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Abstract: Dimensionality Reduction is a common way to solve the problem of ‘curse of dimensions’, especially for im-
age processing. Among all these methods, the linear methods are believed to have better performance in actual databases. 
This paper proposes a novel unsupervised linear dimensionality reduction method that based on low rank representation 
which aims at finding the subspace structure of the original data sets. This method named LRRDR tries to preserve the 
subspace structure of the original data therefore is better than the global dimensionality reduction methods like PCA. The 
experiments compare PCA, NPE, LRRDR and SPP and the results show that LRRDR outperforms the other methods. 
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1. INTRODUCTION 

The problem of dimensionality reduction which concerns 
financial data, signal data, digital image and video data pre-
processing has been taken into account for a long period of 
time. Up to now, most methods solving this problem share a 
common assumption: the high dimensional data is distribut-
ed in a linear or a manifold lower dimensional space. Based 
on this hypothesis, a lot of methods have been proposed, 
such as Principal Component Analysis(PCA) [1], Locality 
Preserving Projections(LPP) [2], Fisher Discriminant Analy-
sis(FDA) [3], Neighborhood Preserving Embedding(NPE) [4, 
5], Isomap [5], Locally Linear Embedding(LLE) [6], Lapla-
cian Eigenmaps(LE) [7, 24] etc. In this paper, we focus on 
one sort of these methods named “linear dimensionality re-
duction” which contains PCA, LPP, FDA, NPE etc. The rea-
son is nonlinear dimensional reduction methods cannot learn 
an obvious “transformation function” that could convert any 
input data into a lower dimensional space [8]. Furthermore, 
some researchers argued that nonlinear reduction methods 
always perform worse than linear methods in actual data 
samples, although they outperform in a lot of artificial data 
sets [9]. Based on this consideration, this paper proposes a 
linear dimensionality reduction method can be called 
LRRDR (Dimensionality Reduction by Low Rank Represen-
tation). 

The originality of the idea of this method can be traced to 
NPE which try to keep the global Euclidean structure of 
sample data during dimensionality reduction [4]. However, 
NPE and a similar method LPP need a hyper-parameter ‘ k ’ 
that indicates the size of the locality and need to be prede-
fined. Furthermore, NPE assumes all the data points distrib-
uted in only one space which is not true for lots of real data 
samples. 

 

 

Recently, some researchers proposed a new method 
named SPP (Sparsity Preserving Projections) [10]. This 
method is the combination of NPE and sparse representation, 
a nearly brought up quantization method which becomes one 
of the most influential machine learning paradigm rapidly. 
The authors argued that the 1l  regularization essentially en-
codes the prior knowledge of sparsity, allowing it to extract 
more discriminating information from the data than NPE 
does. After SPP, many of a method based on sparsity repre-
sentation has been proposed [11-13]. However, all of the 
methods described previously did not consider the structure 
of the data which lies in the fundamental of dimensionality 
reduction as we stated earlier. The structure of objects in the 
images has been deeply studied in [14]. The authors claimed 
the objects in an image are actually lie in a low rank sub-
space of the origin, and happened to be in a higher one due 
to corruptions. Based on this consideration, LRR (Low Rank 
Representation) [15] has been proposed. Comparing to SR, 
LRR is better at capturing global structures of data. It does 
not need the number of subspaces and it does not need the 
number of dimensions of each subspace, and still this meth-
od can find a good reconstruct of the original data and con-
sequentially it wipes out the noises and discovery the struc-
ture of the data. 

In light of this consideration, we propose a novel dimen-
sionality reduction method LRRDR. It has the following 
virtues: 

1) LRRDR can preserve the global as well as the local 
structures of the original data. As is known to all, PCA is a 
global dimensionality reduction method and it can preserve 
the maximum variations of the original data when all the 
data points distributed in the same space [16]. But that is not 
hold for a large variety of data sets. LRRDR is a global 
method in nature and it also keeps the local structure in mind 
and will preserve it during the dimension reduce. 

2) As LRR can recover the structure of data from noises 
[17], LRRDR is free from the sufferings of different of cor-
ruptions. Compare to PCA, LPP and NPE etc, LRRDR is 
robust and do not need some sophisticated processing and is 
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simple to implement. Details of kinds of noises can be found 
in [17]. 

3) LRRDR does not have the difficult in parameter selec-
tion. As has mentioned previously, LPP and NPE need to 
select the size of neighborhood and the type of kernel, which 
is very time consuming and requires a high professionalism 
of researcher. 

The structure of this paper is organized as follows: sec-
tion 2 reviews related work, to be concretely, we discuss 
PCA, NPE and SPP in detail because we will use them as a 
comparing work to LRRDR, section 3 introduces LRR 
which lies in the central of out reducing method and then we 
discuss the algorithm of LRRDR, section 4 is the experiment 
result and discussions, and section 5 is the conclusion. 

2. RELATED WORK 

In this section we review some existing dimensionality 
reduction methods and because we concentrate on linear 
unsupervised versions so we discuss this kind only. PCA is 
one of the most famous and popular dimensionality reduc-
tion method and most works are related to it directly or indi-
rectly. It can be seen as a benchmark of the performance for 
most dimensionality reduction methods [8]. NPE is another 
well known dimensionality reduction method, different from 
PCA, it tries to keep the local structure of sample data during 
dimensionality reduction [4], so we will also discuss it. The 
last one we will talk about is SPP which can be seen as a 
development of NPE. 

2.1. PCA 

Given a set of data points (vectors) 1 2, , mx x xL of dimen-
sion n , PCA try to find a transforming matrix n dU R ×∈ such 
that T

i iy U x=  ( 1,2, ,i m= L ), and the variance of every fea-
ture of iy  achieves maximum, or formally we can state it as 
follows: 

1

1max ( )( )
m

T
i iU i

tr y y y y
m =

− −∑
 

(2.1) 

where 
1

1 m

i
i

y y
m =

= ∑  is the mean of the data points. The solu-

tion to this problem is the eigenvectors of the covariance 
matrix of 1{ }mi ix = , which we can refer to as Σ . Concretely, the 
transforming matrix U  is made up of the are eigenvetors 
1 2, , du u uL  of Σ  which are corresponding to the largest ei-

genvalues of Σ . 

2.2. NPE 

NPE is another linear unsupervised dimensionality reduc-
tion method, and its main idea is to preserve the local neigh-
borhood structure of the data. First it constructs an adjacency 
graph whose nodes are the points of the data sets, and two 
nodes on the graph are adjacent if and only if they are near 
enough. Here ‘near enough’ means either one of the two 
statements below: there exists a small number ε  such that 

the Euclidean distance of the two points smaller than ε  or 
either one is among the other’s k  nearest neighbor [4]. Here 
ε  and k  are parameters that should be set in advance. Then 
a weight matrix W  should be made subject to: 

( )
min

j

i ij jW i x B i
x W x

∈

−∑ ∑   (2.2) 

where ( )B i  is the neighborhood of ix . 
The essence of NPE is to preserve the weight matrix W  

when reduce the dimensionality. Concretely, the transform 
matrix U  should satisfy the following constraint: 

( )
min

j

i ij jU i x B i
y W y

∈

−∑ ∑    (2.3) 

where T
i iy U x=  ( 1,2, ,i m= L ). 

The above problem can be transform to this generalized 
eigenvector problem: 

T TXMX u XX uλ=    (2.4) 

where 

( ) ( )TM I W I W= − −  

(1,1, 1)I diag= L  

And the columns of U  is the eigenvectors of (2.4) which 
are corresponding to the smallest k  eigenvalues. 

2.3. SPP 

SPP is based on NPE and sparsity reconstruction, the on-
ly different of SPP and NPE lies on the weight matrixW . 
Different from NPE, SPP does not need to construct the ad-
jacency matrix and it derives W from the sparsity reconstruc-
tion. For SPP the columns of W  should satisfy: 

1
min

i
i i iw
x Xw wλ= +    (2.5) 

where iw  is the i th column of W , λ  is a parameter and 
1
⋅  

is the 1l  norm. Then SPP need to solve the similar general-
ized eigenvector problem like NPE. 

The authors of SPP argued that regularization essentially 
encodes prior knowledge of sparsity, allowing it to extract 
more discriminating information from the data than NPE 
does [10].  

3. DIMENSIONALITY REDUCTION BASED ON LRR 

3.1. Low Rank Representation 

 Low rank representation (LRR) is motivated from the 
subspace segmentation problem [18], and it seeks the lowest-
rank representation among all the candidates that represent 
all vectors as the linear combination of the bases in a dic-
tionary [15]. The assumption is that mixed data are modeled 
as a set of independent samples drawn from a mixture of 
probabilistic distributions. However, the dimensions of each 
subspace are unknown and the number of subspaces is also 
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remained to be discovered. The formal statement of the prob-
lem stated above is to find the reconstruction matrixW : 

X AW=    (3.1) 

where X  is the data matrix, A  is the dictionary. To find the 
global structure of the data set, we put a constraint of the 
weight matrix W that we want the rank of W  to become the 
minimum, formally,  

min ( )
W
rank W  (3.2) 

. .s t X AW=  

The problem state above is the low rank representation of
X , because we want the rank of the reconstruct matrix W to 

be ‘low’. The above optimization problem is difficult to 
solve due to the discrete nature of the rank function [15, 25]. 
But we can transform it to a concave optimization problem: 

*
min
W
W  (3.3) 

. .s t X AW=  

Where 
*

⋅  is the nuclear norm [19], i.e. the sum of the 
singular value of a matrix. For real applications the data is 
always contaminated by different kinds of noises, and to 
promote the robustness of this algorithm, we can add a error 
term in the objective function: 

* 2,1,
min
W E

W Eλ+   (3.4) 

. .s t X AW E= +  

Where E  is the error term, 0λ >  is a parameter to rep-
resent the estimation of the magnitude of noise, 

[ ]
2

2,1 1 1
( )m n

ijj i
E E

= =
=∑ ∑  is 2,1l -norm, it encourage some of 

the columns to be 0, when they are disturbed severely. In 
some cases, when data contains stochastic error [17], we can 
replace 2,1l -norm with 1l -norm.  

 The optimization problem stated above is sound be-
cause it can be proved that when the data is not contaminated, 
the optimum solution to problem 

*
min
W
W    (3.5) 

. .s t X XW=  

is diagonal block, and every block forms a subspace of 
the original data set. 

3.2. Dimensionality Reduction based on LRR 

The dimensionality reduction method based on LRR tries 
to preserve subspace structure of the origin data. The idea 
behind it is straight-forward, first use the low rank represen-
tation to reconstruct the data and discover the subspace struc-
ture of the data, and we assume every point (vector) can be 
represented by the points in the same subspace with it, then 
we reduce the dimensionality trying to preserve that structure. 

Suppose 1 2( , , , )Tmy y y= Ly  is the set of one dimensional 
data reduced from the origin 1 2( , , , )mX = Lx x x . We use 
Mean Square Error (MSE) as the cost function: 

   

E( y) = ( y
i
! W

ij
y

j

j=1

m

" )2

i=1

m

"
 

(3.6) 

The formula above can be vectorized as: 

   
E( y) = ( y !Wy)T ( y !Wy)   (3.7) 

Suppose T
i iy = u x , where u the transform function and 

we have: 
T T X=y u   (3.8) 

Insert (3.8) to (3.7) we have: 

( ) ( ) ( )TE W W= − −y y y y y ( ) ( )T TI W I W= − −y y  

( ) ( )T T TX I W I W X= − −u u  

Note the scale of the cost function ( )E y  can be arbitrari-
ly large or small due to the scale of y , we need to add the 
constraint 1T =y y , or  

1T TXX =u u   (3.9) 

Denote ( ) ( )TD I W I W= − −  and the question can be stat-
ed as: 

min ( ) T TE XDX=
u

u u u   (3.10) 

. . 1T Ts t XX =u u  

Question (3.10) can be solved by the generalized eigen-
vector problem stated below: 

T TXDX XXλ=u u    (3.11) 

To reduce ix to a k  dimensional vector, the transform 
function is matrix composed of the k  smallest eigenvectors. 

3.3. LRRDR Algorithm 

The algorithm has two steps, the first is to compute the 
reconstruction matrix W  of (3.4), and this problem can be 
solved by augmented Lagrange Method (ALM) or IALM 
(Inexact Augmented Lagrange Method) [20]. In this paper, 
we use IALM to accelerate the convergence speed. In (3.11) 
the generalized eigenvector problem often suffers from the 
computational degeneration of TXX . When X is not row full 
rank, we can decompose X  using singular value decompo-
sition as TX USV= , where n rU ×∈R  is the eigenvectors of 
matrix TXX , r rS ×∈R is a diagonal matrix whose elements in 
the diagonal is the square root of the eigenvalues of TX X , 

r mV R ×∈  is the eigenvectors of matrix TX X . As S  and TV
are both of full rank, we can use the full rank matrix  
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  X

~

=U
T

X = SV
T to replace X . The algorithm of LRRDR 

is stated below: 

Algorithm 1 

Input: data matrix n mX ×∈R  
Use IALM compute reconstruction matrix W of (3.4) 
Compute k eigenvectors 1 2[ , , , ]kU u u u= L  of (3.11) 

whose corresponding eigenvalues are of k least. 
Reduce the dimensionality of X usingY UX=  
Output: the reduced data setY  

4. EXPERIMENTS 

4.1. Toy Experiments 

This experiment is about transforming a set of three di-
mensional data into a set of one dimensional data. The three 
dimensional data is indeed lie in two different one dimen-
sional subspaces, and we want to transform this data into one 
dimensional without breaking the subspace structure. We 
first construct the data set and then add white noise of stand-
ard variance 0.1 to it (the left of Fig. 1). Then we randomly 
choose 10 points from each class, and get the data sets below 
(the right of Fig. 1). We use four methods PCA, NPE, SPP 
and LRRDR to reduce the data. For NPE we empirically set 

5k = as the neighborhood size, and the result shows 
LRRDR successfully reduce the two classes without mixing 
up and the other three methods fail that. Fig. (2) shows the 
result of dimensionality reduction of each method. 

The analysis of the result of the results these four meth-
ods are stated below. 

1. PCA is a global reduction method, it assumes that all 
of the data is distributed in one space, and it seeks the direc-
tion whose variance is of the maximum, and it abandons the 
other two directions. In this example, the direction PCA 
seeks is actually the direction of the green class lie. Although 
it is the direction of the maximum variance, it mixes up the 
two classes. 

2. Both NPE and SPP have better performance because 
these two methods preserve the local structure and conse-
quently, the two classes are linear separable after being 
transformed. But they do not perform as well as LRRDR 
does because the structure they preserve is not the subspace 
structure we need. 

3. The performance of LRRDR is rather impressive and 
the two classes are almost compressed into two points be-
cause it successfully discovered the two subspaces and pre-
serves it during dimensional reduction. In fact, the recon-
struction matrix is block diagonal and each block is corre-
sponding to a subspace. 

4.2. Face Recognition 

4.2.1. Data Sets Description and Parameters Sets 

In this paper, we use three prevalent data sets YaleB Face 
Database [21] and Yale Face database [22]. For YaleB, this 
data set contains 2432 photos of 38 individuals, and each 
person takes 64 photos under different illuminations. We list 
22 photos of one person for example. To reduce the compu-
ting complexity, we use the cropped images with the resolu-
tion of 50 * 50. Except for that, we did not any other prepro-
cessing. For Yale, this data set contains 165 photos of 15 
individuals. Every person has been filmed under 11 different  
 

 

Fig. (1). Three dim data, left: the data, right: the sample. 

 

 

 

 

 

Fig. (2). Performance of different reduction methods, from top to bottom: PCA, NPE, SPP, LRRDR. 
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conditions: happy, sleepy, left-light, wearing no glasses, 
normal, right-light, sad, center-light, surprised wearing 
glasses, and wink. The size of each photo is 30 * 30 and all 
the photos have been scaled to [0, 1]. When taking experi-
ments, we randomly pick half of images of every individual 
as the training data for every data set and the rest are spared 
for tests. To prevent from being disturbed by random error, 
we repeat the computing of every setting of dimension 10 
times and take the average as the result of recognition. 

4.2.2. Parameter Selection 

For PCA there is no parameter to be selected. For NPE, it 
has two pre-set parameters, the size of neighborhood k  and 
the kernel width t . In our experiment, the parameters are 
selected by attempting every number of integers from 1 to 10 
and the best one is kept for test. For SPP and LRRDR there 
is one parameter needs selected carefully is the error tolerant 
parameter λ , and we tried from 510−  to 1 increased 3 times 
each time.  

For classification, we make use of KNN with the number 
of adjacent neighbors set to 1 for simplicity. For every data 
set, we compute the baseline of recognition with KNN where 

1k =  before dimensionality reduction.  

4.2.3. Experiment Result and Discussion 

We compute a baseline for every data set as a compari-
son; it is the result of 1-NN without any dimensionality re-
duction. Similar with other experiments, we randomly 
choose half of the images of every class (individual) as train-
ing, and the rest are used as test and we get the baseline for 
every data set. 

PCA is one of the easiest to implement, it has no parame-
ter to pre-define, and it converges very fast, in our experi-
ment, it is faster than most of the other dimensionality reduc-
tion method, and the results of PCA float around the baseline. 
In our experiment, the performance of NPE differs a lot from 
the two data sets. For YaleB, NPE performs very bad, much  
 

 
Fig. (3). Recognition rate for YaleB. 

 

Fig. (4). Recognition rate for Yale. 
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lower than both the baseline and PCA due to the illumination 
changes greatly. But when it comes to the data set of Yale, 
NPE behaves very well, and the recognition rate is higher 
than PCA and the baseline. SPP has only one parameter to 
tune and consequently is easier to implement, however, it 
converges rather slow that it takes ten or hundred times 
slower than PCA and NPE. 

LRRDR outperforms in both of the two datasets. It is ro-
bust to the noises caused by poor lighting conditions, and 
thus the recognition rate is higher than PCA as it is sensitive 
to noises [23]. Moreover, the essential reason that LRRDR 
outperforms the other dimensionality reduction methods is 
that it discovers the subspace structure and preservers it 
while reducing. The recognition rate of the data set YaleB 
for different dimensions is shown in Fig. (3) and the recogni-
tion rate of the data set Yale is shown in Fig. (4). The best 
recognition rate for these data sets is shown in Table 1. 

CONCLUSION 

In this paper, we propose a novel dimensionality reduc-
tion method named LRRDR, which is an unsupervised linear 
dimensionality reduction method that is based on low rank 
representation. It is a global method and has only one pa-
rameter to tune and so it is easy to implement. It is robust to 
noises that influence other methods such as PCA. As the 
structure it discovers is global as well as local, it outperforms 
some local structure preserving methods such as NPE. Ex-
periments show that for artificial data set and some face da-
tabases like YaleB and Yale, LRRDR outperforms PCA, 
NPE and SPP.  

However, there are still some questions remain. As it is 
very hard to discover the subspaces when the data sets con-
tain front-view faces as well as side faces, the recognition 
rate of LRRDR is not so good as it performs in YaleB or 
Yale. To overcome this shortcoming, it is need to consider 
the supervised information, and we leave it to future work. 
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