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Abstract: A mobile robot must be capable of localizing itself in unknown environments and constructing a map of the 
environments at the same time. Simultaneous localization and mapping (SLAM) is a challenging problem in indoor envi-
ronments because GPS information isn’t available. An algorithm is proposed in this paper for SLAM with vision sensors, 
which is designed by utilizing the artificial landmark MR code and integrating the FastSLAM algorithm, the method can 
decrease the time cost compared with particle filter and improve the accuracy of localization and mapping compared with 
natural landmarks. Experiments show the effectiveness and robustness of this algorithm. 
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1. INTRODUCTION  

The problem of the Simultaneous localization and map-
ping ,which is also called as SLAM, is to build a environ-
ment map from a sequence of measured landmarks. it has 
been considered as a key prerequisite for truly autonomous 
robots[1,2]. in indoor environment, SLAM problem is more 
difficult to resolve because no GPS information is available. 
The dominant approach to this problem was introduced by 
Smith, Self, and Cheeseman [1], Which proposed the method 
using extended Kalman filter (EKF) for the estimation of the 
posterior distribution along with the positions of the land-
marks. the method has gained widespread acceptance con-
sidering that the natural conditional independences of the 
SLAM problem [2, 3], FastSLAM [4] decomposes the prob-
lem into a localization problem and a set of landmark estima-
tion problems, which is more effective compared with the 
other existing filter [5, 6]. While the data association is the 
key problem in FastSLAM because the natural landmark is 
difficult to be detected robustly [7, 8]. Compared with natu-
ral landmark, artificial landmark can be easier to be detected 
and recognized. in this paper ,we choose the artificial land-
mark MR code [9]as the key feature in FastSLAM imple-
mentation. the method can resolve the landmark obscure in 
FaslSLAM, so the accuracy of the localization and mapping 
has been improved greatly. 

The paper is organized as follows. In section 2, we ana-
lysed the principle and the effectiveness of the artificial 
landmark MR code. in section 3, the integration of the land-
mark and FastSLAM is analysed. in section 4, the robot mo-
tion model and the landmark detection model are discussed 
for robot localization and mapping. Finally, the algorithm is  
 

 

verified in various experiments in section 5 and the conclu-
sions are given in the last section. 

2. THE ARTIFICIAL LANDMARK MR CODE 

Some characters should be met in the design of an effi-
cient landmark, which are detection, recognition and locali-
zation [10-12]. 

Considering that MR code has the ability to present dis-
tinct information and error correcting, we choose MR code 
as our artificial landmark. A prototype of MR code, which 
includes 8x8 units, is presented in Fig. (1). The MR code has 
some effective characteristics. Utilizing the computation of 
the cross ratio, the landmark pattern can keep invariant under 
different angles and illumination; the unit modules that con-
tain the binary information encoded by binary BCH code, so 
MR code can provide amount of information and be recog-
nized from the different environment robustly.  

The MR landmark detection and recognition is imple-
mented by four steps, which is shown briefly as follows.  

1. Lines extraction. Edges are extracted by using the can-
ny edge detector for the projective invariants calculation.  

2. Invariants calculation. After the lines have been de-
tected by the canny detector, the pairs of cross ratio invari-
ants could be computed based on the landmark contour. 

3. homography matrix Determination: Since the contour 
of the landmark is confirmed and the coordinates of the MR 
vertexes are determined. The homography matrix can be 
calculated based on the correspondences. 

4. Code Reading and decoding. Utilizing the determined 
homography matrix, when a new image comes, which must 
have the same size as the MR code? the new image could be 
mapped to the MR code accurately based on the homography 
matrix, so the binary information included in MR code can 
be gained by matching the unit modules.  
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3. THE PROCESS OF SLAM INTEGRATING 
FASTSLAM AND ARTIFICIAL LANDMARKS 

The Artificial landmark MR code has the accurate point 
correspondences, which is the key problem in FastSLAM 
implementation. this section is assumed that the point corre-
spondences between MR code have been obtained, and then 
the FastSLAM analysis based on this is as follows. 

The path estimation is implemented in The FastSLAM 
algorithm by using a modified particle filter [4], the filter 
could sample from the space efficiently and provides a good 
approximation of the posterior. pose estimation of the land-
mark are realized by Kalman filters, which uses distinct fil-
ters for different landmarks. Because the estimates of the 
landmark are relied on the estimation of the path, each parti-
cle has its distinct landmark estimates. so, for N particles and 
K landmarks, there would be KN Kalman filters. 

 So any particle in FastSLAM can be expressed as fol-
lows: 

[ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ]
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Σ  are used to represent the average and the variance of 

the N-th landmark path. The set of the m-th particle at time t 
is noted as [ ]m

tS 。filter is to cumpute the posteriori at time t 
from the previous time   t !1 . This is similiar to FastSLAM, 
which is to obtain the current state estimates 

tS  frome the 
previous state 

1tS −
. this can be shown as Fig. (2): 

The algorithm includes three important steps, this is de-
scribed as follows: 

1．the state estimation and update 

In the particle set
tS , each particle includes的每个粒子

N  EKF filters, the position of the n-th landmark at time t is 
obtained from time t-1 based on bayes formula, this is ex-
pressed as follows: 

 

 

Fig. (1). A prototype of MR code. 
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Fig. (2). The filter structure of FastSLAM, a total of  M  particles in filter and each particle owns distinct  N  EKF filters. 
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3．the importance weight computation 

The particles sampled from the motion model is comput-
ed as 

  
p(st | zt!1 ,ut ,nt!1) , while the set of these particles is not 

according to the expected posterior 
  
p(st | zt ,ut ,nt ) , which is 

needed to modify. This process is called importance weight 
modification and this has been show as Fig. (6). Which 
means that particles is sample more in dense area. 

The formula of the importance weight is as follows, be-
cause the importance weight is the ration of the suggestion 
distribution and the posterior distribution, so we can get: 

  

w
t

[m]
=

target  distribution

proposal distribution

=
p(st ,[m] | zt ,ut ,nt )

p(st ,[m] | zt!1 ,ut ,nt!1)
 

(4) 

According to the bayes formula:  
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in the last formula, Neglecting the irrelevant terms refer to 
the newest detection tz , the formula can be simplified as: 
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Because the landmark is estimated based on t EKF, so the 
expectation of [ ] 1( )t , m t t t
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ance is n,tZ ，the importance weight of the m -th particle at 
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Based on the distribution of the particle importance 
weight, we can deduced the localization of the robot and get 
the map simultaneously because each particle records rele-
vant information. 

In summary, the complete description of our method can 
be described as Table 1. 

 
Table 1 The flow of the algorithm. 
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Table 1. contd… 

to choose the  m -th from set
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Fig. (3). The importance weight description: the dotted line in (a) represents suggestion distribution and the solid line represents actual dis-
tribution; (b) shows the sample from suggestion distribution while (c) shows the distribution of the sample after modification. 



A New Method For Indoor SLAM Based On Artificial Landmark The Open Automation and Control Systems Journal, 2014, Volume 6    1215 

  
{s

t!1

[m]
,N

t!1

[m]
,u

1,t!1

[m]
,"

1,t!1

[m]
,......,u

N
t

[m]
,t!1

[m]
,"

N
t

[m]
,t!1

[m] } ; 

to predict the pose of the current particle based on 

   
s

t

[m]
! p(s

t
| s

t!1

[m] ,u
t
) ; 

◆FOR   n = 1 To 
  
N

t!1

[m]  //a total of [ ]m
tN characters 

  
G

! ,n
= "

!
n

g(!
n
,s

t
) |
!

n
=u

n ,t#1
[i ] ;s

t
=s

t
[i ] ； 

//measurement prediction 

[ ] [ ]
1( )m m
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4. THE ROBOT MOTION MODEL AND DETECTION 
MODEL 

To solve SLAM problem, the robot should set up the mo-
tion model and the measurement model. The principle has 
been shown if Fig. (3). When the robot moves, the distance 
that it has moved should be estimated, and the position of the 
landmark should be calculated simultaneously, so an effec-
tive motion model is necessary as well as measurement  
 
model. In Fig. (3), The yellow triangle is the estimated posi-
tion of the robot and the white triangle is the its real position. 
The robot updates the estimated position when the new 

 

Fig. (4). SLAM problem description. 
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landmark was found. While the position of the measured 
landmark is not accurate absolutely, an appropriate motion 
model and measurement model would be set which are de-
scribed as follows. 

To analyze the robot localization and mapping error, the 
robots moving model must be set up firstly. Because the ro-
bot that we used in this paper is a wheel robot, the model can 
be set as Fig. (4), among which SL is the distance that the 
left wheel moves and SR is the distance that the right wheel 
moves. θΔ  is the wheel axis rotation angle and !  repre-
sents the intersection angle shown if Fig. (5).  

Then the robot pose change between the current one and 
the last one can be estimated, among which ( , , )i i i iX x y θ  is 
the current robot pose and 

1 1 1 1( , , )i i i iX x y θ− − − −
 is the last one. 

so the relation between the robot rotation angle and the dis-
tance that the robot moves can be calculated as equation 8. 
The arc length, which is the distance the robot centre has 
moved, can be represented as equation 9, and And D can be 
calculated as equation 10: 

( ) /L RS S LθΔ = −  (8) 

( ) / 2L RS S S= +  (9) 

/ 2 / sin( / 2)D S θ θ= Δ × Δ  (10) 

Considering that the distance between SL and SR is very 
short, so we can get an assumption that: 

 !" = 0  (11) 

  

!x = S " cos#

!y = S " sin#
  (12) 

the current pose update can be described as the equation 
13, Considering the noise, the formula of the pose can be  
 

changed as equation 14, Among which 
  
W

i!1
is the ordinarily 

assumed gauss noise and its average and variance are de-
scribed as equation 15: 
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Covariance could be described as a diagonal matrix, and 
the diagonal entries are equation 16: 

  

Q
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x
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y
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  (16) 

Among which Kx and Ky are the robot drift coefficients 
along the axis X and the axis Y, similarly, 

 
K

S!  and 
 
K

!!
 are 

the robot drift coefficients of angles. The values of the coef-
ficients can represent the error.  

The measurement model can be described as Fig. (6) 
shows, the measurement of the i-th landmark can be de-
scribed as equation 17, so the measurement model can be 
deduced as equation 18: 
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In equation 18, the measurement noise can be ordinarily 
assumed as gauss noise, among which the average is as-
sumed to zero and covariance matrix is assumed as diagonal 
matrix. 

 

Fig. (5). The moving model of robot wheels. 
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5. EXPERIMENTS AND ANALYSIS 

Some various experiments have been implemented with a 
vision system is mounted on the center of the robot fixedly 
connected with PC, which is equipped with an INTEL- i5-
3570S CPU and a RAM of 1G. for the accuracy of the local-
ization and mapping, the camera should be precisely cali-
brated beforehand.  

We implement the calibration using the zhang method 
and the result is shown as Table 2 and Table 3. Among 
which Table 2 shows. The inner calibration parameter and 
Table 3 shows the center and the focus of camera.  

Table 4 gives some results of the landmark detection er-
ror between the real position and the estimated. The data 
shows that within distance about 150cm the error is below  
 
10cm and the error grows acutely in the distance about 
400cm.the error can be decreased with the FastSLAM algo-
rithm. 

 Integrating the FastSLAM and MR code, the error of lo-
calization and mapping is decreased quickly, we implement a 

statistic as Table 5 shows, the average error has been de-
creased from 8.5cm to 3.2cm at the average distance about 
150mm. 

CONCLUSION AND FUTURE WORK 

FastSLAM algorithm is an efficient solution to SLAM 
problem, which utilizes a Rao-Blackwellized representation 
for the posterior and integrates particle filter and Kalman 
filter representations. Artificial landmark MR code can pro-
vide more accurate feature compared with natural landmark. 
In this paper, the integration of the two methods was pre-
sented and the experiments show its effectiveness. 

Future work would seek more accurate artificial land-
mark or natural landmark. 
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Fig. (6). The robot measurement model. 

 

Table 2. The inner parameter of calibration (mm). 

Inner  

Parameter 

kx ky 

Result Variants Result Variants 

camera 568.27 2.44 566.21 2.76 

 
Table 3. The center of the camera (mm). 

u0 v0 

RESULT VARIANTS Result Variants 

232.12 2.91 177.98 1.98 

Table 4. The error between the landmark position of real and estimated. 

Measurement Value Error 

 X   Y  !   !X   !Y  !"  

212.6 -8.3 0.4 -4.2 8.3 0.4 

-7.7 167.4 78.7 4.8 3.2 0.5 

16.5 -378.8 234.9 -16.4 -19.7 -0.6 

584.5 -24.7 0.4 6.8 20.5 0.5 

41.3 623.9 57.3 -35.5 -1.4 0.6 

-567.9 12.4 178.5 -25.2 -8.9 1.2 

43.7 -580.6 250.8 38.2 24.8 0.5 

Table 5. Error statistic (cm). 

FastSLAM Plus MR Code MR Code 

Average Distance Average Distance 

3.2 150 8.5 150 

WO

WY

WX

XR

YR

iθ
( , )r rx y

( , )i i im x y

rθ

|i sθ

iθ
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