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Abstract: For improving the reliability and efficiency of the kineto-static analysis of complex robot systems, the corre-
sponding vector bond graph procedure is proposed. By the kinematic constraint condition, the vector bond graph model of 
universal joint are made. Based on this, the vector bond model of 3-RRRT parallel Manipulator is built. For solving the 
algebraic difficulties brought by differential causality in system automatic kineto-static analysis, the effective bond graph 
augment method is proposed. From the algebraic relations of input and output vectors in the basic fields, junction struc-
ture and Euler-junction structure of system vector bond graph model, the unified formulae of driving moment (or force) 
and constraint forces at joints are derived, which are easily derived on a computer in a complete form. As a result, the 
automatic kineto-static analysis of 3-RRRT parallel Manipulator is realized, the validity of the method presented here is 
illustrated. 
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1. INTRODUCTION 

Parallel manipulators have been widely used in industry, 
such as machine tool, simulator for aircraft driver, automatic 
assembling for automobile production, and micro-
mechanism for computer assisted surgery [1, 2], 3-RRRT 
parallel manipulator is one of important type of such systems. 
The kineto-static analysis is very important for the design, 
control, static and dynamic strength check of such system. 
Due to high nonlinearities and couplings involved in parallel 
manipulators, determining driving moment (or force) and the 
constraint forces at joints is a very tedious and erroprone task. 
The Newton-Euler technique and Lagrange technique are 
two of the well known methods used for the dynamic analy-
sis of a robot system [1, 2]. These techniques however, are 
only suitable for a single energy domain systems, e.g. me-
chanical systems, and can not be used to tackle systems that 
simultaneously include various physical domains in a unified 
manner. 

The bond graph technique developed since the 1960’s 
has potential applications in analyzing such complex systems 
and has been used successfully in many areas [3, 4]. It is a 
pictorial representation of the dynamics of the system and 
clearly depicts the interaction between elements, it can also 
model multi-energy domains, for example, the actuator sys-
tems, which may be electrical, electro-magnetic, pneumatic, 
hydraulic or mechanical. Once the bond graph model of the 
system is ready, the system dynamic equations can be de-
rived from it algorithmically in a systematic manner. This 
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process is usually automated by using appropriated software 
[3, 4]. But for spatial multibody systems such as parallel 
manipultors with different constraint joints, the kinematic 
and geometric constraints between bodies result in differen-
tial causality loop, and the nonlinear velocity relationship 
between the mass center and joint point on a body leads to 
the nonlinear junction structure. The traditional bond graph 
procedures mentioned above were found to be very difficult 
algebraically in automatic modeling and kineto-static analy-
sis of systems on a computer. To solve this problem, the La-
grange multiplier approach and Karnopp-Margolis approach 
[5, 6] can be employed to develop bond graph model for 
multibody systems. Based on the Karnopp-Margolis ap-
proach, Zeid proposed a new singularly perturbed explicit 
modeling method [7] and provided a more realistic joint 
bond graph model for revolute joint, prismatic joint , spheri-
cal joint , universal joint , and so forth based on scalar bond 
graph concept [8].  

The bond graph technique and causality concept have 
been well developed for systems in which components have 
scalar constitutive laws. But for spatial multibody systems, 
the scalar bond graph technique is found to be complex, dif-
ficult and requires a great amount of experience, because 
three dimensional motion of system components must be 
resolved into scalar bonds. To address this problem, the vec-
tor bond graph techniques [9-11] were proposed. In vector 
bond graphs, single power bonds are replaced by multi-
power bonds, this makes it posses more concise presentation 
manner and be more suitable for modelling spatial multibody 
systems. Some problems however, should be studied further, 
such as modeling complex spatial robot mechanism with 
different constraint joints by vector bond graphs, augmenting 
the vector bond model to avoid differential causality, devel-
oping the generic algorithm for automatic kineto-static 
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analysis of spatial robot mechanism. To solve these prob-
lems, a more efficient and practical computer aided kineto-
static analysis procedure for complex spatial robot mecha-
nism based on vector bond graph is proposed here. 

2. THE VECTOR BOND GRAPH MODEL OF UNI-
VERSAL JOINT 

The diagram of spatial universal joint is shown in Fig. (1). 
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The velocity and angular velocity constraint equations 
shown in Eq. (2) can be presented by vector bond model 
shown in Fig. (2), where the modulus matrices of MTF can 
be obtained from Eq.(2) directly.  

3. THE VECTOR BOND MODEL OF 3-RRRT PAR-
ALLEL MANIPULATOR 

As shown schematically in Fig. (3), a 3-RRRT parallel 
manipulator consists of a movable upper platform (Δabc), a 
fixed base platform (ΔABC) and three parallel moving 
chains (A-a, B-b, and C-c). Each chain consists of three rigid 

 
Fig. (1). The diagram of spatial universal joint. 
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bodies and is connected to the base and upper platform by a 
universal joint and a revolute joint respectively, and three 
bodies in a single moving chain are joined each other by two 
revolute joints. The joined structure of this system is shown 
in Fig. (4). For chain A-a, B-b and C-c, the corresponding 

driving moments are 
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Fig. (4). The joined structure of 3-RRRT manipulator. 

Fig. (5) shows the configuration of 3-RRRT manipulator 
which only contains a moving chain A-a for simplification. 
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Fig. (2). The vector bond graph model of spatial universal joint. 
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Fig. (3). The diagram of 3-RRRT manipulator. 
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structure (EJS) [11, 12]. For a spatial moving rigid body i in 
chain j ( i=1,2,3, j=1,2,3 ), the relationship between input 
vector and output vector of its EJS can be written as  
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The spatial revolute joint allows turning the bodies joined 
between them. Therefore, three translations and two rota-
tional degrees of freedom are constrained, leaving only one 
rotation degree of freedom free. For a single moving chain j 
(j=1,2,3, representing chain A-a, B-b, or C-c respectively), 
the vector bond graph model can be made by assembling the 

vector bond graph of a single spatial moving rigid body [11], 
the revolute joints, and the universal joint, which is shown in 
Fig. (6). 

In Fig. (6), if i=a and j=1, it presents the vector bond 
graph of moving chain A-a, if i=b and j=2, it presents the 
vector bond graph of moving chain B-b, and if i=c and j=3, it 
presents the vector bond graph of moving chain C-c. 
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Fig. (5). The configuration of 3-RRRT manipulator. 

 
Fig. (6). The vector bond model of moving chain A-a, B-b, and C-c in 3-RRRT manipulator. 
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and moment of inertia matrix 
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b  are both determined in 
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simplified and shown in Fig. (9), where ap, bp, cp, pa, pb, pc 
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As a result, the overall vector bond graph model of 3-
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Fig. (7). The simplified model of Fig. (6). 
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The EJS equations of a overall multibody system can be 

assembled by Eq.(3) and written as 

 
E

out
= R

E
E

in
 (7) 

where 
    
E

out
= [E

out
1

E
out

2

LE
out

n

]
T , 

   
E

in
= [E

in
1

 
2
in
E  

   
LE

in
n

]
T , 

 
R

E
= diag(R

E
1

R
E

2

L R
E

n

) . 
The corresponding junction structure equations can be 

written as 

  

&X
i
1

= J
i
1
i
1

Z
i
1

+ J
i
1
i
2

Z
i
2

+ J
i
1
L
D

out
+ J

i
1
u

1

U
1

 

   
+J

i
1
u

2

U
2
+ J

i
1
u

3

U
3
+ J

i
1
E
E

out
 (8) 

    

&X
i
2

= J
i
2
i
1

Z
i
1

+ J
i
2
i
2

Z
i
2

+ J
i
2
L
D

out
+ J

i
2
u

1

U
1
 

   
+J

i
2
u

2

U
2
+ J

i
2
u

3

U
3
+ J

i
2
E
E

out
 (9) 

   
D

in
= J

Li
1

Z
i
1

+ J
Li

2

Z
i
2

+ J
LL
D

out
+ J

Lu
1

U
1
 

   
+J

Lu
2

U
2
+ J

Lu
3

U
3
+ J

LE
E

out
 (10) 

   
E

in
= J

Ei
1

Z
i
1

+ J
Ei

2

Z
i
2

+ J
EL

D
out

+ J
Eu

1

U
1
 

   
+J

Eu
2

U
2
+ J

Eu
3

U
3
+ J

EE
E

out
 (11) 

From the flow summation of 0-junctions corresponding 
to 

2
m constraint force vectors in system vector bond graph 

model, we have 

   
0 = J

Ci
1

Z
i
1

+ J
Ci

2

Z
i
2

+ J
CL

D
out

+ J
Cu

3

U
3
 

  
+J

CE
E

out
 (12) 

By the algebraic manipulation from Eq.(4)~Eq.(12), the 
system driving moment and constraint force equations can be 
written as 

If 0
CL

=J , 0
CE

=J  

    

U
1
= S

u
1
u

1

!1 (S
u

1
i
1

X
i
1

+S
u

1
i
2

X
i
2

+S
u

1
u

3

U
3

+T
i
1
u

1

T &X
i
1

+T
i
1
u

1

T
T

i
1
u

2

H
4

!1
J

cu
3

&U
3
) (a)

U
2
= (!H

4
)!1(H

1
X

i
1

+H
2
X

i
2

+H
3
U

1

+H
5
U

3
+ J

cu
3

&U
3
) (b)

"

#

$
$
$

%

$
$
$

 (13) 

where 

 
   
A

1
= [I

2
! J

EL
R(I

1
! J

LL
R)!1

J
LE

R
E
! J

EE
R

E
]!1  

 
   
A

2
= J

Ei
1

F
i
1

+ J
EL

R(I
1
! J

LL
R)!1

J
Li

1

F
i
1

 

   
A

3
= J

Ei
2

F
i
2

+ J
EL

R(I
1
! J

LL
R)!1

J
Li

2

F
i
2

 

   
A

4
= J

Lu
1

+ J
EL

R(I
1
! J

LL
R)!1

J
Lu

1

 

   
A

5
= J

Eu
2

+ J
EL

R(I
1
! J

LL
R)!1

J
Lu

2

 

   
A

6
= J

Eu
3

+ J
EL

R(I
1
! J

LL
R)!1

J
Lu

3

 

   
B

1
= (I

1
! J

LL
R)!1(J

Li
1

F
i
1

+ J
LE

R
E
A

1
A

2
)  

   
B

2
= (I

1
! J

LL
R)!1(J

Li
2

F
i
2

+ J
LE

R
E
A

1
A

3
)  

   
B

3
= (I

1
! J

LL
R)!1(J

Lu
1

+ J
LE

R
E
A

1
A

4
)  

   
B

4
= (I

1
! J

LL
R)!1(J

Lu
2

+ J
LE

R
E
A

1
A

5
)  

   
B

5
= (I

1
! J

LL
R)!1(J

Lu
3

+ J
LE

R
E
A

1
A

6
)  

 
T

i
1
i
1

= J
i
1
i
1

F
i
1

+ J
i
1
L
RB

1
+ J

i
1
E

R
E

A
1
A

2
 

 
T

i
1
i
2

= J
i
1
i
2

F
i
2

+ J
i
1
L
RB

2
+ J

i
1
E
R

E
A

1
A

3
 

 
T

i
1
u

1

= J
i
1
L
RB

3
+ J

i
1
u

1

+ J
i
1
E
R

E
A

1
A

4
 

   
T

i
1
u

2

= J
i
1
L
RB

4
+ J

i
1
u

2

+ J
i
1
E
R

E
A

1
A

5
 

   
T

i
1
u

3

= J
i
1
L
RB

5
+ J

i
1
u

3

+ J
i
1
E
R

E
A

1
A

6
 

    
H

1
=

&J
Ci

1

F
i
1

+ J
Ci

1

F
i
1

T
i
1
i
1

+ J
Ci

2

F
i
2

T
i
2
i
1

 

    
H

2
=

&J
Ci

2

F
i
2

+ J
Ci

1

F
i
1

T
i
1
i
2

+ J
Ci

2

F
i
2

T
i
2
i
2

 

   
H

3
= J

Ci
1

F
i
1

T
i
1
u

1

+ J
Ci

2

F
i
2

T
i
2
u

1

 

   
H

4
= J

Ci
1

F
i
1

T
i
1
u

2

+ J
Ci

2

F
i
2

T
i
2
u

2

 

    
H

5
=

&J
Cu

3

+ J
Ci

1

F
i
1

T
i
1
u

3

+ J
Ci

2

F
i
2

T
i
2
u

3

 

   
S

u
1
u

1

=T
i
1
u

1

T [T
i
1
u

1

+T
i
1
u

2

(!H
4
)!1

H
3
]  

   
S

u
1
i
1

=T
i
1
u

1

T (T
i
1
u

2

H
4

!1
H

1
!T

i
1
i
1

)  

   
S

u
1
i
2

=T
i
1
u

1

T (T
i
1
u

2

H
4

!1
H

2
!T

i
1
i
2

)  

   
S

u
1
u

3

=T
i
1
u

1

T (T
i
1
u

2

H
4

!1
H

5
!T

i
1
u

3

)  

If 0
CL

!J  or 0
CE

!J  

    

U
1
= D

u
1
u

1

!1 (D
u

1
i
1

X
i
1

+D
u

1
i
2

X
i
2

+D
u

1
u

3

U
3

+T
i
1
u

1

T &X
i
1

) (a)

U
2
= (!T

Cu
2

)!1(T
Ci

1

X
i
1

+T
Ci

2

X
i
2

+T
Cu

1

U
1

+T
Cu

3

U
3
) (b)

"

#

$
$
$

%

$
$
$

 (14) 

where 



A Computer Aided Kineto-Static Analysis Method The Open Automation and Control Systems Journal, 2013, Volume 5     109 

 
T

Ci
1

= J
Ci

1

F
i
1

+ J
CL

RB
1
+ J

CE
R

E
A

1
A

2
 

 
T

Ci
2

= J
Ci

2

F
i
2

+ J
CL

RB
2

+ J
CE

R
E

A
1
A

3
 

 
T

Cu
1

= J
CL

RB
3

+ J
CE

R
E

A
1
A

4
 

 
T

Cu
2

= J
CL

RB
4

+ J
CE

R
E

A
1
A

5
 

 
T

Cu
3

= J
CL

RB
5

+ J
Cu

3

+ J
CE

R
E

A
1
A

6
 

 
D

u
1
u

1

= T
i
1
u

1

T [T
i
1
u

1

+T
i
1
u

2

(-T
Cu

2

)-1T
Cu

1

]  

 
D

u
1
i
1

= T
i
1
u

1

T (T
i
1
u

2

T
Cu

2

-1 T
Ci

1

- T
i
1
i
1

)  

 
D

u
1
i
2

= T
i
1
u

1

T (T
i
1
u

2

T
Cu

2

-1 T
Ci

2

- T
i
1
i
2

)  

 
D

u
1
u

3

= T
i
1
u

1

T (T
i
1
u

2

T
Cu

2

-1 T
Cu

3

- T
i
1
u

3

)  

Giving the system independent moving state variable 
vector 

 
X

i
1

 and its derivative 
  

&X
i
1

, the corresponding system 

driving moment (or force) vector 
 
U

1
 and constraint force 

vector 
 
U

2
 can be determined from Eq.(13) or Eq.(14) di-

rectly. 

5. KINETO-STATIC ANALYSIS EXAMPLE 

To check the model and procedure presented here, the 
kineto-static analysis for 3-RRRT manipulator is carried out. 
For chain j (j=1,2,3), the mass of body i (i=1,2,3) is Mji, 
Mj1=1kg, Mj2=0.25kg, Mj3=2kg. The length of body i 
(i=1,2,3) in chain j (j=1,2,3) is presented Lji, Lj1=0.4m, 
Lj2=0.1m, Lj3=0.8m. R=0.4, r=0.1m. The moment of inertia 
matrix is 
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The mass center motion of upper platform are as follow-
ing, 

up
x = 0.05cos(0.5! )t , 0.05sin(0.5! )

up
ty = , 

up
z = 0.8. 

From Fig. (10), vector 
 
X

i
1

, 
   
X

i
2

, 
   
Z

i
1

, 
   
Z

i
2

, Din, Dout, U1, 

U2, U3, V1, V2, V3, Din, Dout, Ein and Eout can be defined. By 
Eq.(4) ~Eq.(7), the matrix 

 
F

i
1

,
 
F

i
2

, R and RE can be obtained. 

Also the coefficient matrices of Eq. (8)~Eq.(12) which are 
called junction structure matrices can be got from Fig. (10). 
In this example, because the motion of upper platform is in a 
plane, so that the corresponding EJS can be eliminated 
shown as Fig. (8). 

Inputting the physical parameters of the manipulator, the 
matrix 

 
F

i
1

, 
 
F

i
2

 ,  R  and junction structure matrices in 

Eq.(8)~Eq.(12), known source vector 
 
U

3
, system independ-

ent moving state variable vector 
 
X

i
1

 , and its derivative 
  

&X
i
1

 

into the program associated with the procedure presented 
here based on MATLAB [13], the system driving moment 
(or force) and constraint force equations in the form of Eq. 
(14) can be derived on a computer, and the corresponding 
driving moment (or force) and constraint forces can be de-
termined. Some of results are shown in (Fig. 12 to 17). 

For this example, the Newton-Euler method [1] was used 
to determine the corresponding driving moment (or force) 
and constraint forces, the results are in good agreement with 
that obtained by the procedure in this paper. However, this 
process is very labor-intensive and tedious. 

 
Fig. (11). The basic field and junction structure of system. 
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Fig. (12). The driving moment of chain A-a. 

 
Fig. (13). The driving moment of chain B-b. 

 
Fig. (14). The driving moment of chain C-c. 
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Fig. (15). Resultant constraint force between upper platform and body 3 in chain A-a. 

 
Fig. (16). Resultant constraint force between base platform and body 1 in chain A-a. 

 
Fig. (17). Resultant constraint force between body 2 and body 3 in chain A-a. 
 

From the descriptions above, the method presented here is 
suitable for both open loop robot mechanism and closed loop 
robot mechanism. Besides this, the method is not required 

mechanism acceleration analysis at all. Thus the reliability and 
efficiency of the kineto-static analysis of complex robot sys-
tems can be improved by the procedure presented here. 
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6. CONCLUSIONS 

The vector bond graph procedure presented here is very 
suitable for dealing with computer aided kineto-static analy-
sis of complex robot systems with the coupling of multi-
energy domains. Compared with traditional scalar bond 
graph method, this vector bond graph procedure is more 
suitable for complex spatial robot mechanism because of its 
more compact and concise representation manner. The dif-
ferential causalities in the vector bond graph model of spatial 
robot mechanisms can be avoided by the bond graph aug-
ment method proposed here, thus the algebraic difficulties in 
system automatic modeling and kineto-static analysis can be 
overcome. In the case of considering EJS, the unified formu-
lae of system driving moment and constraint force equations 
are derived, which are easily derived on a computer in a 
complete form. Besides these, the procedure is suitable for 
both open loop robot mechanism and closed loop robot 
mechanism and not required mechanism acceleration analy-
sis at all. These lead to a more efficient and practical auto-
mated procedure for kineto-static analysis of complex robot 
systems over a multi-energy domains in a unified manner. 
The validity of the procedure is illustrated by successful ap-
plication to the kineto-static analysis of 3-RRRT manipulator. 
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