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Abstract: The H∞ filtering problem for a class of discrete stochastic neural networks systems with time-varying delay and 
nonlinear sensor is investigated. By employing the Lyapunov stability theory and linear matrix inequality optimization 
approach, sufficient conditions to guarantee the filtering error systems asymptotically stable are provided. By setting on 
the lower and upper bounds of the discrete time-varying delays, an acceptable state-space realization of the H∞ and an 
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1. INTRODUCTION 

Filtering problem has long been an hot topic due to its 
extensive application in signal processing, communication 
and control systems, many important research results have 
been reported during the past two decades, see [1-6] and the 
references therein. 

The aim of H∞ filtering is to design a stable estimator to 
ensure that the L2 / l2 -induced gain from the noise signals is 
less than a prescribed level. Because the H∞ method can 
minimize the H∞ norm of the transfer function between the 
noise and the estimation error, which has an advantage in 
dealing with external unknown noises, so the H∞ filtering 
technology has been applied in diverse systems such as 
networked systems [7, 8], fuzzy systems [9-13], Markovian 
delay systems [14], singular systems [15] and discrete-time 
systems [2, 3, 6, 15]. 

As time delay is a natural phenomenon frequently 
encountered in various dynamic systems such as electronic, 
chemical systems, long transmission lines in pneumatic 
systems, biological systems, economic and rolling mill 
systems, which is very often the main sources of instability, 
oscillation and poor performance. So far, the stability 
analysis and robust control for dynamic systems with 
different time-delays such as independent-delay, dependent-
delay, distributed-delay and discrete delay have attracted a 
number of researchers over the past years, many important 
results have been reported, see [16-18] and the references 
therein. 

 

In addition, since systems in the real world are always 
perturbed by stochastic noises, the research on H∞ filtering 
of stochastic systems with time-delay or without has made 
much progress and various significant results have been 
obtained [19-25]. At the same time, it should be pointed out 
that the discussion about the filter research above, most of 
the existing results on filtering require critical assumption on 
the linearity of sensors. Meanwhile, in the practical 
application, nonlinearity is present in almost all real sensors 
in one form or another, which often influences the 
performance of the filters, so many researchers devote to the 
filtering problem for systems in the presence of sensor 
nonlinearities [26-30]. 

By using the Lyapunov stability theory and linear matrix 
inequality method, the robust H∞ filtering problem for a 
class of nonlinear discrete stochastic time-delay systems are 
concerned with [24-26]. By virtue of some matrix inequality 
technique, the filtering problems for stochastic time-varying 
delay systems with sensor nonlinearities are considered in 
[27-30], in which the sensor nonlinearities are assumed to be 
bounded by Lipschitz or sector conditions, the designed 
filtering and the acceptable H∞  performance level are 
obtained in terms of linear matrix inequality (LMI). What is 
more, due to the nonlinearity character of saturation, more 
and more scholars begin to study the senor saturation of H∞ 
filtering, see [31, 32] and the references therein. Recently, by 
decomposing the nonlinear function into a linear and a 
nonlinear part, the asynchronous l2 / l∞ filtering for discrete-
time stochastic Markov jump systems with sensor 
nonlinearities is studied in [33], in which the sensor 
nonlinearities are assumed to occur obeying Bernoulli 
distribution, the designed full-order filter is obtained by 
linear matrix inequality. 
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On the other hand, during the past several decades, 
various kinds of neural networks have received much 
attention due to their successful applications in signal 
processing, pattern classification, solving optimization 
problems and model identification. A lot of research results 
about the stability analysis, synchronization , state estimation 
and H∞ filter design problems for continuous or discrete 
neural networks with time delay have been reported [34-40]. 

However, so far, the H∞ filtering problem for nonlinear 
discrete time -delay stochastic neural networks systems with 
nonlinear sensor has not been fully investigated, especially 
for discrete-time cases, which motivates us to shorten such a 
gap in the present investigation. The major difficulties and 
challenges are how to consider the effect of stochastic noise 
and the nonlinearity of sensors. In our study, we assume the 
stochastic noise obeys to brown motion, namely, stochastic 
noise is chosen from a normal disturbance with mean zero 
and variance one. When dealing with the nonlinear sensors, 
by some technique, the nonlinear sensors are treated as linear 
sensors, so it is easy to get feed back gain filter. 

Motivated by the above discussion, this paper considers 
the H∞ filtering problem for a class of discrete time-delay 
stochastic neural networks systems involving sensor 
nonlinearities. We aim to design a mode-dependent linear 
filter such that the filtering error system is not only 
stochastically asymptotically stable, but also satisfies a 
prescribed H∞ norm level. A new, simple linear matrix 
inequality (LMI) approach is exploited and the solvability of 
the desired filter is implied by the feasibility of LMI. Finally, 
two numerical examples are provided to show the the 
usefulness and effectiveness of the proposed filter design 
method. 

Notation: Throughout this paper, if not explicit, matrices 
are assumed to have compatible dimensions. The notation 

  
M > (!,<,")0  means that the symmetric matrix M is 

positive-definite (positive-semidefinite, negative, negative-
semidefinite). )(⋅minλ  and )(⋅maxλ  denote the minimum and 
the maximum eigenvalue of the corresponding matrix; The 
superscript ``T'' stands for the transpose of a matrix; the 
shorthand diag }{ ⋅⋅⋅  denotes the block diagonal matrix; ⋅  
represents the Euclidean norm for vector or the spectral norm 
of matrices. I  refers to an identity matrix of appropriate 
dimensions. }{⋅E  stands for the mathematical expectation, ∗  
means the symmetric terms. Sometimes, the arguments of a 
function will be omitted in the analysis when no confusion 
can arise. 

2. SYSTEM DESCRIPTION 

 Consider the following neural networks system with 
time-varying interval delay and nonlinear sensor as follows: 

  

x(k +1) = Ax(k)+W
0

f (x(k))+W
1
f (x(k !" (k)))+ D

1
v(k)

+ [E(x(k)+ E
d
x(k !" (k))+ D

2
v(k)]# (k),

y(k) = G(S x(k))+ D
3
v(k),

z(k) = Hx (k),

$

%

&
&

'

&
&

 (1) 

where nT
n kxkxkxkx R∈)](),...,(),([=)( 21  is the state 

vector of neural network, qky R∈)(  is the measurable 

output vector, rkz R∈)(  is the state combination to be 

estimated, The exogenous disturbance signal pkv R∈)(  is 

assumed to belong to )),([0,2
p

eL R∞ , 
  
f (x(k)) = [ f

1
(x

1
(k)),

   
f

2
(x

2
(k)),..., f

n
(x

n
(k))]T

!!
n  denotes the neuron activation 

function. ))(( kSxG  are nonlinear sensor functions, S  is 
positive matrix, )(kτ  represents the transmission time-
varying delay satisfying Mm k τττ ≤≤ )(<0 , and mτ , Mτ  
are known positive integers denoting the minimum and 
maximum delays, respectively. )(kω  is Brown Motion 
defined on the complete probability space )},,( ttFFΩ  , 
which is assumed to satisfy  

).( 0=)}(){({1,=)}({0,=)}({ 2 jijikk ≠ωωωω EEE  (2) 

32110 ,,,,,,,, DSDEEDWWA d and H  are known real 
constant matrices. 

Before proceeding further, we will state the following 
assumptions and well known lemma. 

Lemma 1 [35] For given proper dimensions constant 
matrix 21,ΦΦ  and 3Φ , where 11 =ΦΦT  and 0>= 22 ΦΦT , 

we have 0<3
1
231 ΦΦΦ+Φ −T  such that only and only if  
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⎣
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 Assumption 1. For }{1,2,...,ni∈ , ,,, yxyx ≠∈∀ R  the 
neuron activation function )(⋅if  is continuous, bounded and 
satisfies :  

,
)()( +− ≤

−
−

≤ i
ii

i l
yx
yfxfl  (3) 

where −
il  and +

il  are some contansts. 

Remark 1. Assumption 1 was first introduced in Liu et 
al. )(2006,2007 . The constants +−

ii ll ,  in Assumption 1 are 
allowed to be positive, negative or zero. Hence, the resulting 
activation functions may be non-monotonic, more general 
than the usual sigmoid functions and Lipschitz-type 
conditions. Such a description is very precise/tight in 
quantifying the lower and upper bounds of the activation 
functions, hence very it is helpful for using an LMI-based 
approach to reduce the possible conservatism. 

Assumption 2. The nonlinear sensor functions )( iiG ξ  
are monotonically nondecreasing, bounded and globally 
Lipsichiz. That is to say there exist a pair of positive scalars 
iu  and iλ  such that  
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where iu  is the magnification of the sensor, and iλ  is the 
amplitude of the sensor. 

In this paper, we consider the following discrete-time 
neural networks filter for the estimation of z(k):  

  

x̂(k +1) = Ax̂(k)+W
0

f ( x̂(k))+W
1
f ( x̂(k !" (k)))

+[Ex̂(k)+ E
d
x̂(k !" (k))]# (k)+ K[y(k)!G(Sx̂(k))],

ẑ(k) = Hx̂ (k),

$

%
&&

'
&
&

 (5) 

where nkx R∈)(ˆ , rkz R∈)(ˆ  represent the estimates of )(kx  
and )(kz , respectively, and H  is a constant matrix. 

By defining )(ˆ)(=)( kxkxke −  and utilizing the model 
(1) to include the states of the filter (5), we can get the 
following filtering error systems:  

   

e(k +1) = Ae(k)+W
0
!(k)+W

1
!(k "# (k))+ D

1
v(k)

+[Ee(k)+ E
d
e(k "# (k))+ D

2
v(k)]$ (k)" K% (Se(k))"

KD
3
v(k),

!z(k) = He (k),

&

'

(
(
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(
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 (6) 

where 

   
!z(k) = z(k)! ẑ(k) , 

  
!(k) = f (x(k))" f ( x̂(k)) , 

  
! (Se(k)) =

  
G(Sx(k))!G(Sx̂(k)) , and 

  
!

i
(S

i
e(k))

  
(i = 1,2,..., p)  satisfies 

the following conditions according to (4): 

,
)(
))((

0 i
i

ii u
keS
keS

≤≤
ψ  (7) 

where iS  is the i th row of matrix S . 

Remark 2. Nonlinearity is present in almost all real 
sensors in one form or another when the sensors are used in 
many industrial processes, so the H∞ filtering problem for 
various systems with sensors nonlinearities are considered 
recently, see [27-30] and the references therein. 

The ∞H  filtering problem to be investigated in this 
paper can be formulated as follows. For given discrete-time 
stochastic neural networks systems (1), a prescribed 
performance index 0>γ , and any )1,2,...,=( piGi , design a 
suitable filter in the form of (5) such that the following 
requirements are satisfied: 

(1) The filtering error system (6) with 0=)(tv  is said to 
be asymptotically stable if there exists a scalar 0>c  such 
that  

}|(0){|}|)(|{ 22

0=

ecke
k

EE ≤∑
∞

 (8) 

 

where )(ke  denotes the solution of the system (6) with 
initial state error e(0). 

 (2) For the given disturbance attention and under zero 
initial conditions for all )),([0,)( 2

P
eLkv R∞∈ , the 

performance index γ  satisfies the following inequality:  

  
z(k)

e2
! " z(k)

e2
 (9) 

3. MAIN RESULTS 

3.1. Performance Analysis of ∞H  Filter 

Firstly, we consider system (6) with 0=)(kv , then 
system (6) becomes the following filtering error system:  

   

e(k +1) = Ae(k)+W
0
!(k)+W

1
!(k "# (k))

+ [Ee(k)+ E
d
e(k "# (k))]$ (k)" K% (Se(k)),

!z(k) = He (k),

&

'
((

)
(
(

 (10) 

In the following theorem, a sufficient condition will be 
derived to ensure the error system (10) is asymptotically 
stable. 

Theorem 1.The filtering error system (10) is said to be 
asymptotically stable if there exists symmetric positive 
definite matrices P, R, Q1, Q2, diagonal positive matrices  
S1,S2, 0},...,{= 21 ≥ptttdiagT , 0},...,{= 21 ≥Λ pdiag λλλ  
and a nonzero matrix K  such that the following LMI is 
satisfied:  
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where 
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m
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1
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2
,...u

p
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1
,u

2
,...u

p
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Proof. Introduce the following Lyapunov-Krasovskii 
functional candidate as follows: 
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V (k) =
i=1

5

!V
i
(k),  (12) 

where  

  
V

1
(k) = e

T (k)Pe(k),  (13) 

  

V
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i=k!" (k )

k!1

# e(i)T
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V
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V
5
(k) = 2
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# (S

i
e(k))S

i
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Remark 3. Since 1960s, the Lyapunov second method 
has been a very powerful tool to deal with the stability 
problem of linear time-delay system or control system, 
especially in studying nonlinear systems, such as the stability 
of neural network with time-delay, because it is much easier 
to get the stability conditions by defining a proper 
Lyapunov-Krasovskii functional candidate or Lyapunov 
function. When the nonlinear system are represented by a 
linear system, the stability results can be sassily to expressed 
in terms of linear matrix inequality (LMIs), which can be 
easily solved numerically by using the Matlab LMI control 
toolbox. The solution cab be obtained by various convex 
optimization algorithms. 

 Calculating the difference of 
  
V (k) along the filtering 

error system (10), we can obtain  
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 From condition (7), we can obtain  
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So from (22)-(23), we can get  
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$2% T (Se(k))#Se(k),
 (24) 

Combining (18)-(21) and (24), we obtain that  
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similarly from (7), we have  
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0},...,{= 21 ≥puuudiagU  such that  
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In addition, it can be deduced from assumption 1 that 
there exist two positive diagonal matrices 
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1
 and 
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2
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that the following inequality holds:  
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This means that  

0,)()()()( 11 ≥− kSkkLeLSke TT ϕϕ  (29) 
where L  are constant matrix. 
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By the same way, the following inequality can be 
obtained  

  

e
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By adding the left side of (27) and (29)-(30) into the right 
side (25), we have  
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 By using (2) and taking the mathematical expectation on 
both side of (31), we can get  
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Then from (11), there exists a small scalar 
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thus it follows from (34) that  
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where )(1= Pc maxλ
β

. 

Taking ∞→N , by (8) and (37), we can conclude that 
the filtering error system (10) is asymptotically stable for

  
v(k) = 0 . This complete the proof. 

Next, we will show that for all nonzero 
)),([0,)(

2
p

eLkv R∞∈ , the filtering error systems (10) 

satisfies  

22
)(<)( ee kvkz  γ


 (38) 

Before showing the proof, we define  

}|)(||)(|{=)( 222

1=

kvkzNJ
N

k

γ−∑ E  (39) 

with any integer 0>N . Then for any nonzero
  
v(k) , we have 

the following Theorem 2.  

Theorem 2. Given constants 
 
!

M
 and

 
!

m
, for the discrete 

stochastic neural networks system with nonlinear sensor in 
(1), a filter of form (5), the filter error system (6) is 
asymptotically stable with performance index ! , if there 
exists symmetric positive definite matrices  P ,  R , 

  
Q

1
, 

  
Q

2
, 

diagonal positive matrices 
  
S

1
,S

2
,  0},...,{= 21 ≥ptttdiagT  , 

  
! = diag{"

1
,"

2
,..."

p
}# 0 and a nonzero matrix K  such that the 

following LMI holds  
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where 
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Proof. By taking the same method as Theorem 1 and 
using the result of Theorem 1, we have  

)},()({=

)}(|)(||)(|{

1)}({)}(|)(||)(|{=)(

222

1=

222

1=

kk

kVkvkz

NVkVkvkzNJ

T

N

k

N

k

ξξ

γ

γ

Γ

Δ+−≤

+−Δ+−

∑

∑

E

E

EE





 (41) 

where 

  

!
T

(k) = [eT (k)  eT (k "#
m

)  eT (k "# (k))  eT (k "#
M
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$T (k)  $T (k "# (k))  % T (Se(k))  vT (k))],
 

From (40), we can obtain
  
J (N ) < 0 , that is 

22
)(<)( ee kvkz  γ


. 

3.2. Design of H∞ Filter 

Theorem 3. Consider the discrete-time stochastic neural 
networks systems (1) with nonlinear sensor and constants 

mM ττ ,  , the filtering error systems (6) is asymptotically 
stable with performance index γ, if there exist positive 
definite matrices P, Q1, Q2, S1, S2, diagonal positive definite 
matrices T, Λ , and matrix X such that the following LMI is 
satisfied:  
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where 
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2
L" R , Moreover, if the previous 

condition is satisfied, an acceptable state-space realization of 
the ∞H  filter is given by  

  
K = [(P + 2S

T
!US )"T

X .  (43) 

 Proof. By lemma (1), the matrix inequality (40) is 
equivalent to  
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By defining  

  
K

T
P = X ,  (45) 

and then substituting (45) into (44), we can get (42) , so the 
proof is completed. 

Remark 2. When τM, τm are given, the matrix inequality 
(42) is linear matrix inequality, if matrix variables P > 0, R > 
0, Q1 > 0, Q2 > 0, T > 0, 0>Λ , then X can be efficiently 
solved by the developed interior point algorithm [38]. At the 
same tine, the minimal performance index γ can be found out 
easily. 

When neglecting stochastic disturbance, the system (1) 
will become the following one:  

  

x(k +1) = Ax(k)+W
0
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1
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1
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3
v(k), z(k) = Hx (k),

#
$
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&%
 (46) 

then for system (46), the following corollary can be obtained 
from Theorem 2. 

Corollary 1. For the discrete neural networks system 
(46), the corresponding filtering error system is 
asymptotically stable with performance γ, if there exist 
positive definite matrices P, Q1, Q2, S1, S2, diagonal positive 
definite matrices T, Λ  and matrix X such that the following 
LMI holds:  
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where 11Φ , 17Φ , 33Φ  and P  have the same definition as in 
Theorem 2. 
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What is more, if the condition above is satisfied, an 
acceptable state-space realization of the H∞ filter is given by  

.)(= TTT XUSSPK −Λ+  (48) 

4. NUMERICAL EXAMPLES 

 In this section, two numerical examples with simulation 
results are provided to demonstrate the effectiveness of the 
proposed filter design approaches and their performances. 

Example 1. Consider the discrete stochastic neural 
networks systems with parameters as follows [37]:  
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From the Theorem 2, we know that for different Mτ  and 

mτ , we can get different minγ , In this case, we assume that 

)
2
(23=)( ksink πτ − , by using the Matlab LMI toolbox and 

solving (42), the feasible solutions can be obtained as 
follows:  
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By virtue of the developed interior point algorithm, the 
minimum reachable performance index is 

  
!

min
= 0.6593 , and 

the corresponding H∞ filter parameters are as follows:  
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 Remark 4. In this example, the sensor nonlinear 
functions satisfy (4), in which 2== 21 uu  and 2== 21 λλ , 
In Theorem 2, the matrix inequality (40) can not be solved 
by Matlab LMI toolbox directly, but by Lemma 1 and simple 
transformation of (43), the LMI (42) can be solved by 
Matlab LMI toolbox and K can be easily found out. 

Remark 5. In this example, when the value mM ττ −  is 
less than 4, different parameters 21 = uu , L  are chosen to do 
experiment, for example, when 0.2}0.1{0.1= −−diagL , 

  
H = diag{!0.1! 0.1 0.2} ,

  
u

1
= diag{!0.1! 0.1 0.2} , different 

K can be found out and the feasible solution has not been 
affected. That is to say, some parameters are not sensitive to 
on the results. 

Remark 6. In example 1, we have taken the system 
parameters as that in [37], by Matlab LMI Control Toolbox, 
we have obtained the H∞ performance index γmin = 0.6593, 
while in [37], only the H∞ parameters K has been found out, 
the performance index γmin is not mentioned. 

By choosing the proper initial condition, for example, 

  
x(t) = [0.8 ! 0.8 0.2]T , 

  
x̂(t) = [!0.3 0.2 0.8]T , respectively, the 

activation functions are given as 
2

|1||1|=)( +−− xxxf , the 

nonlinear sensor functions are taken by tanh(Sx(k)), and the 
exogenous disturbance signal v(k) is given by exp(-k), by 
applying the previous H∞ filter parameter K  to system (1), 
the simulation results can be obtained as Figs. (1-3). Fig. (1) 
shows the state response )(kx  under the initial condition; 
Fig. (2) shows the estimation of filter; Fig. (3) shows the 
error response e(k). From these simulation results we can see 
that the designed H∞ filter can stabilize the discrete-time 
stochastic neural works system (1) with nonlinear sensors 
and time-varying delay. 

Example 2. Consider the discrete neural networks 
systems (46) with parameters as follows :  
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 In this example, we assume that
  
! (k) = 3.5" 2.5sin(

#

2
k) , 

by using the Matlab LMI toolbox and solving the LMI (47), 
we can obtain the feasible solutions as follows:  

  

P =

9.3744 1.6707

1.6707 12.3118

!

"

#
#
#

$

%

&
&
&

, R =

1.1171 0.1939

0.1939 0.9304

!

"

#
#
#

$

%

&
&
&

,

T =

7.1577 0

0 6.3967

!

"

#
#
#

$

%

&
&
&

,S1=

16.3782 0

0 24.1831

!

"

#
#
#

$

%

&
&
&

,
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Fig. (1). The true state response of x(t). 

 
Fig. (2). The estimation of x(t).  
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therefore, the concerned discrete neural network with time-
varying delay and nonlinear sensor is asymptotically stable. 
Meanwhile, for different mτ  and Mτ , different minγ  can be 
obtained. In this case, we can get that 6)(1  kτ , then the 
minimal H∞ performance index is 1.0322=minγ , and the 
corresponding filter matrix is  

.0.00000.0212
0.00010.5171

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−K  (49) 

 Remark 7. In spite of the considerable advantages of the 
H∞ filtering design results, it still entails some appreciable 
amount of conservatism due to the majorization procedure in 
filter design. 

CONCLUSION 

In this paper, the problem of H∞ filtering for a class of 
discrete stochastic neural networks systems with nonlinear 
sensor and time-varying delay have been studied. By  
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employing the Lyapunov stability theory and linear matrix 
inequality optimization approach, sufficient conditions to 
guarantee the filtering error systems asymptotically stable 
are provided. By setting the lower and upper bounds of the 
discrete time-varying delays, an acceptable state-space 
realization of the H∞ performance index is obtained in terms 
of linear matrix inequality (LMI). Finally, two numerical 
examples and simulations have been exploited to show the 
usefulness and effectiveness of the proposed filter design 
method. Our future research directions would extend to the 
investigation on more general nonlinear systems, more 
complex discrete-time systems, fuzzy neural networks 
systems with different delays and the reduction of 
conservatism brought by the H∞ filter technology.  
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