
Send Orders for Reprints to reprints@benthamscience.ae

296 The Open Automation and Control Systems Journal, 2014, 6, 296-301

 1874-4443/14 2014 Bentham Open

Open Access
An Automatic Adjustment Approach of Thread Quantity to Optimize Re-
source Usage

Zou Lida1, Li Qingzhong2,* and Ma Yan3

1,2School of Computer Science and Technology, Shandong University, Jinan, 250101, China
3State Grid Shandong Electric Power Research Institute, Jinan, 250002, China

Abstract: In order to achieve optimization of resource usage for servers, a method is designed to automatically adjust-
ment approach of thread quantity when multiple types of tasks are running, which can effectively and automatically opti-
mize resource utilization without manual intervention. It first monitors different kinds of resources and trains resource us-
age of servers when adding a thread for a type of task. It then dynamically adds or reduces thread quantity to adapt to the
scenario of dynamic change in resource usage according to monitoring results. When resources are idle and thread quanti-
ty needs to be added, the problem of determining thread quantity is abstracted by multi-dimensional container loading
problem and we propose a heuristic algorithm based on similar ratio which can quickly obtain thread quantity. The pro-
posed algorithm not only avoids the work of setting thread quantity for parallel tasks, but also improves the utilization rate
of CPU, I/O and throughput.

Keywords: Automatic adjustment, resource utilization, server, thread quantity, throughput.

1. INTRODUCTION

For the server on which multiple tasks are concurrently
running, the proposed method can reduce costs of acquisition
and maintenance to fully use various resources. The deter-
mination of thread quantity is critical for resource utilization
rate. The low thread quantity results in underutilization of
resources, while high thread quantity causes too many re-
sources consumption on unnecessary operations, such as
thread switch and resource contention among threads. In
order to optimize resource utilization for shared servers, it is
necessary to determine and adjust thread quantity for each
type of task. The adjustment of thread quantity is dynamic
and complicated, which largely increases the workload of
software developers. Thus, an automatic adjustment ap-
proach of thread quantity to optimize resource utilization is
an urgent issue to be solved.

At present, there is some work on improving system per-
formance by adjusting thread quantity. To perfect communi-
cation between server nodes [1], the approximate optimiza-
tion on thread quantity was researched based on a
round_robin scheduler in an operation system. In order to
make full use of parallel computation in multi-core and mul-
ti-thread environment [2], an efficient algorithm which used
bare threads with a set of optimal threads for allocation is
exploited, which improves the speed-up ratio, computing and
the real-time quality of the system. At present cloud compu-
ting platform and virtualization technology are widely used

to change the mode of resource integration and resource us-
age. Virtualization technology [3] is suitable for the case
when applications do not have enough loads to fill the peak
of resources. In the paper we focus on adjusting thread quan-
tity to achieve the dynamic optimization of resource usage in
the scenario when application loads more or less match the
configuration of servers. We also aim to reduce the work-
loads of software developers and improve developing effi-
ciency.

2. ADJUSTMENT FRAMEWORK

In the section the framework of adjusting thread quantity
to optimize resource usage is put forward. As shown in Fig.
(1), adjustment framework consists of resource monitoring
module, training module, determination module of thread
quantity and thread management module.

Resource monitoring module monitors and records the
usage of various resources. Training module first computes
resource volume when a new thread is added for a type of

Resource
Monitoring

Module
Training
Module

Thread
Management

Module

Determination
Module of

Thread Quantity

Fig. (1). Adjustment framework.

An Automatic Adjustment Approach The Open Automation and Control Systems Journal, 2014, Volume 6 297

task according to monitoring results, and then stores the
training data. Determination module of thread quantity ob-
tains thread quantity for each type of task according to moni-
toring results and training data, and sends the adjusting in-
struction to thread management module. If resources are
underutilized and there are waiting tasks in the queue, thread
quantity is added. If resources are occupied by a task for a
long time, thread quantity is reduced to release resources.
Thread management module is in charge of thread creation,
recycling and destruction according to the instruction from
determination module.

3. AUTOMATIC ADJUSTMENT ALGORITHM OF
THREAD QUANTITY

Based on the adjustment framework, our automatic ad-
justment algorithm is composed of four parts: 1) resource
monitoring. 2) resource usage training. 3) dynamic adjust-
ment of thread quantity. 4) thread management. The detailed
flow diagram of algorithm is depicted in Fig. (2).

3.1. Resource Monitoring

The resource monitoring procedure in resource monitor-
ing module monitors the usage of various resources. Taking
CPU, I/O for example, the monitoring method is as follows.
1) The maximum capacity of each resource is tested and set
to 1. 2) The resource usage is monitored in real time and
then changed to percentage compared with the maximum
capacity.

The monitoring information is respectively provided to
the procedure of quantization training of resource usage and
determination of thread quantity, resource bottleneck judger,
resource idle judger.

3.2. Resource Usage Training

Quantization training of resource usage in training mod-
ule quantifies resource usage volume of a thread for each
type of task. Its quantization method is as follows: 1) It first
initializes a process instance and creates several threads to

New type of task

Quantization
training of resource

usage

Storage of quantization
data

CPU

I/O

Resource
monitoring

Resource idle Task waitingY

Task
queue

Determination of
thread quantity

Y

Thread creation

Resource
bottleneck

Choosing the thread
occupying resources

Y

Thread destruction

Thread recycling

Control

Data

Resource Monitoring
Module Training Module

Determination Module of Thread Quantity

Thread Management Module

Y

Fig. (2). The detailed flow diagram.

298 The Open Automation and Control Systems Journal, 2014, Volume 6 Yan et al.

make it runnable for each type of parallel task. 2) It adds one
thread at a time, and records resources increment. The com-
putation method of resource increment is to compute the
average resource increment in the whole lifetime of thread. If
the task is long, we compute the average resource increment
in a given time t. 3) It repeats the step 2) and adds n threads
in all. 4) It computes the average value of resource incre-
ments on all the n threads for each resource. 5) It stores these
average values. Its storage form is 1

i =j m
i i iR r r r⎡ ⎤⎣ ⎦ for a

type of task , 1...iT i l= , where j
ir is the volume of resource j

that a thread of task i occupies.
The storage data is provided to determine procedure of

thread quantity

3.3. Dynamic Adjustment of Thread Quantity

Task queue is to create queue for each type of task. The
newly arrived task is added to the right queue. Task queue
provides the quantity of waiting tasks for task waiting judger.

Task waiting judger determines whether there are tasks
waiting for execution and collects data in real time from task
queue. If there are waiting tasks, resource bottleneck and
resource idle judger are started; else the monitoring on task
queue continues.

Resource bottleneck judger extracts monitoring data pe-
riodically and determines whether resources are in bottleneck
state. The resource bottleneck state is the state when one or
more resources reach their saturation levels and the other
resources are underutilized. In fact, the ideal condition of
resource usage is the case when all the resources are used
evenly and fully. If resources are in bottleneck state, it trig-
gers the procedure of choosing the thread occupying re-
sources; else it continues to periodically estimate the re-
source state.

The procedure of choosing the thread occupying re-
sources is to choose the thread that takes up excessive re-
source for a long time and causes resource bottleneck. It also
sends instruction for thread destruction procedure.

Resource idle judger periodically extract monitoring data
and determines whether resources are in idle state. If there
are idle resources, it notifies determination procedure of
thread quantity to compute and adjust thread quantity.

Determination procedure of thread quantity is responsible
for obtaining and adjusting thread quantity. Its adjustment
approach is as follows.

1. Resource idle threshold is set to jL , that is, when uti-
lization of resource j is lower than jL , the resource is
idle.

2. It computes the redundant volume of resources as
j j jc L u= − , where ju is the current utilization.

3. Given

c

j
, j = 1...m ,

R

i
= r

i

1!
" ...r

i

j
...r

i

m #
$,i = 1...l and task

queue, determination problem of thread quantity is

converted to multi-dimensional container loading
problem.

4. Multi-dimensional container loading problem is NP-
hard. We next propose a greedy heuristic algorithm to
solve it.

5. According to values obtained by heuristics, it sends
the instruction of adding thread to the procedure of
thread creation.

Problem Formulation. Dyckhoof et al. [4] summarize
different kinds of container loading and cutting problem,
which divide the problem into single-container and multiple-
container problem, homogeneous, weak heterogeneous,
strong heterogeneous problem. The boxes whose dimensions
have the same direction and size are called the same type.
The container loading problem with only one type of box is
homogeneous. Weak heterogeneous container loading prob-
lem has several types of boxes but there are many boxes for
each type. Strong heterogeneous container loading problem
has many types of boxes but there are only several boxes for
each type.

Kantorovich et al. [5] first present one-dimensional con-
tainer loading problem, then many scholars [6, 7] propose
approximation algorithms, such as FFD, BFD and NF. Paull
et al. [8] proposes newspaper layout problem and two-
dimensional container loading problem begins to be ad-
dressed [9, 10], such as bottom-left, bottom-left-fill, best-fit.
With the development of logistics transportation, three-
dimensional container loading problem causes concern and
the integration or modification on simulated annealing, ant
colony and genetic algorithm are presented to solve it [11,
12]. Our work belongs to single container, weak heterogene-
ous container loading problem. How many dimensions de-
pend on the kinds of resources users pay attention to? If us-
ers focus on CPU and I/O, the determination of thread quan-
tity is converted to two-dimensional container loading prob-
lem.

Based on the above analysis, we first formulize the prob-
lem. Given a container C and a set of types of boxes

B={b

1
...b

l
} , there are n boxes for each type and n is any

large integer. The size of dimension in C is

c

1
,c

2
,...,c

m
,

which represents the redundant volume of different re-
sources. The size of dimension in

b

i
 is

r

i

1
,r

i

2
,...,r

i

m , which
represents the usage volume of one thread for m resources.
Assuming

x

i
,i = 1...l is the number of boxes for each type of

box, the objective of the problem is to maximize fill rate of
container. The fill rate is defined as ! = S / V , where the
bulk of container is

V = c

1
c

2
...c

m
 and the bulk of filled boxes

is 1 2

1

...
l

m
i i i i

i
S x r r r

=

=∑ .

Thus, the formulation description is max!

s.t

r
i

jx
i

i=1

l

! " c
j
, j = 1...m (1)

An Automatic Adjustment Approach The Open Automation and Control Systems Journal, 2014, Volume 6 299

Since container loading problem is NP-hard, heuristic al-
gorithm is the first choice to solve it.

Algorithm 1 Heuristic Algorithm

Procedure H(C,B)
// C is container, B is the set of types of boxes.

1: while (0, 1...
j
c j m! =)

2: for i=1 to l
 3: compute

 1 2 2 2 2

1 2(/ /) (/ /) ... (/ /)j j m j

i j i i j i i m j i id c c r r c c r r c c r r= ! + ! + + !

4: endfor

5: choose the type of box (denoted as
'i
b) with the minimum

d value

6: for j=1 to m

 7:
'

j

j j i
c c r= !

 8: endfor

9: endwhile

Heuristic Algorithm. Our determination problem of
thread quantity is different from regular container loading
problem. In our problem how many dimensions depend on
the number of resource types and it has not the constraints of
stability. Hence we propose a novel greedy heuristic algo-
rithm based on similar ratio. Its idea is as follows. Each time
it selects a box with the most similar ratio with the redundant
volume of container, until achieving the upper bound of each
dimension in container.

First it normalizes the size of dimension for container and
l types of boxes. For a given resource j, the other dimensions
(i.e., the other resources) do the normalization based on this
dimension of resource. Thus the size of dimension in C is

1 / ,..., / ,..., /j j j m jc c c c c c , and the size of dimension in

, 1...ib i l= is 1 / ,..., / ,..., /j j j m j
i i i i i ir r r r r r . Second it com-

putes Euclidean distance between container and each type of
box, i.e., 1 2 2

1(/ /) ... (/ /)j m j
i j i i m j i id c c r r c c r r= − + + − . Each

time it selects the type of box with the minimum d and puts
an instance of this type in container. Accordingly, the size of
dimension in C updates. Algorithm 1 gives the details of
heuristic algorithm. Since the number of boxes for each type
is any large integer, the set of l types of boxes remains un-
changed.

3.4. Thread Management

Thread creation procedure is to create thread and gain
task from task queue after receiving the instruction of adding
thread. Thread destruction procedure is to destroy thread and
put unfinished tasks back to task queue after receiving the
instruction of destroying thread. It also notifies resource idle
judger and determines whether there are idle resources after
destroyed thread releases resource. Thread recycling proce-
dure obtains new task from task queue to execute. If there is
no waiting task, the thread is added to thread library to wait
for task arrival.

In all, the proposed algorithm adjusts thread quantity
through resource monitoring and thread management, which
adapts to dynamic scenario of resource utilization. When
resource usage is uneven, the thread that occupies resources
in bottleneck state is destroyed to improve utilization. When
resources are idle, threads are added to fully utilize resources.
We also abstract the determination problem of thread quanti-
ty as multi-dimensional container loading problem, which
not only achieves automatic and quick adjustment of thread
quantity without manual intervention, but also reduces the
workload of software developers.

4. EXPERIMENTAL RESULTS

We next test the performance of proposed algorithm. We
compare our algorithm with a fixed number of threads. The
indicators of performance are chosen as CPU utilization, I/O
utilization and throughput. According to the often used
thread quantity, the fixed number of threads is randomly
selected from 5 to 20. We select three times and thread quan-
tity is respectively 5, 8, 12. The experimental server is IBM
p690. Both computation-intensive tasks and I/O-intensive
tasks are chosen. Each time 10 task instances are running
and we gradually increase the ratio of computation-intensive
tasks. The fixed number of threads is denoted as Fix-5, Fix-8,
Fix-12 while our algorithm is called dynamic.

We first compare CPU utilization rate of different algo-
rithms. As shown in Fig. (3), the proposed algorithm dynam-
ic has higher CPU utilization rate, especially in high ratio of
I/O-intensive tasks. Since threads are occupied by I/O-
intensive tasks, dynamic algorithm can still add threads to

Fig. (3). CPU utilization rate with the ratio of CPU-intensive tasks.

300 The Open Automation and Control Systems Journal, 2014, Volume 6 Yan et al.

execute computation-intensive tasks, while fixed algorithms
can only wait for I/O tasks to be completed and this causes
CPU to be idle. When CPU-intensive tasks account for 90%,
Fixed-12 has similar CPU utilization since Fixed-12 could
fully use CPU and does not cause block.

We then validate the utilization of I/O for different algo-
rithms. From Fig. (4) we see that dynamic algorithm per-
forms best especially in high ratio of computation-intensive
tasks. Our proposed algorithm can flexibly add threads to
execute I/O-intensive tasks according to the idle capacity of
I/O.

We last compare system throughput of different algo-
rithms. In Fig. (5) dynamic algorithm has higher throughput
compared with the case of fixed thread quantity. Since dy-
namic algorithm could dynamically add thread quantity ac-
cording to real-time usage of resources, the resources of
servers can be fully utilized and the overall system through-
put is improved.

CONCLUSION

In this paper we use resource monitoring and thread
management to achieve automatic adjustment of thread
quantity without manual intervention, which also reduces the

workload of software developers. We abstract the determina-
tion problem of thread quantity as multi-dimensional con-
tainer loading problem and propose a heuristic algorithm,
which realizes dynamic, accurate and quick adjustment of
thread quantity and is feasibly optimum or approximate op-
timum of resource utilization. The extensive experiments
show that the proposed algorithm performs better than the
case in fixed number of threads on CPU utilization, I/O utili-
zation and throughput for different types of tasks.

CONFLICT OF INTEREST

The author confirms that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science
Foundation of China under Grant No.61272241, No.
61303085, No. 61303005.

REFERENCES
[1] C. Zuo, X. Liu, X. Chen and D. Liu, “Approximate optimization

thread quantity of inner communication in distributed parallel serv-

Fig. (4). I/O utilization rate with the ratio of CPU-intensive tasks.

Fig. (5). System throughput with the ratio of CPU-intensive tasks.

An Automatic Adjustment Approach The Open Automation and Control Systems Journal, 2014, Volume 6 301

er”, Journal of Harbin Engineering University, vol. 26, no.5, pp.
614-618, 2006, In Chinese.

[2] K. Wang and L. Wang, “Research on optimal thread quantity of
real-time signals acquisition system”, Journal of Computer Appli-
cations, vol. 31, pp. 2593-2596, 2011, In Chinese.

[3] X. Fei, L. Fangming, J. Hai, and A. V. Vasilakos, “Managing per-
formance overhead of virtual machines in cloud computing: a sur-
vey, state of the art, and future directions”, In: Proceedings of the
IEEE, vol. 102, 2014, pp. 11-31.

[4] H. Dyckhoff and U. Finke, “Cutting and Packing in Production and
Distribution”, A typology and bibliography, Springer, 1992.

[5] L. V. Kantorovich, “Mathematical methods of organizing and
planning production”, Management Science, vol. 6, pp. 366-422,
1960.

[6] G. Belov and G. Scheithauer, “A cutting plane algorithm for the
one-dimensional cutting stock problem with multiple stock
lengths”, European Journal of Operational Research, vol. 141, pp.
274-294, 2002.

[7] Xavier and F. K. Miyazawa, “A one-dimensional bin packing prob-
lem with shelf divisions”, Electronic Notes in Discrete Mathemat-
ics, vol. 19, pp. 329-335, 2005.

[8] A. Paull, Linear programming, “A key to optimum newsprint pro-
duction”, Pulp and Paper Magazine of Canada, vol. 57, pp. 85-90,
1956.

[9] M. Hifi, T. Saadi, and N. Haddadou, “High performance peer-to-
peer distributed computing with application to constrained two-
dimensional guillotine cutting problem”, in Euromicro Internation-
al Conference on Parallel, Distributed and Network-Based Pro-
cessing, 2011, pp. 552-559.

[10] K. He, W. Huang and Y. Jin, “Efficent algorithm based on action
space for solving the 2d rectangular packing problem”, Journal of
Software, vol. 23, no. 5, pp. 1037-1044, 2012, In Chinese.

[11] D. Zhang, Y. Peng and L. Zhang, “A multi-layer heuristic search
algorithm for three dimensional container loading problem”, Chi-
nese Journal of Computers, vol. 35, no. 12, pp. 2553-2560, 2012,
In Chinese

[12] C. D. Tarantilis, E. E. Zachariadis, and C. T. Kiranoudis, “A hybrid
metaheuristic algorithm for the integrated vehicle routing and
three-dimensional container-loading problem”, IEEE Transactions
on Intelligent Transportation Systems, vol. 10, 255-271, 2009.

Received: September 22, 2014 Revised: November 03, 2014 Accepted: November 06, 2014

© Lida et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

