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Abstract: This paper comprises of two parts, the first one is concerned with controlling a wheeled mobile robot, where 
the robot is trained to follow a trajectory and the second part is an extension of controlling of the robots by following a 
trajectory while maintaining their formation intact. Unicycle kinematics is considered for the control design of each robot, 
and the leader-follower structure for the formation. It is assumed that every robot except the one located at the end of each 
team, can potentially be a leader to the one behind it. It is also assumed that each follower is capable of sensing its relative 
distance and relative velocity with respect to its preceding robot. The stability of the control law is also proposed, that is 
investigated in the case of perfect sensing and in the presence of input saturation. The impact of measurement noise on the 
followers is then studied assuming that a known upper bound exists on the measurement error, and a linear matrix ine-
quality (LMI) methodology is proposed to design a control law which minimizes the upper bound on the steady-state er-
ror. Matlab Simulations are presented to demonstrate the efficacy of the results obtained in this paper. 
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1. INTRODUCTION  

Robotics has been of interest to mankind for over one 
hundred years. Robotics brings revolution in the field of en-
gineering, that has established its effectiveness in industrial 
manufacturing, design, construction and operation. The ad-
vantages of using robots instead of humans for performing 
some specific tasks (e.g., underwater exploration, military 
surveillance, Search and Rescue operations, agriculture cul-
tivation of land and handling hazardous material) have at-
tracted many researchers. This research is mainly focused on 
the mobile robots. 

This paper first considers the design of control law for 
the nonholonomic dynamics of the unicycle robot, and then 
extends it to the team of robots for formation. Considering 
the nonholonomic dynamics of the system, it is difficult find-
ing control input for posture stabilization of the system. It is 
often desirable to design control laws under which the sys-
tem variables converge to a trajectory, rather than to a point. 
In this type of problem, the desired trajectory is predefined 
and the robot is to be controlled so that it asymptotically 
converges to the desired path. Various trajectory tracking 
methods are given in the literature. This includes using non-
linear feedback laws, dynamic feedback linearization, and 
backstepping approach, to name only a few. To design the 
control inputs to guarantee the stability of the closed-loop 
system, it is assumed that there is “perfect velocity tracking.” 
Reference [1] proposed an error based tracking model and  
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designed a stable kinematic tracking controller for the non-
holonomic mobile robot. Reference [2] studied the tracking 
control problem for nonholonomic mobile robots with lim-
ited information of a desired trajectory. The control law for 
trajectory tracking presented [3] is derived from a method 
developed for unicycles and is based on a real time combina-
tion of static linear feedbacks that are obtained by an off line 
LMI (Linear Matrix Inequalities) approach. Extensive publi-
cation on trajectory tracking of nonholonomic systems such 
as mobile robots can be found in the literature (see e.g.,  
[4-9]). 

Coordination of multiple mobile robots, on the other 
hand, has attracted much interest recently. Exploiting a 
group of robots instead of a single robot or human for per-
forming a prescribed spatially distributed task has significant 
advantages in various applications [10]. 

Formation control is one of the most challenging research 
problems in cooperative mobile robots. This problem is con-
cerned with a group of robots moving in formation and per-
forming a single mission in a cooperative fashion. It is de-
sired in this type of problem to control the relative position 
and orientation of the robots with respect to each other. 

Reference [11] presents a kinematic controller based on 
the receding horizon leader-follower (RH-LF) control 
framework to solve the formation problem of multiple non-
holonomic mobile robots. Reference [12] proposed a kine-
matic controller for the distributed consensus-based for-
mation control. However, the perfect velocity tracking as-
sumption does not hold in practice, and the dynamics of ro-
bot should not be ignored and practical control strategies 
accounting for both the kinematic and dynamic affect should 
be implemented [13-15]. 
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Applications of formation control of cooperative robots 
include simultaneous localization and mapping, RoboCup 
(which is designed to play soccer and perform search and 
rescue), exploration of an unknown environment, and trans-
portation of large objects, to name only a few [16-19]. 

2. MOBILE ROBOT KINEMATICS 

The mechanical structure of a simple Wheeled Type mo-
bile robot is shown in Fig. (1). The wheeled mobile robot is a 
classic non-holonomic system with two driving wheels con-
trolled autonomously [20]. 

If the angular velocity of the left and right wheels is de-
fined as Lω , Rω , respectively, the linear velocity of the left 
and right wheel Lv , Rv is computed using 

 vR =!RR , vL =! LR  (1) 

Where R is the radius of the wheel. Using the velocities 
of the two driving wheels Lv , vR , the linear and angular 
velocities of the robot are computed using (2) 

 
v=

vR +vL

2
, !=

vR -vL

E
 (2) 

where E  is the length of the wheel base of the mobile robot. 

2.1. Problem Formulation  

Let nz=ℜ denote the set of all n-vectors of generalized 
coordinates for a wheeled mobile robot.  

The generalized coordinates for a unicycle are z=(x,y,θ) , 
where (x,y) represents the Cartesian coordinates andθ is the 
angular orientation with respect to the x-axis in an inertial 
reference frame. The objective here is to control the robot in 
such a way that it follows a certain trajectory with a desired 
velocity. Let the inertial reference frame be centered at the 
origin O of the plane (Fig. (2). The differential equations 
describing the motion of the robot with respect to this frame 
are:  

  

!x=vcos! !y=vsin!
!=" !v=a

 (3) 

Where the acceleration a  is treated as the input variable. 

 

Fig. (2). Unicycle model. 

The error vector is subsequently defined as: 
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where pe  and ve are the position and velocity error of the 
robot, respectively, and are defined by: 
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 (6) 

where r r(x ,y ) is the reference value (set point) for the posi-
tion of the robot, and

r rx y(v ,v ) is the reference value for the 
velocity of the robot. It is assumed that the robot is equipped 
with the proper sensors to measure its relative position and 
velocity (with respect to the desired set points).  

Thus, the error vector e can be used in constructing the 
control input. Now, using equations (5) and (6) one can find: 
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Fig. (1). Top view of wheeled type mobile robot. 
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and similarly  
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where  
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By rewriting the above equations and using the relations 
(3), it can be shown that: 
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Define 
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Hence, (7) can be expressed as: 
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Combining the differential equations for the position and 
velocity errors, the state space representation of the system 
can be written as: 
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or be equivalent to 

  
!e=Ae+Bu-Bar   (8)  

where ra  is the reference value for the acceleration of the 
robot in the x  and y  directions, and is expressed as: 
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It is desired to design a control law of the following 
form: 

 u=Ke+ar:=a +ar  (9) 

to regulate the error defined by (4), where ∈ 2×4K R  is a con-
stant matrix. 

2.2. Main Results 

2.2.1. Perfect Sensing without Input Constraint 

In this section, the stability of system (8) under the con-
troller of the form (6), assuming that no error exists in sensor 
measurements is investigated. 

Theorem 1. Consider a mobile robot following a desired 
trajectory, where the error dynamics of the robot is governed 
by (8). Given α>0 , suppose that there exist R>0 and S  satis-
fying the following LMI: 

T T TRA +AR+S B +BS+αR<0   (10) 

Apply the controller (9) with -1K=SR to the robot; then 
e(t) is exponentially decaying (where . denotes the 2-

norm). 

2.2.2. Perfect Sensing with Input Constraint 
Theorem 2. Consider the system described in Theorem 1 

and let  

µ1=max epx =max epy  
and  

µ2=max evx =max evy . 

Given the design parameters α>0 , η>0 , solve the follow-
ing LMIs 

RAT+AR+STBT+BS+!R<0   (11) 
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where 2I is the 2*2 identity matrix. Assume the problem has 
a feasible solution; then: 

(i) If the controller (9) with -1K =SR is applied to the robot, 
then e(t) is exponentially decaying, and 
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(ii)  µ <!  

2.2.3. Noisy Measurements 

In order to take into account the effect of measurement 
noise on the robot's motion, the control law (9) is modified 
as: 

  u =K!e+ar   (12) 

where !e=e+!e ,and δe is the measurement noise which is as-
sumed to have a known bound represented by: 

!e:=max
t >t0

! !e
2

 

In this subsection, an upper bound on the steady-state er-
ror is obtained and an algorithm is proposed to design K  
such that this upper bound is minimized. 

Lemma 1. Given a positive scalarα let the following in-
equality hold 

!V+!V-b"e
TQ"e<0   (13)  

where b  is a positive constant and Q  is a symmetric posi-
tive definite matrix. Then: 

V(!)< b
!
max
t >t0

! !e
T (t)Q!e (t)"# $%  (14)  

3. EXTENSION OF PROPOSED METHOD TO 
FORMATION CONTROL WITH LEADER FOL-
LOWER CONFIGURATION 

In this section, the problem of controlling a group of mo-
bile robots following a trajectory while maintaining their 
formation intact is considered. The control design is carried 
out for the case of unicycle kinematics, which is the most 
common among wheeled mobile robots (WMR). It is as-
sumed that every robot except the leader and the one located 
at the end of each platoon may potentially be a follower with 
respect to the one immediately in front of it, or a leader with 
respect to the one behind it (Fig. (3). The desired relative 
position of each follower with respect to its corresponding 
leader is assumed to be known by that follower. It is as-
sumed also that each follower is capable of sensing its rela-
tive distance and relative velocity with respect to its preced-
ing robot. 

 
Fig. (3). Platoon of mobile robots. 

First, the stability of the system is investigated in the case 
of perfect sensing. A feedback control law is subsequently 
proposed to satisfy the design specifications. The impact of 
measurement noise on the followers' motion is then studied, 
and a control design methodology is introduced using linear 
matrix inequalities (LMI) to minimize the effect of noise. 

3.1. Extension Problem Formulation 

It is desired to control the followers in such a way that 
they follow the leader with a desired accuracy, while the 
leader follows an unknown trajectory. The differential equa-
tions describing the motion of the i-th  robot, 

{ }i := 1, ,n∈ K , with respect to this frame,  

!xi=vicos!i !yi=visin!i

!i =! i !vi=ai
  (15)  

where the acceleration a is the input variable. By assump-
tion, robot 1 is the leader, and its dynamic equations are ex-
pressed as: 

!xl=vlcos! l !yl=vlsin! l

! l =" l !vl=al
 (16) 

The error vector for the i-th  follower, { }∈ Ki 2, ,n , is 
subsequently defined as: 

⎡ ⎤
⎢ ⎥
⎣ ⎦

i
i p

i
v

e
e =

e
  (17) 

where i
pe and i

ve are position and velocity error of the i-th  
follower, respectively, and are defined by: 

 

ep
i:=

epx

i

epy

i

!

"

#
#
#

$

%

&
&
&
=

xi-xi-l -dx
i(t)

yi-yi-l -dy
i(t)

!

"

#
#

$

%

&
&

   (18) 

and 
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   (19) 

where i
xd (t)and i

yd (t)represent the desired relative posi-
tion between i-th  and i-1th  robots in the platoon in the 
x and y directions, respectively. The objective here is to 
make the position and velocity errors as close as possible to 
zero. It is to be noted that if 

x

i
ve and 

y

i
ve tend to zero, then 

→θ θi i-1 . This means that if the velocity error approaches 
zero by time, then the orientation alignment of all robots in 
the platoon is guaranteed in the steady state. 

Assumption 1. The desired relative positions i
xd (t) and 

i
yd (t) are either constant or the outputs of an autonomous 

system represented by 

!q(t)=!q(t) dx
i (t)=IIxq(t) dy

i (t)=IIyq(t)  

Platoon 1
Platoon 2

Platoon 3
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where ∈ kq R . Note that all the eigenvalues of the Γ  lie in 
the open left half-plane except the one which is located in the 
origin.  

Denote with λ-  the rightmost non-zero eigenvalues of Γ . 
It is supposed that each follower is equipped with the proper 
sensors to measure its relative position and velocity (with 
respect to its preceding robot). Thus, the error vector ie can 
be used in constructing the control input. Now, using equa-
tions (16) and (17), one can write: 
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and similarly: 
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By rewriting the above equations and using the relations 
! i =" and !vi=ai , it can be shown that 
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Define: 
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Combining the two equations, the error dynamics can be 
expressed as: 
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  (20) 

or equivalently: 
 

  !e
i = Aei +Bui-Bsi-1 +!(t)  (21) 

where iu denotes the control input and i-1s is defined as:  

  

si-1:=
!!xi-1

!!yi-1
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"
#
#

$
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&

 

Note that Assumption 1 implies φ(t) is an exponential-
ly decaying signal. 

Assumption 2. It is assumed that each robot's accelera-
tion is uniformly bounded; i.e., 

≤ σi-1s for { }∈ Ki 2, ,n where σ  is a known constant: 

A control law of the following form is proposed for the 
following: 

{ }∈σ K
T i i

i i i

T i i

B P e
u = K e - , i 2, ,n

B P e

  

(22)

 

 

to regulate the position and velocity errors for each follower, 
where 2 4×∈iK R is a constant matrix and 4 4×∈iP R is a sym-
metric positive definite matrix. 

Remark 1. In the case when T i iB P e in (22) is "close" to 
zero, the control input can be modified as follows: 

{ },

⎧
≥⎪⎪ ∈⎨

⎪
⎪⎩

σ ρ

ρ ρ

K

T i i
i i T i i

T i ii

i i T i i

B P e
K e - B P e

B P eu = i 2, ,n

K e + B P e <
 

where ρ  is a sufficiently small positive constant. It is de-
sired to design the control law for the followers such that the 
steady-state error is as close to zero as possible. 

3.2. Main Results 

3.2.1. Perfect Sensing without Input Constraint 

Theorem 4. Consider a platoon of WMRs moving in 
formation with leader-follower structure, where the dynam-
ics of the followers obeys equation (21), and suppose the 
conditions of Assumptions 1 and 2 hold. Given α >0 , also 
assume that there exist matrices iR >0 and iS satisfying the 
following LMI: 

α
Ti T i i T i iR A +AR +S B +BS + R <0  (23) 

If the controller (22) with
-1i i iK =S R and 

-1i iP =R is ap-
plied to the follower i , then ie(t) decays exponentially. 

3.2.2. Perfect Sensing with Input Constraint 

Theorem 5. Consider the system described in Theorem 
4. Define 

µ
x y

i i
1 p p= max e = max e
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and 

 
µ2 = max evx

i = max evy

i , 

and let the design parameters α >0 , η>0be given. Solve 
the following LMIs 

α
Ti T i i T i iR A +AR +S B +BS + R <0  (24) 

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

η
T2 i i

i
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R S
>0

S I
   (25) 

⎡ ⎤
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µ
µ

2
i 1 2

2
2 2

I 0
R >4

0 I
  (26) 

where 2I is the 2 2× Identity matrix . If the problem has a 
feasible solution, then 

1: If the controller (22) with 
-1i i iK =S R and 

-1i iP =R is 
applied to the follower i , then ie(t) is an exponentially 

decaying signal, and 2: η σiu < +  

3.3.3. Noisy Measurements  

The control law (22) in the presence of measurement 
noise on the follower's motion can be written as: 

ui=Ki!ei - B
TPi!ei

BTPi!ei
!   (27) 

where !ei=ei+!e
i , and δie  is the measurement noise, 

which is assumed to have a known bound represented by: 

!e
i :=max

t >t0

! !e
i 2  

In this subsection, an upper bound on the steady-state er-
ror is obtained and an algorithm is proposed to design iK and 
iP >0 such that this upper bound is minimized. To this end, 

the following lemma is presented, 

Lemma 2. Assume that g(t) is an exponentially decaying 
signal. Given 0ξ > ,0, let the following inequality hold: 

!V+!V-b"e
iTQ"e

i - g(t)
2
<0   (28) 

where b  is a positive constant and Q  is a symmetric posi-
tive definite matrix. Then: 

V(!)< b
!
max
t >t0

! !e
iT (t)Q!e

i (t)"# $%
 

 (29) 

Remark 2. Consider the system described in Theorem 
3.1 . Let 

-1i iR =P i  and assume iR  has a lower bound lR  
and an upper bound rR  given in (25) and (26), respectively. 
Using the result of Theorem 2.3 for each follower, it can be 

concluded that, if the controller (27) with
-1i i iK =S R and 

-1i iP =R is applied to the follower i , then: 

1: ie(t)  exponentially decaying signal forΔie =0.  

2: →∞

i
p p,mint

lim e <e
 

An upper bound on the steady-state position error is ob-

tained as ( ) 2pe ∞  and Remark 1 holds. This is can be 

proved by choosing 
-1iQ=R  and γ  selected as 

( ) ( )iminα - ξ Pλ<γ . 

γ
i1

g(t)= P f(t)

 4. SIMULATION RESULT (SINGLE ROBOT) 

In case 1 the results obtained for the tracking problem of 
a single robot in the presence of input constraint are exam-
ined by simulations. 

4.1. Case 1 

Consider a WMR, and let the desired trajectory to be fol-
lowed by the robot be a path for circular trajectory given by 

rx =2cos0.025t , ry =2sin0.025t  

It is desired to obtain a control input of the form (9) in 
which the magnitude of a is less than η at all times, while the 
tracking objective described above is achieved. 

Assume that the experiment is to be performed in a 4 4×
m environment; hence,  

µ
x yp p 1max e = max e = =4

 Furthermore, let the maximum speed of the robot be 0.3 
m/sec, i.e., 

µmax e = max e = =0.3v vx y 2  
Let also η =0.04 ; one can then use Theorem 2 with

α =0.04  and 92 100ε
−= ×  to obtain the gain matrix K  in 

(9) as: 

-0.0007 0 -0.0469 0
K=

0 -0.0007 0 -0.0469
⎡ ⎤
⎢ ⎥
⎣ ⎦    (30) 

Let α=0.04 and b=1.55  Assume that the measurement 
noise is a random process, which is uniformly distributed in 
the intervals ( )-50, 2 10× and ( )-30, 10  for position and veloci-
ty measurements, respectively. Fig. (4) shows that the ve-
locity regulation error ve  approaches zero in both x and y 
directions. Fig. (5) shows the trajectory of the robot moving 
toward the circular path from its initial position (1.9, 0.1).  
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The norm of the control input for the robot is depicted in 
Fig. (6), which shows that the input constraint is fulfilled. 
The planar motion of the formation is sketched in Fig. (7). 

5. SIMULATION RESULTS (FORMATION) 

5.1. Case 1  
Consider two mobile robots, one leader and one follower, 

and assume the leader moves on a circular track given by: 
l l
r rx =2cos0.025t, y =2sin0.025t  

The follower is to follow the leader with the following 
desired distance: 

( )x -t

y

d (t) 1
d(t)= = 1-2 1-e

d (t) -1
⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦  

 

In this case, the gain matrix K  in (3.8) will be: 

-0.0007 0 -0.0420 0
K=

0 -0.0007 0 -0.0420
⎡ ⎤
⎢ ⎥
⎣ ⎦  
In Fig. (8). the relative position of the follower with re-

spect to the leader along the x-axis is compared with its de-
sired trajectory xd . 

A similar comparison is made in the y  direction in Fig. 
(9). These figures demonstrate that the desired position 
tracking is achieved asymptotically.  

Furthermore, Fig. (10) shows that the velocity regulation 
error ve approaches zero in both directions x  and y . Fig. 
(11) shows the trajectory of the leader and follower moving 
toward the circular path from their initial positions (1.9, 0.1)  
  

 

Fig. (4). The velocity error of the robot. 

 

 

Fig. (5). The robot's trajectory in the 2-D plane. 
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Fig. (6). The norm of the control input u .
 

 
Fig. (7). The robot's trajectory in the 2-D plane for the linear trajectory. 

 

Fig. (8). Relative position of the follower with respect to the leader along the x-axis. 
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Fig. (9). Relative position of the follower with respect to the leader along the y-axis. 

 
Fig. (10). The velocity error of the follower for the leader-follower trajectory tracking. 

 
Fig. (11). The leader and follower trajectories in the 2-D plane for the leader-follower trajectory tracking. 
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Fig. (12). Control input norms ul and uf for the leader-follower trajectory tracking. 

 
Fig. (13). Relative position of follower 1 with respect to the leader along the x and y axis. 
 

and (2.8, -0.8), respectively. The norm of the control inputs 
applied to the follower and leader, lu and fu

 
is depicted 

in Fig. (12), which demonstrates that the input constraint is 
satisfied. 

5.2. Case 2 

Consider a multi-agent system, where 2 followers are to 
follow a leader in a linear path. Suppose that the leader and 
followers are initially located on an equilateral triangle with 
the length of the sides equal to 2 m. The final desired for-
mation is another equilateral triangle with the length of the 
sides equal to 1 m, while the leader is tracking a ramp refer-
ence signal along both axes, characterized by: 

( ) ( )l l
r rx t =y t =0.4t 

 Let α=0.04 and b=1.55 . Assume that the measurement 
noise is a random process which is uniformly distributed in 
the intervals ( )50, 2 10−× and ( )-30, 10 for position and veloci-
ty measurements, respectively. The gain matrix given below 
is obtained for both followers: 

-1.6724 0 -0.7615 0
K=

0 -1.6724 0 -0.7615
⎡ ⎤
⎢ ⎥
⎣ ⎦  
Fig. (13) depicts the relative position of follower 1 with 

respect to the leader in both directions. The velocity regula-
tion error of follower 1 along the x and y axes is plotted in 
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Fig. (14). This figure shows that the error approaches zero in 
both directions. The planar motion of the formation is 
sketched (Fig. 15). 

CONCLUSION 

Mobile robots are the focus of a great deal of current re-
search in robotics. The objectives of this paper are to derive 
a control law for a single wheeled mobile robot, so that sys-
tem remains stable while tracking a trajectory and to design a 
controller for the leader-follower formation problem so that 
the system is stable in the cases of perfect sensing and per-
fect sensing with input constraint. Upper bounds for the 
steady-state position and velocity errors are obtained in the 
presence of measurement noise. Using linear matrix ine-
qualities (LMI), a proper controller is designed to stabilize 
the system under different conditions. Input saturation is also  
 

 

addressed by imposing a proper constraint on robot's input. 
Moreover, upper bounds for the steady-state position and 
velocity errors are found. Formation control for a group of 
mobile unicycle robots is then studied, input saturation is 
also addressed by imposing a proper constraint on the fol-
lowers' input in the formulation. Stability analysis is provid-
ed, and a controller is designed using LMIs to minimize the 
upper bound of the steady-state errors. The drawback in the 
present work is that an obstacle free environment is consid-
ered. However, in real environments, there often exist obsta-
cles which need to be considered in designing the controller. 
It is assumed that each robot's acceleration bound is known. 
However, this is not a practical assumption in some applica-
tions. One can use an adaptive control scheme to relax this 
condition. Examples of path following are examined by sim-
ulation, which demonstrate the efficacy of the proposed 
methods.  

 

 
Fig. (14). The velocity of follower 1 for the leader-follower trajectory tracking. 

 
Fig. (15). The planar motion of the formation for the leader-follower trajectory tracking. 
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