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Abstract: Wind power prediction is one of the most significant technologies to promote the capability of the whole 

power system that takes in wind electricity. A combined model for wind power forecasting is presented to decrease the in-

fluence of reconstructed parameters by chaotic time series analysis and the neural networks (NNs) in this work. The com-

bined model respectively makes use of linear weighted model and NNs method to achieve combination of several neural 

networks models through phase space reconstruction after wind power series chaotic characteristics acquisition, which can 

integrate information and reduce prediction error in different embedding dimension, leading to higher forecast accuracy. 

Simulation is performed to the real power time series from Meijia wind farm. The results show that the proposed model is 

more effective than single embedding dimension model and linear weighted combination model, and the prediction error 

of neural network combination is less than 7%. 

Keywords: Chaotic time series analysis, embedding dimension, neural network combination, phase space reconstruction, wind 
power prediction. 

1. INTRODUCTION 

Wind resource has been paid more and more attention 
around the world because of global energy shortage and se-
rious pollution. The power of wind possesses excellent char-
acteristics such as sustainability, limitlessness, and clean-
ness. Wind energy has been competing with conventional 
fossil fuel source by operating successfully large size wind 
turbines. Nevertheless, Wind energy production is uncertain 
due to its intermittence and randomness. The overmuch in-
crement of wind power connected capability can make pow-
er supply system unstable, and will lead to larger spinning 
reserve capacity that enhances the whole operation cost. 
Therefore, short-term and middle-term wind power predic-
tion for electricity power schedule and operation of wind 
turbines [1, 2], should be done to promote the competiveness 
with other energy forms in a wholesale electricity market [3]. 

The current methods of short-term wind power prediction 
are classified three catalogues in [4, 5] which are physical 
method, statistical method and intelligent learning. Physical 
method needs a large number of history data, but effective 
digital weather prediction data and the physical information 
around the farm must be available. Statistical method [6] is 
simple relatively, using uniform data, nevertheless, it can’t 
deal with emergency information well. Intelligent learning 
may modify prediction model online in consistent with the 
wind farm position. Although intelligent learning model has 
been improved greatly in comparison with former ones, it is 
still hard to decide the network structure. Wind power  
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forecasting based on time series was presented with error 

32% [7]. The error of RBF neural network prediction [8] was 

15.9%. Numeric weather prediction (NWP) information was 

explored to forecast wind power with error 6.5% only, but 

there is not special NWP prediction model at home as yet, so 

weather data from abroad bring about extra cost.  

Chaos theory opens up a new way for wind power pre-

diction. History power can be reconstructed in phase space to 

resume the original dynamic system, based on embedding 

theorem proposed by Takens [9], which reduce blindness of 

network input numbers selected. Determination of embed-

ding dimension and delay time is the foundation of phase 

space reconstruction. System with different embedding di-

mension can be reconstructed in different phase space, so 

different prediction results will be obtained. Combined pre-

diction is presented in this work, utilizing comprehensively 

the information from system with different embedding di-

mensions, and reducing the probability of large prediction 

error with single model. Experimental results demonstrate 

that the approach proposed in this paper has better accuracy 

for short-term wind power prediction than linear weighted 

combination and single embedding model. Simultaneously, it 

can instruct the selection of neural network structure. 

The work consists of five sections. The estimation calcu-

lation of delay time and embedding dimension is performed 

to extract the wind power chaotic features in section 2. Sec-

tion 3 discusses the establishment of prediction models, in-

cluding linear combination prediction and neural network 

combination prediction based on phase space reconstruction. 

Section 4 uses an actual case to compare the proposed ap-

proach with single neural network prediction . Concludes are 

made for this paper in section 5. 
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2. PHASE SPACE RECONSTRUCTION ON CHAOS 
THEORY 

As for a chaotic system, the phase space can be used to 

reconstruct a univariate time series, because all the variable 

information in this dynamic system may be contained in the 

univariate time series [9]. The fundamental of phase space 

reconstruction is Taken’s delay embedding theorem, which 

is described that if appropriate delay time and embedding 

dimension m are selected, where   m > 2 * d + 1  is satisfied 

generally, the geometry characteristics of original chaotic 

dynamic system is equivalent with that of m dimension re-

constructed state space, and they have the same topological 

structure. Taken’s delay embedding theorem lays the theoret-

ic foundation for chaotic time series prediction. The Lya-

punov exponent is another important parameter for time se-

ries which recognizes its chaotic characteristics.  

For chaotic time series x
1
,x

2
, ,x

n 1
,x

n
, phase space can 

be expressed as follows: 

   
Y

m
(k) = [x(k),x(k + ), ,x(k + (m 1) )]  

   k = 1,2, , N , 

  
N = n (m 1)  (1) 

Where  m and are embedding dimension and delay con-
stant respectively. 

For phase space reconstruction, embedding dimension 
and delay constant selection is very significant and difficult. 
The appropriate parameters and m  will affect the quality 
of phase space reconstruction directly, and come to influence 
the prediction accuracy.  

2.1. Calculation of Delay Time   

Mutual information method [10] is an effective approach 
to estimate delay constant in the reconstructed phase space, 
used widely.  

To introduce mutual information method briefly, chaotic 
time series

   
x

1
,x
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, ,x
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,x

n
will be rewritten as the following 

evolution vectors: 

  
(x, y) = (x(k), x(k + )), t = 1,...,n  (2)  

Mutual information
  
Ixy ( )  is defined in formula (3). 

  
Ixy ( ) = H (x) + H ( y) H (x, y)  (3) 

Where 

  

H (x) = Px (x) log[Px (x)] ,

H ( y) = Py ( y) log[Py ( y)] ,

H (x, y) = Pxy (x, y) log[Pxy (x, y)]

 (4)  

Where 
  
H ( )  is the entropy function which is dependent 

on Px (x) , Py ( y) and Pxy (x, y) , probability density distribu-

tion of x , y and joint probability density distribution of x

and y respectively. The value of Ixy ( ) reflects the correla-

tion strength between x and y . The smaller Ixy ( ) is, the 

weaker the correlation between x and y is. Too weak corre-

lation between x and y may lead to uncertain system dy-

namics, so delay time can’t be too large. The best choice 

of  should be the one that brings the first minimum

Ixy ( ).  

2.2. Estimation the Embedding Dimension  

Correlation dimension method [11, 12] is adopted to 
reckon the embedding dimension of a given time series. The 
correlation dimension rely on the correlation integral defined 
as follows: 

  

C(r) =
1

M
2

i, j=1

M

(r r
ij
),r

ij
= x(i) y( j)  (5) 

Where 
 

( )  is the Heaviside step function: 

  

(x) =
0,x 0,

1,x > 0.
 (6) 

Evidently, the correlation integral
  
C(r)  is determined by 

the size of r. When r is larger than 
ij
r ,

  
C(r) = 1 ; When r is 

smaller than 
ij
r , 

  
C(r) = 0 . However, none of the above cas-

es can exhibit all inner properties of the dynamic system, so 

it is important to choose an appropriate r according to differ-

ent parameters. When   r 0 , the relation between the corre-

lation integral 
  
C(r) and r should be

  
lim
r 0

C(r) r
d

, then an 

appropriate r is decided. The correlation dimension d is 

given by  

  

d =
log(C(r))

log(r)
 (7)  

Therefore, the embedding dimension m can be computed 

from 
  
m = int(2* d +1) as discussed above. 

2.3. Computation the Largest Lyapunov Exponent  

The Lyapunov spectrum analysis is illustrated to calcu-
late the largest Lyapunov exponent in this section [13], 
which is presented on the fact that the motion orbit of chaot-
ic system is hypersensitive to its initial status. The difference 
between two adjacent orbits exponentially enlarges with time 
transition, which can be quantized by the Lyapunov expo-
nent. In the process of chaotic characteristics analysis for 
wind power time series, the whole Lyapunov exponent spec-
trum is not required, and if only the largest Lyapunov expo-
nent is positive, the time series is identified as a chaotic sys-
tem. To calculate the largest Lyapunov exponent, an algo-
rithm is presented by Wolf and others [14], based on the 
movement of phase trajectory, phase plane and phase vol-
ume. As mentioned above, a reconstructed time series with 
embedding dimension m and delay constant can be ex-
pressed as follows: 

  
p(t) = [x(t),x(t + ),...,x(t + (m 1) )]T  (8)  

Where   t = 1,2,..., M .  
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Set initial time t0, terminal time tM. And 

  
M = N (m 1) ,  N is the terminal point of the time series. 

Give the initial point of reconstructed time series 
  
p(t

0
) , and 

suppose the nearest neighboring point of 
  
p(t

0
)  is

   
p

0
(t

0
) , 

the distance between 
  
p(t

0
) and

  
p

0
(t

0
)  is denoted as

0
L . 

Track the time evolution of these two points forward to 
i

t . 

Once the distance becomes bigger than the predetermined 

threshold  
( > 0) , that is L

0
= p(t

1
) p(t

0
) > , then retain

  
p(t

1
) , and search the nearest neighbor 

  
p

1
(t

1
) of 

  
p(t

1
) which 

satisfies L
1
= p(t

1
) p

1
(t

1
) < . The steps mentioned above 

should be iterated until 
  
p(t) reaches terminal point N , 

shown as Fig. (1). The number of iterations would be 

0M
t t . And finally, we can get the largest Lyapunov expo-

nent as follows:  
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1
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M
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0
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L

i
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Where, L
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= p(t

i
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p

i
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i
)  

is a point in neighborhood with radius  r =  of 
  
p(t

i
)  at 

the time 
i

t . 

 

2.4. Characteristic Analysis of Wind Power Time Series 
in the Real World 

In Meijia wind farm, generation power is sampled at  
30 min intervals at a 3.0 MW wind turbine(randomly cho-
sen) in a duration of two months. For the chosen wind tur-
bine, the cut-in speed is 3 m/s, the rated speed is 15 m/s, and 
the cut-out speed is 22 m/s. In the sight of turbine operations, 
wind speed in the range [3 m/s, 15 m/s] is of interest to in-
dustry. As a result, the data with a wind speed out of range 
[3 m/s, 15 m/s] have been eliminated from analysis in this 
paper. Sample points with a negative power output is not in 
the scope of this article. 2/3 of all data is used to build mod-
els, and the leavings is explored to test and validate models. 

The delay time and embedding dimension are calculated 
respectively through the approaches mentioned above, which 
are shown in Fig. (2) and Fig. (3). 

From Fig. (2), we can see that mutual information func-

tion get its minimum first, when  = 6 , so the value of delay 

time is 12. Fig. (3) shows the slope of 
  
ln(C(r)) versus 

  
ln(r) when  m is varying from 2 to 15. As displayed in  

Fig. (3), the curves are close to straight lines when r chang-

es in the range [0.1, 0.2] and  m in [2, 15], and their slop is 

approximately equal to each other. Thus the correlation di-

mension  d can be evaluated by averaging the slopes of these 

14 curves, consequently d = 3.51 . From m = int(2*d +1) , 

we can obtain
  
m= 8 . After and  m being evaluated, the 

largest Lyapunov exponent can be estimated, and the result 

 

Fig. (1). Calculation of Lyapunov exponent of a time series. 

 

Fig. (2). The curve of mutual information function. 
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is a positive number 0.2548, which verfy that wind power 

time series is a chaotic system. 

3. ESTABLISHMENT OF PREDICTION MODEL 

3.1. Single Neural Network Prediction Model Based 
Phase Space Reconstruction 

Suppose that
   
x(k)(k=1,2, ,n) is a sampled time series, 

which has the status transfer formals in phase space as fol-
lows: 

  
Y

m
(k+1)=f (Y

m
(k))  (10) 

According formula (1), formula (11) is followed through 
extending formula (10) as: 

   
[x(k+1), ,x(k+1+(m-1) ]=f ([x(k), ,x(k+(m-1) ])

 
(11) 

Where the last component 
  
x(t+1+(m-1) ) is unknown, 

then formula (12) can be rewritten as: 

   
x(k+1+(m-1) )=F(x(k), ,x(k+(m-1) ))

 
(12)  

Where 
  
F( ) is a real function from m dimension to 1 dimen-

sion. For wind power generation system, 
  
F( ) is a nonlinear 

function, expressed hardly, so nonlinear mapping capability 

is explored to solve it. Simultaneously, m components of 

phase points in embedding space should be chosen neural 

network inputs, which can avoid selection randomness of 

input units and information missing [15]. 

3.2. Combined Prediction of Wind Power  

Combination prediction method [16] is built on maximi-
zation of information utilization, and optimize to combine 
information from multiple models. It synthesizes the merits 
of different models, and promotes prediction accuracy obvi-
ously. Because embedding dimension can be calculated by 
various approaches, and affected by human factors, different 
embedding dimensions would be obtained. Therefore, time 

series may be reconstructed to different phase space, which 
leads to difference among prediction results. In order to im-
prove stability and accuracy of prediction model, combined 
prediction based multi-dimension embedding phase space is 
utilized to forecast wind power. 

1) Linear combination prediction 

Assume 
   
x(t)(t=1,2, ,n) is real value at t moment, pre-

diction values under different embedding dimensions are 

   
x̂

1
(t),x̂

2
(t), ,x̂

p
(t) respectively, linear combination predic-

tion result will follow as: 

x̂(t)=a
1
x̂

1
(t)+a

2
x̂

2
(t)+ +a

p
x̂

p
(t)

 
(13) 

Where 
   
A=(a

1
,a

2
, ,a

p
)T

is weight coefficient vector, and 
satisfied with: 

   
a

1
+a

2
+ +a

p
=1

 
(14) 

When embedding dimension is i , model prediction error 
at t moment is defined as: 

   
e

it
=x(t)-x̂

i
(t), i=1,2, ,p t=1,2, ,n  (15) 

Relevant prediction error information matrix is: 

  
E = [(e

it
)

p n
][(e

it
(t)]T

 (16) 

Then error square sum of linear combination prediction 
can be deduced as formula (18): 

J = [x(t) x̂(t)]2
= ( a

i
e

it
)2

= A
T
EA

i=1

p

t=1

n

t=1

n

 

(17)  

The minimization of error square sum is chosen as objec-
tive function. weight coefficient vector A can be decided 
through solving the following optimization problem. 

min J = AT
EA

s.t. R
T A = 1,R = (1,1, 1)T

 

(18) 

 

Fig. (3). The slop of
  
ln(C(r))  versus 

  
ln(r)  with different m  gives the correlation dimension d of the wind speed time series. 
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Namely, the optimal solutions of second order program-
ming model are the best weights of linear combination pre-
diction model. 

2) Combination prediction based neural network 

Linear combination prediction mentioned above is called 

fixed weight combination prediction method, where weights 

are unchanged with the varied environment, so prediction 

accuracy will be affected. If formula (19) is satisfied by
  
x̂(t) , 

and 
 

( ) is a nonlinear function, then this combination pre-

diction is named nonlinear combination prediction, where 

weights are variable.  

   
x̂(t) = ( x̂

1
(t), x̂

2
(t), , x̂

p
(t))  (19)  

Explicitly, nonlinear combination prediction can reflect 
the nonlinearity of system, then it is more reasonable than 
fixed weight combination prediction. 

In recent years, it is a great breakthrough to apply neural 

network to combination prediction [17]. In this paper, three 

layer BPNN is designed, whose inputs are prediction values 

from models with different embedding dimensions, trained 

continually through gradient descent method to modify 

weights, finally, nonlinear function 
 

( ) is established  

between inputs and outputs. 

4. ACTUAL WIND POWER PREDICTION 

From Meijia wind farm case in 2.4 section, delay time 

 = 6 , and embedding dimension 
  
m=8 , therefore, three 

neural network prediction models based phase space recon-

struction are established with m = 7, 8 and 9 in this paper, 

respectively, which are surrounding embedding dimension. 

For neural network models, the inputs are actual data at 

some phase point, that is 
  
{x(i),x(i+ ),x(i+2 ),

   
,x(i+(m-1) )}, and outputs are prediction values at next 

interval. For the computation resolution and convenience, 
the data is normalized to the range [0, 1] firstly. Length lim-

ited, only 200 prediction results with 
  
m=8  are show in  

Fig. (4). 

In order to improve wind power prediction accuracy and 

model stability, linear combination and neural network are 

utilized to assemble results from three models built above. 

Quadratic programming function quadprog in Matlab opti-

mization toolbox is used to solve the model as formula (18), 

and linear weight coefficients are achieved as 0.0128, 0.7806 

and 0.2065, respectively. The prediction results with linear 

combination are shown in Fig. (5). The prediction results 

with three different dimensions are considered as inputs of 

forward neural network, and prediction power as outputs, 

and weights of various prediction approaches for combina-

tion model are acquired with self-learning. The architecture 

of neural network combination is determined as 3-8-1 by 

trial and error. The prediction results with neural network 

combination are shown in Fig. (6). Because there is a direct 

relationship between prediction error and capability of wind 

turbine generator, absolute average error should be normal-

ized to evaluate prediction performance. Table 1 gives out 

prediction error of various models. 

From Fig. (4-6) and Table 1, we can conclude 1) all 
models track actual wind power change, especially neural 
network prediction results coincide with actual values best; 
2) prediction error is the smallest when embedding dimen-
sion is 8, so its prediction result has the largest weight  
in linear combination model; 3) the prediction performance of 

  

 

Fig. (4). Prediction values and actual values with m = 8. 



122    The Open Automation and Control Systems Journal, 2014, Volume 6 Qiang and Yang 

 

 

Fig. (5). The curves of linear combination prediction and error. 

 

Fig. (6). The curves of Neural network combination prediction and error. 

 

combination prediction with multi-dimension embedding 
phase space is better than neural network model with single 
phase space reconstruction; 4) embedding dimension, name-
ly, the input number for neural network has great impact on 
the prediction accuracy; 5) compared with linear combina-
tion, neural network combination prediction has higher accu-
racy; 6) among all models, the error of neural network com-
bination prediction is the smallest, and its absolute average 
error is 6.70%. 

 

CONCLUSION 

Chaotic system may contain different information after 
the reconstruction using different embedding dimensions. In 
order to improve the system stability and prediction accura-
cy, and decrease the prediction deviation with different  
embedding dimensions, combined prediction model embed-
ding multi-dimension is built in this paper based on chaotic 
time series analysis. Weighted linear combined prediction is  
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simple relatively, however, it can’t show the nonlinearity of 
wind power system precisely, which affects the prediction 
accuracy. Whereas, neural network nonlinear combination 
forecasting is able to reveal the nonlinearity of wind power 
system better, whose combination functions can be solved 
easy, so it is fitful to forecast for chaotic systems.  

In the aspect of time horizon, the proposed combination 
model benefits very short-term wind power prediction for 
power system operation and control, because it doesn’t relate 
with numeric weather prediction information, and can trace 
with wind power rapidly. 
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Table 1. Comparison of prediction error with various models. 

Prediction Model  Absolute Average Error %  

m = 7 7.11 

m = 8 6.90 

m = 9 6.92 

Linear combination 6.86 

Neural network combination 6.70 


