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Abstract: A new hybrid flow shop scheduling problem with blocking is studied. The problem is characterized by multi-
stage unrelated parallel machines and no intermediate buffer. Firstly, the math model of the hybrid scheduling problem is 
constructed. And then the computation method of production period is given. Due to there is no intermediate buffer, and 
there are unrelated parallel machines in multi-stages, the production period is obtained through pushing from the opera-
tional time of each machine. Function objective of the proposed method is to minimize the production period. Finally the 
scheduling results are obtained based on genetic algorithm and simulated annealing algorithm(GASA). Scheduling results 
based on two cases and comparisons with some existing algorithms show that the method proposed in this paper is effec-
tive and feasible.  
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1. INTRODUCTION 

Hybrid flow shop scheduling problem(HFSP) is extended 
based on classical flow shop scheduling, in which the paral-
lel machines are considered. Due to its application in petro-
leum, chemical engineering, metallurgy, and rail transporta-
tion, HFSP has been widely studied by many researchers.  

It is assumed that there is an infinite buffer between the 
neighborhood machines in the traditional HFSP, but in prac-
tical production process, the buffer is limited or nonexistent. 
If there is no intermediate buffer, when job in  is finished on 
machine

 
m

j
, then transported to the machine

  
m

j+1
, but if the 

machine 
  
m

j+1
 is not free, the next operation of job 

 
n

i
 will 

not be processed until the machine 
  
m

j+1
 is free. These prob-

lems are blocking flow shop scheduling problems. For ex-
ample, under normal conditions, the buffer volume is limited 
by the workshop space. In rail transportation, it is very strict 
to railway segments, and each railway segment can be occu-
pied at most one freight train. The freight train is blocked on 
the railway segment if the former neighborhood railway 
segment is occupied until the former segment is released. A 
flow shop scheduling problem with intermediate buffers lo-
cated between two consecutive machines was studied in [1], 
and a hybrid discrete differential evolution algorithm is pro-
posed to minimize the make-span. A blocking flow shop  
 
 

scheduling problem with n jobs and m machines is studied in 
[2-7]. A hybrid particle swarm optimization algo-
rithm(HPSO) was proposed and improved iterated greedy 
algorithm was applied to get the initial optimized solution, 
while PSO algorithm was used for global optimization in [2]. 
In [7], it deals with a scheduling problem of a real-world 
production process in the metal-working industry. The pro-
duction process can be described as an offline stochastic 
flexible flow-shop problem with limited buffers. In [8], the 
blocking flow shop scheduling problem with the total com-
pletion time criterion is resolved based on one branch and 
bound algorithm. In [9], three algorithms are applied for re-
solving the flow shop scheduling with blocking to minimize 
the total flow time. 

In this paper, the blocking hybrid flow shop scheduling 
problem with multi-stages unrelated parallel machines 
(BHFSP-UPM) is investigated based on genetic algorithm 
and simulated annealing algorithm. The objective is to plot a 
processing routing for each job, and to find a permutation of 
jobs that minimizes the maximum completion time. 

2. DESCRIPTION OF BHFSP-UPM  

BHFSP-UPM can be defined as follows. n jobs are to be 
scheduled on p stages, and each job has the same p opera-
tions. Each operation is specified by the required machines 
and the processing time. Each stage involves mj machines, 
and the job processing time is unrelated on different ma-
chines of the same stage. There is no intermediate buffer 
during the processing, and the job will not stay on the pro-
cessing machine until there is free machine on the next stage. 
Following assumptions are considered for BHFSP-UPM: 
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• Jobs are available at zero time; 

• Job processing cannot be interrupted; 

• Jobs are available for processing at a stage immedi-
ately after processing completion at the previous 
stage; 

• At least one stage exists parallel machines; 

• Parallel machines on the same stage are unrelated in 
capability and processing rate; 

• Each machine can process only one job at the same 
time; 

• Each job must be processed on each stage, but the 
processing machine is randomly; 

• The processing time of each job operation is pre-
specified; 

• A job cannot be processed on more than one ma-
chine at the same time; 

• Jobs will stay on the machine after processing if the 
next stage there is no free machine.  

3. MATHEMATICAL MODEL OF BHFSP-UPM  

The scheduling objective is: 

min Z (1) 

Constrained conditions: 
1. the last operation of job i  

 
T

ijk
! Z  (2) 

2. the non-last operation of job i  

  

T
ijk
!T

i( j!1)g
" t

ijk

         #i, j,g,    j $ 1
 (3) 

3. Operation of job i in the processing routing j and op-
eration of job p in the processing routing q both need 
processing on the machine m  

 
T

ijk
!T

qsk
" t

ijk
 (4) 

 
T

qsk
!T

ijk
" t

qsk
 (5) 

4. It is necessary to ensure that only one parallel ma-
chine is selected on each stage for all jobs 

  

X
ijk

k

! = 1  (6) 

5. Any operation of job i on the machine k 

  
T

ijk
> 0  (7) 

where, Z is the total completing time of the scheduling, and 

   
Z = max C

1
,C

1
,!,C

n
{ } ; 

 
C

i
 is the completion time of job i . 

i represents a job, 
   i = 1,2,!n ; jm  is the parallel machine 

number of each stage, 
   
j = 1,2,! p , p  is the total number of 

stage; 
 
t

ijk
and 

 
T

ijk
 represents processing time and completion 

time of job i for its jth operation on machine k. Equation (2) 
is a natural constraint to ensure that last operations should be 
completed before make-span; (3) is to ensure operation j-1 
on machine g precedes the next operation j on machine k for 
the same job, (4)and (5) are to ensure that each machine can 
process at most one job at a time; (4) denotes that operation s 
of job q precedes operation j of job i on the machine k; (5) 
denotes the opposite processing sequence; (6) denotes that 
on each stage, each job can be processed on at most one ma-
chine at any time; (7) is to ensure the completing time of any 
operation of job i.  

4. COMPUTATION OF PRODUCTION PERIOD  

4.1. Computation Formulas  

Due to there are unrelated parallel machines, the compu-
tation of production period for BHFSP-UPM is different 
from BHFSP. The computation formulas of jobs departure 
time for BHFSP are given in [10, 11]. The comparison 
graphs between BHFSP and BHFSP-UPM are given in  
Fig. (1) and Fig. (2). The production period of BHFSP-UPM 
is obviously shorter than the period of BHFSP because of the 
parallel machines. The reasons can be found in Fig. (1) and 
Fig. (2). In Fig. (2), there are two parallel machines on each 
stage. 
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Fig. (1). Computation of )),(( kje π  of BHFSP. 
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 Let a job permutation 
   
! ={! (1),! (2),!,! (n)}  represent 

the schedule of jobs to be processed, and 
  
e(! (i), j,m( j)) , 

i=1,…,n, denotes the starting time of the operation 

  
o(! (i), j,m( j)) , j=1,…,p , m(j)=1,…, jm , 

  
o(! (i), j,m( j))  

denotes job 
  
! (i)  processed on stage j and the machine m(j), 

  
t(! (i), j,m( j))  is the processing time of 

  
o(! (i), j,m( j)) .  

The computation formulas of production period for 
BHFSP: 

  
e(! (1),1) =0 (8) 

  
e(! (1),k) = e(! (1),k "1)+ t(! (1),k "1)  k=2,…,m. (9) 

  
e(! (i),1) = e(! (i "1),2)  j=2,…,n. (10) 

  

e(! (i),k) = max{e(! (i),k "1)+ t(! (i),

k "1),e(! (i "1),k +1)}i = 2,…,n,  k = 2,…,m.  (11) 

)),(()),(()1),(( mitmiemie πππ +=+  j=2,…,n (12) 

Where 
  
e(! (i),1) , i=1,…,n, denotes the starting time of job 

)(iπ  on the first machine. The production period:  

Z=
  
e(! (i),m)+ t(! (i),m)  (13) 

The computation formulas of production period for 
BHFSP-UPM are given as follows: 

  
e(! (1),1,m(1)) =0 (14) 

=))(,),1(( jmje π  )))1(,1),1(())1(,1),1((min( −−+−− jmjtjmje ππ   

 j=2,…,p,. (15) 

))(,),(( jmjie π = 
  
max{e(! (i), j "1,m( j "1))+ t(! (i), j "1,  

  
m( j !1)),  

  
min(e(! (s), j +1,m( j +1)))}  

s=1,…,i-1, and before processing job )(iπ , job )(sπ  is the 
last job on each machine. 

Z=max(
  
e(! (i), p,m( p))+ t(! (i), p,m( p)) ) 

4.2. Computation Steps of Production Period  

The computation of period for BHFSP-UPM is elaborat-
ed in more detail: 

Step 1 
  
e(! (1),1,m(1)) =0; 

Step 2 Set j=1 

Step 3 Set m(j)=1, 

 M=
  
t(! (1), j,m( j)) . 

 Step 3.1 m(j)= m(j)+1, if m(j)> jm  go to step 4, other-
wise go to step 3.2. 

 Step 3.2 if M >
  
t(! (1), j,m(1)) , then  

M =
  
t(! (1), j,m( j)) , go to step 3.1. 

Step 4 
  
t(! (1), j,m( j)) = e(! (1), j,m( j))+ M , output m(j). 

Step 5 update j=j+1, if j > p then go to step 6, otherwise 
go to step 3. 

Step 6 Set j=1, i=2, 
  
e(! (i),0,m(0)) = 0 , 

  
e(! (0), j +1,m( j +1)) =0. 

Step 7 Set m(j)=1, N=
  
e(! (s), j +1,m( j +1)) . 

 Step 7.1 m(j)= m(j)+1, if m(j)> jm  then go to step 8, oth-
erwise go to step 7.2. 

 Step 7.2 if N >
  
e(! (s), j +1,m( j +1)) , then 

 N =
  
e(! (s), j +1,m( j +1)) , go to step 7.1. 

Step 8 
  
e(! (i), j,m( j)) =

  
max{T (! (i), j "1,m( j "1)), N} , 

output m(j). 

Step 9 Update j=j+1, if j > p then go to step 10, otherwise 
go to step 7. 
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Fig. (2). Computation of )),(( kje π  of BHFSP-UPM. 
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Step 10 Update i=i+1, if j > n then go to step 11, other-
wise go to step 7. 

Step 11 Stop and output the final sequence, and Z= max(

  
e(! (i), p,m( p))+ t(! (i), p,m( p)) ). 

Where 
  
T (! (1), j,m( j))  is the finishing time of operation

  
o(! (1), j,m( j)) . 

5. GASA 

In theory, GA and SA are both based on probability dis-
tributions. However, SA reaches an almost zero probability-
jumping phenomenon through endowing a key time variety 
in searching, and avoiding converging to a local optimum 
and attaining total optimization. GA realizes optimization 
through population generic operation based on survival of 
the fittest. GASA hybrid algorithm is good for searching for 
an optimum process, enhancing whole and local search abil-
ity and efficiency.  

The details of GASA are as follows: 
• Permutation representation represents a solution of 

a problem as chromosome.  

• Create initial population and fitness function. 

• Crossover operation: Before the operation, divide 
population into K sub-populations (4 sub-
populations in simulation): select the optimum indi-
vidual in each sub-population and crossover with 
other individuals until producing K new popula-
tions, then select the best individual. Adopt MPPX, 
MGOX, MGPMX1, and MGPMX2 [12] in simula-
tion, which can make the population have obvious 
diversity.  

• Selection. Select optimum chromosome between 
offspring chromosome produced by crossover in 
different sub-population and parent. 

• Mutation: INV mutation is used to produce small 
perturbations on chromosomes. 

• Metropolis sample process. The stochastic rule, in 
which the probabilistic decision is made to prevent 
the optimization process from sticking at a possible 
local minima, is the main idea behind simulated an-
nealing. The probability of accepting a new individ-
ual under the circumstances: min {1, exp(- !

/t)}>random[0,1] ( here t denotes the temperature, 
Δ  denotes difference of aim value between new 
and old). 

• Enhancing memory ability: In order to avoid losing 
the current optimum solution in the search process, 
save the current optimum solution through adding 
memory.  

• Cooling scheme: Exponential cooling,
  
t

k
= !t

k"1
, 

and ! =0.9 in simulation.  

 

• Criterion of temperature changing and algorithm 
termination: In order to adapt dynamic variety of 
algorithm performance, pay attention to optimum 
and time performance, adopt two criteria of temper-
ature changing and algorithm termination. In the op-
timizing process, if the optimum value remains con-
stant through 30 eras then start cooling; if the opti-
mum value remains constant through cooling 30 it-
erations then stop searching, the optimum value is 
the solution. 

6. CASE STUDY AND ANALYSIS 

In order to test the validity and feasibility of GASA and 
the method proposed in this paper, two cases in [11] are ap-
plied. 

6.1. Case 1 

There are three stages, in each stage, the parallel ma-
chines are 3, 2, 4, respectively. The detailed information of 
jobs and machines are given in Table 1. Firstly, the GASA 
algorithm is tested and compared to GA [13], SFLA [14], 
and EDA [11]. The scheduling results are obtained based on 
GASA with minimizing the production period as function 
objective. The algorithm parameters are that population size 
is 100, crossover rate is 0.8, mutation rate is 0.01. Run the 
simulation 10 times, and the comparison results given in 
Table 2. 

In [11, 13, 14], the results are corresponding to the hybrid 
flow shop scheduling problem with intermediate buffer and 
unrelated parallel machines. So the results for above problem 
are given in Table 2. From Table 2, it shows that not only 
GASA has better solutions than conventional GA and SFLA, 
but also the stability of GASA is much better than that of 
GA, the optimal solution can be found the production period 
Z=23. The Gantt graph of one of the optimal results is given 
in Fig. (3). Fig. (4) is Gantt graph of one scheduling result of 
BHFSP-UPM. 

6.2. Case 2 

In order to further test the validity of GASA algorithm, a 
large scale hybrid scheduling problem is applied. There are 
four stages, in each stage, the parallel machines are 3, 3, 2, 2, 
respectively. The detailed information of jobs and machines 
are given in Table 3. 

Run the simulation 10 times and compared with algo-
rithm EDA [11], GA [13], SFLA [14]. In [13], it only gave 
one result, 10 results are given based on other algorithms. 
The comparisons are given in table 4. From Table 4, it shows 
that not only GASA has better solutions than conventional 
GA and SFLA, but also the stability of GASA is much better 
than that of GA, the optimal solution can be found Z=299. 
Compared with EDA [11], the results performance of GASA 
is bit poor than that of EDA. The Gantt graph of optimal 
result is given in Fig. (5). 
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Table 1. Processing information of jobs. 

Job 
Stage 1 Stage 2 Stage 3 

M1 M2 M3 M4 M5 M6 M7 M8 M9 

1 2 2 3 4 5 2 3 2 3 

2 4 5 4 3 4 3 4 5 4 

3 6 5 4 4 2 3 4 2 5 

4 4 3 4 6 5 3 6 5 8 

5 4 5 3 3 1 3 4 6 5 

6 6 5 4 2 3 4 3 9 5 

7 5 2 4 4 6 3 4 3 5 

8 3 5 4 7 5 3 3 6 4 

9 2 5 4 1 2 7 8 6 5 

10 3 6 4 3 4 4 8 6 7 

11 5 2 4 3 5 6 7 6 5 

12 6 5 4 5 4 4 4 7 5 

 
Table 2. Scheduling results and comparisons. 

No. 1 2 3 4 5 6 7 8 9 10 

GA 30 27 26 27 29 27 26 27 26 28 

SFLA 24 24 24 24 24 24 24 24 24 24 

EDA 23 24 23 23 23 23 24 24 23 24 

GASA 23 23 23 24 24 23 24 24 23 23 

 
Table 3. Processing information of jobs. 

Job 

Stage 1 Stage 2 Stage 3 Stage 4 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

1 45 48 50 35 35 30 30 35 25 26 

2 45 50 45 35 36 35 35 34 25 30 

3 50 45 46 35 36 36 31 34 30 31 

4 50 48 48 34 38 35 32 33 27 31 
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Table 3. contd… 

Job 

Stage 1 Stage 2 Stage 3 Stage 4 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

5 45 46 48 30 35 50 34 32 28 31 

6 45 45 45 30 35 50 33 32 30 26 

7 47 50 47 31 30 35 35 31 29 25 

8 50 45 48 32 30 34 34 30 24 27 

9 48 46 46 33 34 30 34 30 25 25 

10 45 47 47 33 33 30 35 34 32 26 

11 46 50 45 34 30 50 30 35 31 25 

12 48 50 47 35 31 35 32 30 25 30 

 

 
Fig. (3). Gantt graph with intermediate buffer. 

 

Table 4. Scheduling results and comparisons. 

No. 1 2 3 4 5 6 7 8 9 10 

GA 347          

SFLA 297 313 297 297 313 310 313 311 316 306 

EDA 297 297 297 297 298 297 297 298 298 298 

GASA 299 299 299 299 301 299 299 301 299 299 
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Fig. (4). Gantt graph of BHFSP-UPM. 

 

 
Fig. (5). Gantt graph with intermediate buffer. 
 

The validity and feasibility of GASA has been verified 
through case 1 and case 2. And then the hybrid flow shop 
scheduling with no intermediate buffer, and there are unre-
lated parallel machines is tested based on the math model 
and the computation method of period proposed in this pa-
per. The case is the same with case one. The comparison 
Gantt graphs between hybrid flow shop scheduling with in-
termediate buffer and BHFSP-UPM are given in Fig. (3) and 
Fig. (4), respectively. The optimal result of BHFSP-UPM is 
24. Due to there is no intermediate buffer, the free time of 
machines is longer than that results with buffer in Fig. (3). In 
Fig. (3), the free time of machine 1, 2, and 3 are all 0, but in 
Fig. (4), the free time of corresponding machine 1, 2, and 3 
are 2, 5, and 4, respectively. The starting time of the first 
operation of job 8 in machine 1 is 5 in Fig. (3), but in Fig. (4) 
the starting time is 6. Because the former job 10 is not on the 
machine 1 until its next operation begins to process on time 
6. Compared to the scheduling in Fig. (3), there is no inter-
mediate buffer in Fig. (4). The first processing machine of 
job 3 adjusted from machine 3 in Fig. (3) to machine 1 in 
Fig. (4), the operational time of machine 3 is 19, although 
the finishing time of operation 051 is 15. But the operational 

time of machine 1 is 14, although the processing time of job 
3 is 6 on machine 1, it is a bit longer than the processing 
time on machine 3, the finishing time is 20. In machine 3, 
the finishing time of job 3 is 23. 

From case 1 and case 2, the GASA algorithm and the 
computation method of scheduling method is feasible for 
BHFSP-UPM. Compared with other existing algorithms, the 
results performance obtained with the method proposed in 
this paper is higher. 

CONCLUSION 

In this paper, a blocking hybrid flow shop scheduling 
problem with multi-stage unrelated parallel ma-
chines(BHFSP-UPM) is studied. The math model is con-
structed considered that there is no intermediate. The pro-
cessing time in parallel machines is different according to 
the conditions of jobs and machines. The evolution of pro-
cessing sequence decision can be obtained using a GASA 
with production period as the criterion based on the compu-
tation method of production period. When these factors are 
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considered during scheduling, generally, a more effective 
schedule can be obtained. In order to test the performance of 
the method, scheduling results based on two cases and com-
parisons with some existing algorithms show that the method 
proposed in this paper is effective and feasible. 
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