, the controllability 
is based on the unitary representation of Lie group. This 
technique has resolved the quantum feed-forward control 
into a unitary operator construction problem. 

In order to treat the fluctuations of photocurrent in a 
quantum mechanical system, feedback control for quantum 
systems appeared in quantum optics [14-16]. Feedback con-
trol via the transfer function method was developed for 
quantum mechanical [17, 18]. The stochastic Schrodinger 
equation was introduced so that one can control quantum 
systems under noise [19-23]. 
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Recently, progress in quantum electronics has revealed 
the possibility of quantum information technologies, which 
are expected to eliminate the bottleneck of modern commu-
nications and computation [17, 18]. In the conventional op-
timal control of quantum systems [4, 5, 7] one needs to solve 
two-point boundary equations to achieve the optimal control 
to steer the quantum state to approach an equilibrium point. 
It is not easy for a quantum system to track a sequence of 
desired states. In order to make quantum systems useful in 
communication and computation, it is assumed that we can 
specify a sequence of desired quantum states whenever we 
need it, no matter how the environment of the quantum sys-
tem would be. In other words, it is presumed that the quan-
tum state can be controlled to generate a sequence of desired 
quantum bits for the use of communications and computation 
[17], i.e., the two-level spin quantum system should track 
instantly a sequence of desired states (or quantum bits) 
which are needed for communications and computation. This 
presumption is far from trivial by taking into account the fact 
that the quantum systems sometimes entangle with the envi-
ronmental systems, which result in a noisy information re-
source. In the situation, robust tracking control is necessary 
to guarantee the quantum system to track any desired quan-
tum state we need in the presence of uncertainties or noises. 
Therefore, the proposed stochastic optimal tracking control 
is different from the conventional optimal controls for quan-
tum systems. In short, the goal of our proposed approach is 
to achieve the optimal tracking control of quantum systems 
whether uncertainties or noises are presented or not so that it 
can also generate a sequence of desired quantum bits for the 
use of communications and computation. 

In this study, the quantum system is modeled by a bi-
linear state space model. The desired quantum state to be 
tracked is from a reference model. Then a controller is speci-
fied to make the quantum system track optimally a desired 
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reference state. In the conventional optimal control in quan-
tum system, one needs to solve a two-point boundary prob-
lem by the Lagrange multiplier method [4-7]. In the pro-
posed optimal tracking control of quantum system, Bellman 
dynamic programming equation is used in this study. Based 
on Bellman dynamic programming [24], the proposed opti-
mal tracking control problem of quantum mechanical sys-
tems needs to solve a HJE. Because the HJE is a nonlinear 
partial differential equation, it can not be easily solved ana-
lytically to obtain a closed-form optimal tracking control 
design of quantum mechanical systems. For the convenience 
of design, a tensor formal power series approach is employed 
to solve the HJE approximately. After solving the tensor 
formal power series for the HJE [25], we can approximate 
the optimal tracking control of quantum mechanical systems. 
If the parameter variation noise and approximation error can 
be modeled by a stochastic process, then the controlled quan-
tum mechanical system can be considered as a stochastic 
state reference tracking system. In the situation, an optimal 
stochastic tracking control is also developed to achieve a 
desired reference state tracking. Because the parameter 
variation noise and modeling error always exist in practical 
case, the proposed stochastic tracking control design for 
quantum mechanical system is much potential for practical 
application. 

Because the quantum state will collapse to some eigen-
state when we observe it, we find the optimal control input 
by simulating the feedback system model with computer 
within which there is a model to represent the quantum me-
chanical system, and enforce actually the control with open 
loop on the actual quantum mechanical system [4, 5]. The 
systematic block diagram is shown in Fig. (1). Tracking con-
trol signal is generated by the controller using the informa-
tion of tracking error to make the state ( )x t  of a quantum 
system track a desired state ( )dx t  optimally. 

In summary, the main contributions of this paper are as 
follows. First, our control approach can track any desired 
reference state, whereas the conventional optimal quantum 
control in [4-7, 26-28] only can regulate the quantum system 
to a fixed quantum system state but can not track any desired 
reference state. Second, a tensor formal power series ap-
proach is employed to solve the HJE approximately, since it 
can not be easy to solve a HJE analytically. Third, our con-
trol approach can be suitable for an optimal stochastic track-
ing control while the parameter variation noise and modeling 
error exist. 

 

Fig. (1). Systemic block diagram of tracking control of quantum 

systems. 

The topics in later sections are summarized as follows. 
The controlled quantum system is described in the state 
space in section II. The optimal control tracking control 
strategy is proposed in section III, whereas the optimal sto-
chastic tracking control is further discussed in section IV. 
The techniques of tensor formal power series will be em-
ployed to solve the nonlinear partial differential HJE and 
then the optimal tracking control is expressed with a tensor 
formal power series in section V. In section VI, several 
simulation examples are given to illustrate the design proce-
dure and to confirm the tracking performance of the pro-
posed control design method. Finally, a conclusion is made 
in section VII. 

2. STATE SPACE DESCRIPTION OF QUANTUM 
MECHANICAL SYSTEMS   

Consider a quantum mechanical system to be controlled 
as follows [3-5]: 

                    0
ˆ( ) ( )i t H t� = �&h                                 (1) 

where ( )t�  is the state of the quantum system, defined in a 

(finite or infinite-dimensional) complex Hilbert space H. h  

is the Planck’s constant divided by 2�. 0Ĥ  is a Hamiltonian 

operator representing the energy of the system. The energy 

includes the kinetic energy and potential energy. By conven-

tion, we normalize ( ) ( ) 1,t t� � = t 0� �  (Merzbacher 

1998) [28]. The result conforms to the probability concept, 

i.e., ( )t�  displays the distribution of the eigenstates of the 

Hamiltonian operator. The eigenstates satisfy [29], 

0
ˆ 1, 2,3,....,i i iH E i� �= =  

and are orthogonal to each other, where i�  is the i -th ei-

genstate of the quantum system, and iE  means the eigen-

energy of the i -th eigenstate i� . Consider a quantum sys-

tem with normalized eigenstates 1 2 3, ,� � � , with which 

the state ( )t�  can be decomposed as [29]: 

1 1 2 2 3 3( ) ( ) ( ) ( ) .....t c t c t c t� � �� = + + +                   (2) 

where ( )ic t  is the probability amplitude of the i -th eigen-

state i�  and 
2

( )ic t  expresses its probability. Because 

( ) ( ) 1t t� � = , we can find that 
2

( ) 1ic t =� . 

The control of a quantum system is generated by the ex-
ternal potential fields, and the fields can influence the Hamil-
tonian operator. The controlled quantum system is described 
as follows [26, 30-34] 

0

1

ˆ ˆ( ) ( ) ( )
m

k k

k

i t H u H t
=

� = + ��&h                                       (3) 

where ˆ
kH  are the external Hamiltonian operators that are 

influenced by the external electromagnetic field, and ( )ku t  
are related to the strength of the electromagnetic field. We 
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can control the quantum state to any desired state by design-
ing ( )ku t  as control inputs.  

In order to apply the control law in the quantum system, 
we need first to remodel the Schrödinger equation in the ma-
trix representation [29] to let the state and eigenstates of the 
quantum system be the form of vectors, and then the Hamil-
tonian operator be the form of matrices. The remodeled dy-
namic system in the matrix representation is  

0

1

( ) ( ( ) ) ( )
m

k k

k

i t H u t H t� �
=

= +�&h                                         (4) 

where the state vector 
   
�(t) = c

1
(t) c

2
(t) L�

�
�
�

T

, and 

0 ,  ,  1,...,kH H k m=  are Hermitian matrices.  

If the quantum system to be controlled is infinite-
dimensional or high-dimensional, for the convenience of 
control design, we only consider to control a small number 
of eigenstates whose eigenvalues are close to each other and 
far away from those of the other rest eigenstates. In the situa-
tion, we use a weaker control to achieve a near desired state, 
not necessarily to arrive at the far eigenstates with larger 
eigenvalues, which are truncated in the design problem. 
Therefore we can just discuss the system state that changes 
on the space which is composed of partial eigenstates, and 
the dimension of the quantum system in (4) is reduced sig-
nificantly. 

Generally, the control objective in quantum systems is to 

control the probabilities 
2

( )  , i=1,2,....ic t  for which the 

quantum system is respectively at the eigenstates 

,  1, 2,...i i� = . We will develop a tracking control law by 

using the optimal control method. Obviously, the desired 
state control design in quantum systems can be formulated 
as an optimal tracking problem.   

3. OPTIMAL TRACKING CONTROL IN QUANTUM 

SYSTEMS   

Consider a quantum system of dimension n . The dy-
namic model of the quantum system is of the following form 

0

1

( ) ( ( ) ) ( )
m

k k

k

i t H u t H t� �
=

= +�&h                                         (5) 

where 0( ) ; ; ; , 1,n n n n n

k kt C H C H C u R k� � �� � � �   = 2,···,m, 

and 0 , kH H  are Hermitian matrices. This quantum system 

state is defined in complex space. In order to decompose the 

quantum mechanical equation into real and imaginary parts, 

the following real system state vector and matrices are em-

ployed to denote both real part and imaginary part of 

quantum system in (5): 

Re[ ( )]
( ) ,

Im[ ( )]

t
x t

t

�

�

� �
= � �

� �

0 0

0

0 0

Im[ ] Re[ ]1

Re[ ] Im[ ]

H H
G

H H

� �
= � �

�� �h
, 

Im[ ] Re[ ]1

Re[ ] Im[ ]

k k

k

k k

H H
G

H H

� �
= � �

�� �h
, 1, 2,...,k m==                       (6) 

In this situation, the complex quantum mechanical dy-
namic equation (5) can be equivalently represented by the 
following real quantum mechanical system: 

0

1

m

k k

k

x G x u G x
=

= +�&                                                              (7) 

where 
2 2 2 2 2

0; ; , , 1,n n n n n

k kx R G R G R u R k� ��  �  �  �  =  2,  

, m  L . Since 0 , kH H  are Hermitian, 0 ,  kG G  are skew-

symmetric matrices with all their eigenvalues in the imagi-

nary axis. Furthermore, it fits in with 
2

1x = , where 

2 2 2 2

1 2 2.... nx x x x= + + + . 

Assume the desired state to be steered is 
2n

dx R�  with 

2
1

d
x = . Before the optimal tracking control is developed 

for the quantum system (7) to achieve the desired state, the 

tracking cost function is defined as follows: 

( ( ) ( )) ( ( ) ( ))T

f f o f fJ x t r t F x t r t= � � +  

2

0
1

( ) ( )
f

mt
T

o k k

k

x r Q x r u dt�
=

� �
� � +	 


� �
��                                     (8) 

where 0F  and 0Q  are symmetric positive definite weighting 
matrices, and k�  are positive numbers. 

The reference model is defined as 

0r =& , (0) dr x=  

i.e., the reference state could be any desired quantum state 

dx , or ( )  for 0.dr t x t� �  

The optimal reference tracking control problem is to specify 

1 2, ,..., mu u u  such that the cost function J  in (8) is mini-

mized. In the conventional optimal quantum control in [26], 

only the total control energy 
2

0
1

f
mt

k k

k

u dt�
=

��  is minimized so 

that it is not suitable for tracking design of quantum systems. 

However, in this study, the control strategy is to minimize 

the terminal tracking error, the tracking path error and the 

control effort simultaneously. The tradeoffs are dependent on 

the specification of weightings 0F , 0Q  and k�  by design-

ers. This optimal tracking control is suitable not only for the 

two-level quantum system but also for other multi-level 

quantum systems. It is difficult to find the optimal solution 

of a nonlinear tracking control system directly. It could be 

transformed to the following optimal state regulation prob-

lem.  

Let 
4nx

R
r

�
� �

= �� �
� 	

, 
   
%x := x � r = I

2n
�I

2n
�
�

�
	�                            (9) 

where �  is the augmented state and x%  is the tracking error. 

Then the optimal tracking system (7) and (8) can be 
augmented as the following optimal state regulation prob-
lem: 
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1

m

k k

k

A u B� � �
=

= +�&      1, 2,.....,k m=                                 (10) 

2

0
1

f
mt

T T

f f k k

k

J F Q u dt� � � � �
=

� �
= + +	 


� �
��                               (11) 

here 
0 0 0

, ,
0 0 0 0

k

k

G G
A B

� � � �
=  =� � � �
� � � �

   1, 2,.....,k m=  

[ ] [ ]2 2

0 2 2 0 2 2

2 2

,   .
n n

n n n n

n n

I I
F F I I Q Q I I

I I

� � � �
= � = �� � � �

� �� � � �
 

The optimal regulation problem of quantum mechanical 
system in (10) and (11) is to specify control variables 

( ),  1, 2,...,ku t k m=  to make J  as small as possible. This is a 
bilinear optimal regulation problem, the Bellman dynamic 
programming techniques [24] in nonlinear optimal regulation 
problem will be employed to treat this optimal control prob-
lem of quantum systems. Then we can have the following 
result. 

Theorem 1: The optimal tracking control of the quantum 
mechanical system (7) is given as 

1

2k

T
o

k

k

V
u B �

� �

�
= �

�
, 1, 2, ....,k m=                                (12) 

where ( , ) 0V t� >  is solved from the following nonlinear 
partial differential HJE 

1

1

4

T Tm
T T T

k k

k k

V V V V
Q A B B

t
� � � ��

� � � �=

� � � �
� = + �
� � � �

�                                                                                                                                     

(13) 

( , ) T

f f f fV t F� � �=                                                          

Proof: See Appendix 1.                                                          � 

4. STOCHASTIC TRACKING CONTROL UNDER 
STOCHASTIC PARAMETER PERTURBATION   

In the controlled mechanical system (4), the nominal 

Hamiltonian operator 0H  is defined by the kinetic energy 

and potential energy in the invariant potential field. Some-

times, there is systemic variation or uncertainty, which is due 

to temperature variation, modeling error, change of magnetic 

moment of nucleus, perturbation of equipment, etc.. The 

uncertain variation H� could be decomposed as ( )nH n t , 

where the stochastic part is absorbed by the zero mean white 

noise ( )n t  with unit variance and the deterministic part is 

absorbed by nH . In the situation, the dynamic quantum sys-

tem (4) could be modified as the following Itô differential 

system 

0

1

( ) ( ( ) ) ( ) ( )
m

k k n

k

i d t H u t H t dt H t dW� � �
=

= + +�h          (14) 

where ( )dW n t dt=  and W  is the standard Brownian motion 

process, and nH dW  means the stochastic perturbation Ham-

iltonian operator. By the similar transformation procedure, 

the quantum mechanical system with stochastic parameter 

perturbation could be modified from (10) as follows 

1

( ( ) )
m

k k

k

d A u t B dt C dW� � � �
=

= + +�                                 (15) 

where 
0

0 0

nG
C

� �
= � �
� �

 with  

Im[ ] Re[ ]1

Re[ ] Im[ ]

n n

n

n n

H H
G

H H

� �
= � �

�� �h
. 

Suppose the perturbative quantum system is controlled to 
track the desired reference state ( ) dr t x=  by minimizing the 
following regulation cost function for stochastic optimal 
tracking control 

2

0
1

f
mt

T T

f f k k

k

J E F Q u dt� � � � �
=

� �	 �
= + +
 �� �


 �� �
��                     (16) 

where E  denotes the operation of expectation. 

Then we have the following result for stochastic quantum 
mechanical systems. 

Theorem 2: The optimal tracking control for quantum 
mechanical system with stochastic perturbations in (14) is 
given by 

1

2k

T
o

k

k

V
u B �

� �

�
= �

�
, 1, 2,.....,k m=                                (17) 

in which ( , ) 0V t� >  is obtained by solving the following 
HJE 

1

1

4

T Tm
T T T

k k

k k

V V V V
Q A B B

t
� � � ��

� � � �=

� � � �
� = + �
� � � �

�  

2

2

( , )1

2

T T V t
C C

�
� �

�

�
+

�
                                                     (18) 

( , ) T

f f f fV t F� � �=                                                         

Proof: See Appendix 2.                                                          � 

From the analysis above, we need to solve the HJE (18) 
before we design the optimal tracking control (17) for per-
turbative quantum system (15). Therefore, the most impor-
tant work to treat the optimal tracking control problem in the 
quantum mechanical system is to solve the HJE (13) or (18) 
at first. However, it is difficult to find a closed-form solution 
for (13) or (18). In this study, for the convenience of design, 
the techniques of tensor formal power series will be used to 
solve HJE (13) or (18) from the approximate perspective.  

Remark 1: The environmental perturbation in quantum 
systems implies a dissipative behavior called decoherence. 
The optimal feedback control of such kind of quantum sys-
tems has been studied in [27]. Since this kind of model is 
more complicated than the model (14) [35], we leave it for 
further research. The model (14) can be used to deal with the 
control of one particle whose state can be represented by a 
state vector and is unnecessarily characterized by a density 
matrix.                                                                                    � 
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5. OPTIMAL TRACKING CONTROL VIA TENSOR 
FORMAL POWER SERIES   

Due to the difficulty of obtaining the closed-form solu-
tion for the HJE (13), the techniques of tensor formal power 
series will be employed to solve the nonlinear partial differ-
ential HJE from the approximation point of view. At the be-
ginning, the formulas about tensor and formal power series 
in  [25, 36] will be introduced. 

5.1. Tensor Formal Power Series Approach 

The i-th order tensor in the n -dimensional space is a 
mathematical object that has i indices and in  components 
and obeys certain transformation rules. Here the tensor 
spaces are defined by the tensor product [36] of vectors.  

Because the basic properties of tensors are similar to the 

vectors, we can write the tensors as the vector forms. So we 

will use kronecker product to indicate any tensor product 

below. For example, consider two vectors in 2-dimensional 

space 
1 1

2 2

,
x y

x y
x y

� � � �
= =� � � �
� � � �

, then the tensor product of them is 

1 1

1 2

2 1

2 2

x y

x y
x y

x y

x y

� �
� �
� �� =
� �
� �
� �

. After that, we need to find the form of the 

linear operators on tensor space. 

Remark 2:  Let { }| 1, 2...ke k n=  denote the basis of vec-

tors in  R
n

, and {
1 2

... | 1, 2,.., ;
ik k k je e e k n� � � =  

}1,2,..,j i=  denote the basis of tensors in 
 
�

i
Rn

. Since 

 
�

i
Rn

 is a Hilbert space, we can consider linear operators 

defined on 
 
�

i
Rn

. Let   
  
(�

i
Rn )  be the space of linear opera-

tors defined on 
 
�

i
Rn

. We can  define a linear operator P  

which has the relation [36]                     

1 2

1 2 1 21 2

, ,...,

, ,...,
1

1,2,...,

( ... ) ( ... )P P
i

i ii

j

n
l l l

k k k l l lk k k
k

j i

e e e e e e
=

=

� � � = � � ��

   

 

 

(19) 

here 1 2

1 2

, ,...,

, ,...,P
i

i

l l l

k k k
 is the corresponding element of the operator 

P .                                                                                           

Now the inner product of two tensors 1( ... )ix x� �  and 

1( ... )iy y� �  is defined as follows 

1 1

1 1

( ..... ),  ( ..... )

,

i i

i i
T

j j j j
j j

x x y y

x y x y
= =

� � � �

= � = �
 

And 

1 2 1 2
... , ...

i ik k k l l l

h h

e e e e e e

if k l h

otherwise

� � �    � � �  

1       =   ��
=  �

0           �

 

Then we define the adjoint 
*

P  of P  with the relation 

*

1 1

1 1

( ..... ),  ( ..... )

( ..... ),   ( ..... )

P

P

i i

i i

v v u u

v v u u

� � � � =

                              � � � �
      (20) 

From equation (20), P  is self-adjoint if 

1 2 1 2

1 2 1 2

, ,..., , ,...,

, ,..., , ,...,P P
i i

i i

l l l k k k

k k k l l l
=                                                         (21) 

If we deal with the tensor in the vector form, and use the 

kronecker product to indicate the tensor product, linear op-

erators on the tensor space can be represented as matrices, 

and self-adjoint operators become symmetric matrices. If we 

set 1,..., ,iv v  
  
w

1
,..., w

i
� Rn , then two tensors 1( ... )iv v� �  

and 1( ... )iw w� �  could be reformed to two corresponding 

vectors with in  elements, and the operating matrix on them 

is an ( ) ( )i in n�  matrix, i.e., the matrix P  has the element 

1 2

1 2

, ,...,

, ,...,P
i

i

l l l

k k k
 in the ( )1 2

1 21 ( 1) ( 1) ... ( 1)i i

ik n k n k� �+ � + � + + � -th column and 

the ( )1 2

1 21 ( 1) ( 1) ... ( 1)i i

il n l n l� �+ � + � + + � -th row. 

For example, consider two vectors 
1 1

2 2

,
x y

x y
x y

� � � �
= =� � � �
� � � �

, then 

the equation ( )y y� =  P( )x x�  can be rewritten in vector 

form as follows 

1,1 1,1 1,1 1,1

1 1 1 11,1 1,2 2,1 2,2

1,2 1,2 1,2 1,2

1 2 1 211 1,2 2,1 2,2

2,1 2,1 2,1 2,1

2 1 2 11,1 1,2 2,1 2,2

2,2 2,2 2,2 2,2

2 2 2 21,1 1,2 2,1 2,2

y y x xP P P P

y y x xP P P P

y y x xP P P P

y y x xP P P P

� �� � � �
� �� � � �
� �� � � �=
� �� � � �
� �� � � �
� �� � � �� �

 

Lemma 1 [3]: We note i x�  is an ( ) 1in �  vector with the i -

times kronecker product of x , and the operating matrices 

  
P,Q � R(ni )�(ni ) .  

Then  

(i)  
( )

( )
( ) ( )

2 ( ) ( )

T
T

i i T

i i

x P x
x i x P x

x

� �� � �
� 	 = � �
� 	�
� �

          (22) 

(ii)  
( )

( )
( ) ( )

2 ( ) ( )

T
T

i i T

i i

x P x
x i x P x

x

� �� � �
� 	 = � �
� 	�
� �

 

( )( )( ) ( )T

i j i jx P Q x+ +� � �                                                (23) 

here P  is symmetric, and ( )P Q�  means a kronecker prod-
uct.                                                                                         � 

Lemma 2: To generalize equation (22), it becomes 

( )
( )

( ) ( )
2 ( ) ( )( )

T
T

i i T

i i i

x P x
Cx x P C x

x
�

� �� � �
� � = � �
� ��
	 


       (24) 
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here 
  
P �    (�

i
Rn )  and P  can be represented as an ( ) ( )i in n�  

symmetric matrix, C  is an n n�  matrix, and ( )i C�  is an 

( ) ( )i in n�  matrix related to the matrix C . The element 

1 2

1 2

, ,..,

, ,..,( ( )) i

i

l l l

i k k kC�  of the matrix ( )i C�  satisfies 

1 2

1 2

1 1 2 2

, ,..,

, ,..,

, , , 1 1 2 2

, 1 1 1 1

1 1

( ( ))

+ ...  if = , = ,.....,

  if = , ... ,

, ..., = ,  but ( )

0                   

i

i

i i

j j

l l l

i k k k

k k k k k k

l k j j

j j i i j j

C

C C C l k l k

C l k l k

l k l k l k

�

� �

+ +

+ +      

      =
=

                    = �

          others

�
�
�
�
�
�

          �

                (25) 

The detailed analyses about Lemma 2 and ( )i C�  are 
given in Appendix 3. 

Lemma 3: Consider the following operation equation  

( )
( )

2

2

( ) ( )
2 ( ) ( )

T

i iT T T

i i i

x P x
x C Cx x R x

x

� � �
= � �

�
        (26) 

then the matrix iR  could be represented as follows 

2 2( ) ( ) ( ) ( )T

i i i i iR C P C P C P C� � � �= + �                   (27) 

where the matrix ( )i C�  is the same as (24), and P  is sym-
metric.                                                                                    � 

The detailed derivation of Lemma 3 is given in Appendix 
4. 

The calculation techniques of tensor power series ap-
proximation that we need to solve (13) and (18) are ready as 
shown above. Now we use these techniques to handle the 
quantum tracking control design problem. 

We set the solution ( , )V t� of the HJE in (13) or (18) to 
be of the tensor formal power series form  

 
1

( , ) ( ) ( )( )T

i i i

i

V t P t� � �
�

=

= � ��                                  (28) 

where 
4nR��  and ( )iP t  are continuous, time-varying 

(4 ) (4 )i in n�  symmetric matrices. Before using the tensor 

power series to solve the HJE in (13) and (18), some related 

derivations should be given at first. Substituting (28) into 

(13) with the help of (23) and (24), we obtain  

1

( ) ( )( )T

i i i

i

V
P t

t
� �

�

=

�
= � �

�
� &                                               (29a) 

1

2 ( ) ( ) ( )( )
T

T

i i i i

i

V
A P t A� � � �

�

�

=

�
= � �

�
�                            (29b) 

1

1 1

1
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1
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4

Tm
T T

k k

k k

m
T

r r r k r

k rk

V V
B B

P t B

��
� � �

� � �
�

=

�

= =

� �
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1

    2 ( ) ( ) ( )( )T

s s s k s

s

P t B� � �
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�� �
                               � � 	
 	

� ��
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( ( )
1 1 1

1
( ) ( ) ( )

m
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P t B� �
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� �

+

= = =

      = �� ��  

( ) )( ) ( ) ( )s s k r sP t B� �+                         � �                   (29c) 

Therefore, from (29), (13) becomes  

1

( ) ( )( )T

i i i

i

P t� �
�

=

� � � =� &

( ( )

1

1 1 1

2 ( ) ( ) ( )( )

1
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( ) )( ) ( ) ( )s s k r sP t B� �+� �                 (30) 

with the terminal condition 

1

( , ) ( ) ( )( )T T

f f f f i f i f i f

i

V t F P t� � � � �
�

=

= = � ��                  (31) 

Now, equating like powers in (30) leads to the following 
Riccati-like equations  

1 1 1( ) ( ) ( ) 0TP t P t A A P t Q+ + + =&    for 1i =                       (32a) 

( ) ( )
1

, 1

( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) 0

i

T

i i i i

m

r r k s s k
r s ik k

r s

P t P t A A P t

P t B P t B

� �

� �
� + ==

�

+ +
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            � � =
 


 

� �

� �

&

    

for 2,3,...i =                                                                    (32b) 

with terminal conditions 

1( ) ,     ( ) 0f i fP t F P t= = , 2,3,.......i =                              (32c) 

where the calculations of ( ),  ( )i i kA B� � , 2, 3, .......i =  are 

given in (25). After solving ( )iP t  from the Riccati-like dif-

ferential equation in (32), we get the optimal tracking control 

from (12) as follows 

1
( ) ( )( )o T

k i i i k i

ik

u P B� � �
�

= � � �� , 1, 2, ....,k m==           (33) 

By induction, we can rewrite (32b) as 

( { ( ) ( )( ) ( ) ( )( )
1

, 1

( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( )

2

i

T

i i i i

m
T T

r k r s k s
r s ik k

r s

P t P t A A P t

B P t B P t

� �

� �
� + ==

�

+ + �

�� �

&

( ) ( ) }( ) ( ) ( ) ( ) 0r r k s s kP t B P t B� �+ � =                          (34) 

and so ( )iP t  is symmetric. 
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5.2. Stochastic Tracking Control Design 

Now we further investigate the optimal tracking control 
of a stochastic quantum system in (14). After substituting 
(28) into (18) with the help of (23), (24), (26), and (27), we 
could also solve this HJE. The additional term in (18) should 
be considered as 

  

�2V T

��2
C� = (


i
�)T(

i=1

�

�

�
i
(C)T P

i
(t)�

i
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i
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i
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i
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i
(C 2 )( )(


i
�))

 

(35) 

and thus the HJE in (18) becomes  
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                                                                                           (36) 

with the terminal condition  

1

( , ) ( ) ( )( )T T

f f f f i f i f i f

i

V t F P t� � � � �
�

=

= = � ��    

Now, equating like powers in (36) leads to the following 
Riccati-like equations  

1 1 1 1( ) ( ) ( ) ( ) 0T TP t P t A A P t Q C P t C+ + + + =&   for 1i =      (37a)           

( ) ( ) ( ) ( ) ( )T
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, 1

1
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r s ik k

r s
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� �

� �  

( )2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,T

i i i i i i iC P t C P t C P t C� � � �+ + � =           for 

2,3,...i =            (37b) 

with the terminal conditions 

1( ) ,     ( ) 0f i fP t F P t= =  for 2,3,.......i =                         (37c) 

After solving the Riccati-like equations in (13) to obtain 

1 2( ), ( ),..., ( ),...iP t P t P t , the optimal tracking controls in (17) 

for perturbative quantum system (14) become 

1
( ) ( )( )o T

k i i i k i

ik

u P B� � �
�

= � � �� , 1, 2, ....,k m==         (38) 

In general, the tensor formal series have infinite terms to 
be solved. However, it is difficult to implement high-order 
terms ( )iP t  due to their complicated computation. In this 
study, only a few important terms of ( )iP t  are considered to 
approximate the optimal tracking design. A two-level spin 
system and a three-level quantum system are both discussed 
below to illustrate the design procedure of the proposed 
tracking control.   

5.3. Comparisons with Other Approaches 

Now we provide a detailed comparative analysis of the 
proposed scheme with the existing schemes [4-7,26-28]. 

Our proposed scheme has the following advantages: First, 
our control approach can track any desired reference state, 
whereas the conventional optimal quantum control in [4-7, 
26,28] only can regulate the quantum system to a fixed quan-
tum system state but can not track any desired reference state. 
Second, the proposed control strategy can minimize the ter-
minal tracking error, the tracking path error and the control 
effort simultaneously. By contrast, only the total control en-
ergy is minimized in [26], only both the total control energy 
and the terminal state error are minimized in [4,5,7, 28] and 
the total control energy, the terminal state error and the state 
energy are minimized in [6, 27]. Therefore, those schemes in 
[4-7, 26-28] are not suitable for tracking design of quantum 
systems, since their control strategies are not to minimize the 
tracking path error. Third, a tensor formal power series ap-
proach is employed to solve the HJE approximately since it 
is still not easy to solve an HJE analytically, whereas there is 
no method concerning solving an HJE in [27] although its 
optimal control is also related to an HJE. Fourth, our control 
approach can be suitable for an optimal stochastic tracking 
control while the parameter variation noise and modeling 
error exist, whereas [4, 6, 7, 26, 28] can not deal with the 
stochastic optimal control of quantum systems. 

But, our proposed scheme has one disadvantage that is 
somewhat much computational complexity due to a tensor 
formal power series. However, our numerical computation 
time is much reduced since there is no iterative procedure to 
search the optimal control. By contrast, there is much com-
putational complexity in [5-7, 27-28] due to an inextricable 
iterative procedure to solve two coupled differential equa-
tions, i.e. the state and costate equations, and then update the 
optimal control at each iteration step. Since [4-7, 26-28] are 
not suitable for tracking design of quantum systems, the con-
trollers are quite different from ours so that comparisons of 
the computational complexity of their schemes to ours are 
not easily discussed. Moreover, there is no method concern-
ing solving the HJE in [27], the comparison of the computa-
tional complexity of their scheme to ours is not easy to dis-
cuss either. 

6. SIMULATION EXAMPLES   

In this section, several simulation examples of two-level 
and three-level quantum systems are given to illustrate the 
design procedure of the optimal tracking control by the ten-
sor formal power series method. Two-level Quantum sys-
tems are the most basic quantum systems with important 
applications, especially in communications and computation 
[26]. A two-level quantum system means a system which has 
two energy levels (in other words, the system has two eigen-
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values and two eigenstates). A two-level system is used to 
generate a sequence of desired quantum bits for quantum 
computing and data communications [26], which could be 
formulated as a tracking control problem of quantum system. 
Some of the systems have the property that they have two 
close levels far away from others, and can be approximated 
by the two-level systems. The spin 1/2 systems are two-level 
systems and have been studied extensively. Here we con-
sider a state tracking control problem of a spin 1/2 atomic 
nucleus [26]. 

A two-level-spin particle (here it means an atomic nu-

cleus) is controlled by an external magnetic field similar to 

the one in the nuclear magnetic resonance (NMR) experi-

ments [26]. First we fix magnetic field zB  in the z -

direction, and the fixed field determines the direction of spin 

and decides the eigenstates of the spin. The magnetic field in 

the x y��  direction is varied to change or control the direc-

tion of spin. The varied field can be controlled by two or-

thogonal components xu and yu , or one of them. The system 

is described in Fig. (2). Here the control purpose is to steer 

the spin from one eigenstate to a desired state to form a 

quantum logic gate in quantum computing [26, 31, 34], and 

the initial state could be prepared by Stern-Gerlach apparatus 

[37]. 

 

Fig. (2). Two-level spin control system. 

Considering the control of a spin 1/2 nucleus, the dy-
namic equation of the spin system is derived in some text 
books of quantum mechanics [29]. The quantum dynamic 
equation is given as follows 

( )i t� =&h

1 0 0 1 0
( )

0 1 1 0 02 2 2
z x y

i
B u u t

i
� � � �

� � �� � � � � �
� � �	 
� � � � � �

�
 � 
 � 
 �� �

h h h
     (39) 

where �  is the gyromagnetic ratio associated with the spin 

system, zB  is the fixed component of the magnetic field and 

xu , yu  are the components of the magnetic fields varied 

with the tracking control laws. The spin 1/2 system has ei-

genstates 
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2
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t

�
	 � , ( )t�  becomes ( )

2
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� � , 

( )xu t  becomes ( )
2

z

x

B t
u

�
� , and ( )yu t  becomes 

( )
2

z

y

B t
u

�
� . Equation (39) can be rewritten as 
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&           (40) 

And further rescaling ( )x

x

z

u
u

B
�  , ( )

y

y

z

u
u

B
� , equation 

(40) can be rewritten as 

1 0 0 1 0
( ) ( )

0 1 1 0 0
x y

i
i t u u t

i
� �
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= + +� 	
 � 
 � 
 �
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 � 
 � 
� �
&             (41) 

For common NMR devices, we set the fixed magnetic 

field zB  as -4.69 Tesla (for example: in the NMR device, 

Bruker AC 200, it makes the hydrogen nucleus with the 

resonance frequency 200MHz). By controlling the hydrogen 

nucleus with the gyromagnetic ratio 
82.6751 10 rad

s Tesla
�

�
= �  42.58 /MHz Tesla= , the 

time of the simulated result in (41) can be scaled 

with
82

10
zB�

�= , and the control magnetic field will be 

scaled with -4.69. 

In this design example, three tracking control cases are 
considered with one control input, two control inputs, and 
one control input with stochastic parameter perturbation, 
respectively.   

Example 1: Spin system tracking with one control input 

First we consider the spin system controlled by a mag-
netic field in the y -direction. The dynamic equation of the 
controlled spin system is given by 

1

1 0 0 1
( ) ( ) ( ), (0)

0 1 0 0

i
i t u t t

i
� � �
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= + =� 	
 � 
 � 
 �

�� 
 � 
 � 
� �
&       (42) 

By (6), the corresponding state space of (42) can be re-
written as 

0 1 1x G x u G x= +& , 0(0)x x=                                                (43) 

where 

0
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x

0
= 1 0 0 0�
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�
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 corresponds to the spin-up state 

 

�
�

:=
1

0

�

�
�
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� . 

And the reference model for the desired state is given by 

 

00, (0) dr r r x= = =&                                                         (44) 

Bz

uy y

z

x

spin - 1

2

spin +
1

2

ux



58   The Open Automation and Control System Journal, 2008, Volume 1 Chen et al. 

where 
  
x

d
= 0 1 0 0�
�

�
�
T

 corresponds to the spin-down state 
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0

1

�

�
�
�



� . 

Therefore, we steer the spin from the spin-up state 0x  to 
the spin-down state dx . 

For the tracking cost in (8), we specify 

0 0 1

1 0 0 0

0 1 0 0
,  4,  10

0 0 1 0

0 0 0 1

fF Q t�

� �
� �
� �= = = =
� �
� �
� �

 

where 
8 710*10 10ft s s� �= =  after recovering the scale of 

real quantum system. 

After regulating, we have the augmented quantum system 
(10) and the corresponding optimal control cost function 
(11). The matrices in (10) and (11) are shown as follows. 
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                   (45) 

For the simplicity of computation, only 2an =  is consid-

ered to approximate the control law. After recovering the 

scale, the simulation result is shown in Fig. (3). So the prob-

ability, i.e. 
2 2 2

1 1 3( ) ( ) ( )c t x t x t= + , of the spin-up state and 

the probability, i.e. 
2 2 2

2 2 4( ) ( ) ( )c t x t x t= + , of the spin-

down state are simulated in Fig. (3) to confirm the tracking 

performance of the proposed method. It is seen that the state 

of the two-level quantum system can track the desired state 

quite well with only one control input. 

Because the Riccati-like equations (32) could be effi-
ciently solved by the toolbox in Matlab, the proposed opti-
mal tracking control in (33) by tensor formal power series 
could be easily calculated, especially for 2an =  case in this 
example. 

 

Fig. (3). The probabilities of eigenstates (upper half side), and the 

corresponding control signal (lower half side) for the state tracking 

control in the two-level quantum system by a magnetic field in 

the y -direction in example 1. 

Example 2: Spin system tracking control with two inputs 

Suppose two control inputs with the magnetic fields in 
the x-direction and y-direction are employed to control this 
spin quantum system. The dynamic equation of the spin sys-
tem with two control inputs is given by: 

1 2
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The initial value of x  in (7) is set as 

0(0) [1 0 0 0]Tx x= = . 

Suppose we control the quantum state with a magnetic 
field to track the following desired quantum state 
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, i.e., the spin system is to be controlled from the spin-up 

state at time t=0 to the spin-down state within ft[0, ]
2

 and 

then back to the spin-up state within f
f

t
[ , t ]

2
. 

Similar to the above example, the weightings in the 
tracking cost in (8) are given by 
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 10ft =  ( here 
71 10ft s�= �  in real system ). 

After regulation transformation, the matrices 

,  ,  and A F Q  are the same as (45), and 1 2,B B  are given as 

follows 
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For the simplicity of computation, 2an =  is considered. 
After recovering the scale, the simulation result is given in 
Fig. (4). It is seen that the tracking performance with two 
control inputs is much better than that with only one control 
input, especially in the transient response. This is because 
two control input has more degrees of freedom to manipulate 
the control efforts to track the desired reference sequence 
than one control input case. 

 

Fig. (4). The probabilities of eigenstates (upper half side), and the 

corresponding control signals (lower half side) for the system track-

ing control in the two-level quantum system by two magnetic fields 

in the x -direction and the y -direction, respectively, in example 2. 

Example 3: Spin tracking system with stochastic pertur-
bations  

Consider the following spin system with stochastic per-
turbations 

1

1 0 0
( ) ( ) ( ) ( )
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i
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i
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                                  (47) 
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�
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The initial value of x  in (7) is set as 

0(0) [1 0 0 0]Tx x= =  and the reference model for the 

desired state is given by  

0r =& , 
  
r

0
= x

d
= 0 1 0 0�
�

�
�

T
  

After regulation transformation, we have the augmented 
quantum system and the corresponding optimal control cost 
function shown in (15) and (16). The matrices 

1,  ,  ,  and A B F Q  are the same as (45), and the other weight-
ings in (15) and (16) are shown as follows 

0 0.1 0.1 0 0 0 0 0

0.1 0 0 0.1 0 0 0 0

0.1 0 0 0.1 0 0 0 0

0 0.1 0.1 0 0 0 0 0
,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

C

�� �
� �

�
� �
� �� �
� �
� �=
� �
� �
� �
� �
� �
� �� �

  

1 4,  10ft� = =  ( here 
710ft s�=  in real system ).  

For the simplicity of computation, 2an =  is considered. 

After recovering the scale, the simulation result is shown in 

Fig. (5).  

 

Fig. (5). The probabilities of eigenstates (upper half side), and the 

corresponding control signal (lower half side) for the stochastic 
system tracking control by a magnetic field in the y -direction in 

example 3. 
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Because of stochastic perturbation, the tracking perform-
ance in this example is worse than that in Example 1. How-
ever, the tracking performance is still very satisfactory. Ob-
viously, the proposed tracking control method is robust to 
the stochastic perturbation in quantum system and has much 
potential application to practical control designs. 

Example 4: State tracking control for a three-level sys-
tem 

In order to confirm the proposed tracking control method 
to more complex quantum system, let us consider the follow-
ing three-level quantum system [28] 

0 1

0

( ) ( ) ( ) ( ), (0) 1 .

0

trani t H t u t H t� � � �

� �
� �

= +       =
� �
� �� �

&               (48) 

where 
0

1.0 0 0

0 2.0 0

0 0 3.0

H

� �
� �

=
� �
� �� �

 denotes the self Hamiltonian 

of the three-level quantum system with each diagonal ele-

ment representing the energy for each system level, 

0 1 1

1 0 1

1 1 0

tranH

� �
� �

=
� �
� �� �

 denotes the electronic dipole transition 

matrix and 1( )u t  denotes the electric field which induces 

transitions between three levels of this quantum system. 

Here we note that all calculations are carried out in atomic 

units (a.u.). 

Suppose we control the quantum state to track the following 

desired quantum state 

  

�
d
(t) =

1 0 0�
�

�
�

T

 as t=(0,
t

f

2
] 

0 0 1�
�

�
�

T

 as t=(
t

f

2
,t

f
)

�

�





	






 

, i.e., the quantum system is to be controlled from the eigen-

state 2 at time t=0 to the eigenstate 1 within ft[0, ]
2

 and then 

to the eigenstate 3 within f
f

t
[ , t ]

2
, where 30ft =   a.u.. The 

weighting matrices 0F  and 0Q  are the same as the ones in 

Example 1, and 1 25� = . The simulation result is shown in 

Fig. (6). 

Discussion: By the tensor power series to approximate 
the solution of the nonlinear HJE in (13), the optimal track-
ing control could be easily designed by solving the Riccati-
like equations in (32), which could be easily solved with the 
help of toolbox in Matlab. Therefore the proposed method 
could simplify the design procedure even though the ap-
proximation procedure seems complicated. Further, in these 
examples we have tried other methods to solve the HJE of 
optimal tracking control design of quantum systems, e.g. 
fuzzy approximation technique, but the technique of tensor 
formal power series is simpler in design procedure and better 

in tracking performance. Further, the conventional quantum 
control design only control the system to an equilibrium 
state. But the proposed optimal tracking control design could 
make the quantum system track a sequence of desired states 
according to the reference model. Therefore, the proposed 
tracking method is more potential to generate a desired se-
quence of quantum bits for quantum communication and 
computation.  

 

Fig. (6). The probabilities of eigenstates (upper half side), and the 

corresponding control signal (lower half side) for the state tracking 

control by an electric field in example 4. 

7. CONCLUSIONS   

In this study, the state space model for quantum systems 
is constructed and then the optimal tracking control of quan-
tum system is proposed to achieve any desired state based on 
Bellman dynamic programming method. In order to avoid 
the difficulty in solving the partial differential HJE equation 
directly, the techniques based on tensor formal power series 
is employed to obtain the approximate optimal tracking con-
trol law of quantum systems. The stochastic optimal tracking 
control design for quantum system with uncertain perturba-
tion is also developed based on Itô-type differential equation 
to meet the practical noisy environment. Unlike the conven-
tional optimal control is only to stabilize the quantum system 
to an equilibrium state, the proposed tracking method can 
track any desired state generated by a referenced model. 
Several simulation examples of two-level or three-level 
quantum systems are given to illustrate the design procedure 
of the optimal tracking control by the tensor formal power 
series method. Even with second order tensor power series 
approximation, the tracking performance is very satisfactory. 
It is also found that the tracking performance with two-
direction control inputs is with shorter transient response 
than with one-direction control input. Even the design pro-
cedure is complicated because of the requirement of optimal 
tracking performance and approximating solution of HJE by 
tensor power series, the control law is very simple in the 
result. Therefore, the proposed optimal tracking control de-
sign is suitable to generate a sequence of desired states (or 
bits) with much potential application to quantum computa-
tion and communications.   

APPENDIX 1:   

Proof of Theorem 1: 
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The optimal control in (10) and (11) is obtained by 
means of the solution ( , ) 0V t� >  of the following Bellman 
dynamic programming equation [24] 

2

( )
1 1

1,..,

( , )

( , )
min ( )

k

T m m
T

k k k ku t
k k

k m

V t

t

V t
Q A u B u

�

�
� � � � �

� = =
=

�
� =

�

� 
�
+ + +� �

�	 �
� �

      (49) 

with the terminal condition ( , ) T

f f f fV t F� � �= . Using the 

technique of completing of square, (49) becomes 

( )

1,..,

1

min

1 1 1
( ) ( )

2 2

k

T
T

u t

k m

m
T T T T T

k k k k k k

k k

V V
Q A

t

V V
u B u B
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�

� � � �
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=

=

�� �
� = + +�
� �	

� �
+ +

� �
�

 

1

1

4

Tm
T T

k k

k k

V V
B B��
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�� �
� �

� � 	
� ,   ( , ) T

f f f fV t F� � �=                   

(50) 

From the right hand side of (50), it can be found that the 
minimum is achieved if the optimal controls are specified as  

1
, 1, 2,....,

2k

T
o

k

k

V
u B k m�

� �

�
= �     =

�
                                (51) 

Under the specification of the optimal control 
o

ku  in (51), 
the dynamic programming equation (50) becomes the fol-
lowing Hamilton-Jacobi equation (HJE) 

1

1

4

T Tm
T T T

k k

k k

V V V V
Q A B B

t
� � � ��

� � � �=

� � � �
� = + �
� � � �

�        (52) 

( , ) T

f f f fV t F� � �=  

Therefore Theorem 1 is proved.                                       � 

APPENDIX 2:   

Proof of Theorem 2: 

By Bellman dynamic programming principle for nonlin-
ear stochastic optimal control systems, we get 

2
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( , )
min ( , , , , )
u t

V t V V
H t u

t

�
�

� �
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� =

� � �
                                    (53) 

( , ) T

f f f fV t F� � �=  

where ( , ) 0V t� >  and the generalized Hamiltonian function 
H  is defined as 
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Here the term 
2

2

1 ( , )

2

T T V t
C C

�
� �

�

�

�
 appears due to the 

Itô differentiation in stochastic process [38-40]. Obviously, 

from (54), it follows that 

2 2

2 2( )
min ( , , , , ) ( , , , , )

k

o

u t
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where  

1
, 1, 2,....,

2k

T
o

k

k

V
u B k m�

� �

�
= �     =

�
                                (56) 

and the dynamic programming equation (53) becomes the 
following HJE 

T
TV V
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t
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1 1 ( , )
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( , ) T

f f f fV t F� � �=
 

Therefore Theorem 2 is proved.                                       � 

APPENDIX 3:   

Before proving Lemma 2, the following fact should be 
first proved. 

Fact 1 

( )
( )

( ) ( )
2 ( ) ( )

T
T

i i T

i i

x P x
Cx x Q x

x

� �� � �
� 	 = � �
� 	�
� �

                  (58) 

where P  is symmetric and the components of Q  are of the 
following form [3] 

1 1

1 1
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Q i i
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P C
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Proof of fact 1: 

The right hand side of (58) can be expressed as follows : 
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Now we define the tensor ,

1

0
h k

if h k

if h k
�

      =�
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      ��
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Then the left hand side of (58) can be expressed as fol-
lows: 
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                           (61) 
Comparing (60) and (61), we have proved (59). 

Therefore the Fact 1 is proved.                                        � 

Proof of (25): 

After proving the equations (58) and (59), for the purpose 
of application, we need to factorize the matrix Q  to be 

( )iP C�  as follows 
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So the components of the matrix Q  satisfy 
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   (64)               

Therefore Lemma 2 is proved.                                               

For example, for a 2-dimensional state, we have 
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Appendix 4:   

Proof of Lemma 3: 

( )

( )

2

2

( ) ( )

( ) ( )

T
i iT T

T
T

i iT T

x P x
x C Cx

x

x P x
x C Cx

x x

� � �
=

�

� �� �� � �� 	� � 	
� 	� 	� �� 	� 	� 	� 	

 

( )( ) ( )

T
T

T
i iT T
x P x

x C C
x

� �� �� � �� 
� �� � 
� ��� �� 

 �
 �

(by using (24)) 

( )( ) 2 ( )( )
T

T
i i ix P C x

Cx
x

�� �� � �
� �=
� ��� �
	 


 



Optimal Tracking Control Design of Quantum Systems The Open Automation and Control System Journal, 2008, Volume 1   63 
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Lemma 3 is proved.                                                        

 
For example, for a 2-dimensional state, we have 
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