
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Automation and Control Systems Journal, 2014, 6, 593-600 593

 1874-4443/14 2014 Bentham Open

Open Access
Study on Hybrid Flow Shop Scheduling Problem with Blocking Based on
GASA

Ze Tao1,*, Xiaoxia Liu2 and Pengfei Zeng1

1School of Mechanical Engineering, Shenyang Ligong University, Shenyang, 110159, China
2 School of Electrical &Mechanical Engineering, Henan University of Technology, Henan, China

Abstract: A new hybrid flow shop scheduling problem with blocking is studied. The problem is characterized by multi-
stage unrelated parallel machines and no intermediate buffer. Firstly, the math model of the hybrid scheduling problem is
constructed. And then the computation method of production period is given. Due to there is no intermediate buffer, and
there are unrelated parallel machines in multi-stages, the production period is obtained through pushing from the opera-
tional time of each machine. Function objective of the proposed method is to minimize the production period. Finally the
scheduling results are obtained based on genetic algorithm and simulated annealing algorithm(GASA). Scheduling results
based on two cases and comparisons with some existing algorithms show that the method proposed in this paper is effec-
tive and feasible.

Keywords: Hybrid flow shop scheduling problem, blocking, unrelated parallel machines.

1. INTRODUCTION

Hybrid flow shop scheduling problem(HFSP) is extended
based on classical flow shop scheduling, in which the paral-
lel machines are considered. Due to its application in petro-
leum, chemical engineering, metallurgy, and rail transporta-
tion, HFSP has been widely studied by many researchers.

It is assumed that there is an infinite buffer between the
neighborhood machines in the traditional HFSP, but in prac-
tical production process, the buffer is limited or nonexistent.
If there is no intermediate buffer, when job in is finished on
machine

m

j
, then transported to the machine

m

j+1
, but if the

machine

m

j+1
 is not free, the next operation of job

n

i
 will

not be processed until the machine

m

j+1
 is free. These prob-

lems are blocking flow shop scheduling problems. For ex-
ample, under normal conditions, the buffer volume is limited
by the workshop space. In rail transportation, it is very strict
to railway segments, and each railway segment can be occu-
pied at most one freight train. The freight train is blocked on
the railway segment if the former neighborhood railway
segment is occupied until the former segment is released. A
flow shop scheduling problem with intermediate buffers lo-
cated between two consecutive machines was studied in [1],
and a hybrid discrete differential evolution algorithm is pro-
posed to minimize the make-span. A blocking flow shop

scheduling problem with n jobs and m machines is studied in
[2-7]. A hybrid particle swarm optimization algo-
rithm(HPSO) was proposed and improved iterated greedy
algorithm was applied to get the initial optimized solution,
while PSO algorithm was used for global optimization in [2].
In [7], it deals with a scheduling problem of a real-world
production process in the metal-working industry. The pro-
duction process can be described as an offline stochastic
flexible flow-shop problem with limited buffers. In [8], the
blocking flow shop scheduling problem with the total com-
pletion time criterion is resolved based on one branch and
bound algorithm. In [9], three algorithms are applied for re-
solving the flow shop scheduling with blocking to minimize
the total flow time.

In this paper, the blocking hybrid flow shop scheduling
problem with multi-stages unrelated parallel machines
(BHFSP-UPM) is investigated based on genetic algorithm
and simulated annealing algorithm. The objective is to plot a
processing routing for each job, and to find a permutation of
jobs that minimizes the maximum completion time.

2. DESCRIPTION OF BHFSP-UPM

BHFSP-UPM can be defined as follows. n jobs are to be
scheduled on p stages, and each job has the same p opera-
tions. Each operation is specified by the required machines
and the processing time. Each stage involves mj machines,
and the job processing time is unrelated on different ma-
chines of the same stage. There is no intermediate buffer
during the processing, and the job will not stay on the pro-
cessing machine until there is free machine on the next stage.
Following assumptions are considered for BHFSP-UPM:

594 The Open Automation and Control Systems Journal, 2014, Volume 6 Tao et al.

• Jobs are available at zero time;

• Job processing cannot be interrupted;

• Jobs are available for processing at a stage immedi-
ately after processing completion at the previous
stage;

• At least one stage exists parallel machines;

• Parallel machines on the same stage are unrelated in
capability and processing rate;

• Each machine can process only one job at the same
time;

• Each job must be processed on each stage, but the
processing machine is randomly;

• The processing time of each job operation is pre-
specified;

• A job cannot be processed on more than one ma-
chine at the same time;

• Jobs will stay on the machine after processing if the
next stage there is no free machine.

3. MATHEMATICAL MODEL OF BHFSP-UPM

The scheduling objective is:

min Z (1)

Constrained conditions:
1. the last operation of job i

T

ijk
! Z (2)

2. the non-last operation of job i

T
ijk
!T

i(j!1)g
" t

ijk

 #i, j,g, j $ 1
 (3)

3. Operation of job i in the processing routing j and op-
eration of job p in the processing routing q both need
processing on the machine m

T

ijk
!T

qsk
" t

ijk
 (4)

T

qsk
!T

ijk
" t

qsk
 (5)

4. It is necessary to ensure that only one parallel ma-
chine is selected on each stage for all jobs

X
ijk

k

! = 1 (6)

5. Any operation of job i on the machine k

T

ijk
> 0 (7)

where, Z is the total completing time of the scheduling, and

Z = max C

1
,C

1
,!,C

n
{ } ;

C

i
 is the completion time of job i .

i represents a job,
 i = 1,2,!n ; jm is the parallel machine

number of each stage,

j = 1,2,! p , p is the total number of

stage;

t

ijk
and

T

ijk
 represents processing time and completion

time of job i for its jth operation on machine k. Equation (2)
is a natural constraint to ensure that last operations should be
completed before make-span; (3) is to ensure operation j-1
on machine g precedes the next operation j on machine k for
the same job, (4)and (5) are to ensure that each machine can
process at most one job at a time; (4) denotes that operation s
of job q precedes operation j of job i on the machine k; (5)
denotes the opposite processing sequence; (6) denotes that
on each stage, each job can be processed on at most one ma-
chine at any time; (7) is to ensure the completing time of any
operation of job i.

4. COMPUTATION OF PRODUCTION PERIOD

4.1. Computation Formulas

Due to there are unrelated parallel machines, the compu-
tation of production period for BHFSP-UPM is different
from BHFSP. The computation formulas of jobs departure
time for BHFSP are given in [10, 11]. The comparison
graphs between BHFSP and BHFSP-UPM are given in
Fig. (1) and Fig. (2). The production period of BHFSP-UPM
is obviously shorter than the period of BHFSP because of the
parallel machines. The reasons can be found in Fig. (1) and
Fig. (2). In Fig. (2), there are two parallel machines on each
stage.

1
1

1
1

2
2

2
2M4

M3
M2
M1

t
e4,1)

3
3

3
3

e(4,2)

e(4,5)

4
4

4
4

Fig. (1). Computation of)),((kje π of BHFSP.

Study on Hybrid Flow Shop Scheduling Problem The Open Automation and Control Systems Journal, 2014, Volume 6 595

 Let a job permutation

! ={! (1),! (2),!,! (n)} represent

the schedule of jobs to be processed, and

e(! (i), j,m(j)) ,

i=1,…,n, denotes the starting time of the operation

o(! (i), j,m(j)) , j=1,…,p , m(j)=1,…, jm ,

o(! (i), j,m(j))

denotes job

! (i) processed on stage j and the machine m(j),

t(! (i), j,m(j)) is the processing time of

o(! (i), j,m(j)) .

The computation formulas of production period for
BHFSP:

e(! (1),1) =0 (8)

e(! (1),k) = e(! (1),k "1)+ t(! (1),k "1) k=2,…,m. (9)

e(! (i),1) = e(! (i "1),2) j=2,…,n. (10)

e(! (i),k) = max{e(! (i),k "1)+ t(! (i),

k "1),e(! (i "1),k +1)}i = 2,…,n, k = 2,…,m. (11)

)),(()),(()1),((mitmiemie πππ +=+ j=2,…,n (12)

Where

e(! (i),1) , i=1,…,n, denotes the starting time of job

)(iπ on the first machine. The production period:

Z=

e(! (i),m)+ t(! (i),m) (13)

The computation formulas of production period for
BHFSP-UPM are given as follows:

e(! (1),1,m(1)) =0 (14)

=))(,),1((jmje π)))1(,1),1(())1(,1),1((min(−−+−− jmjtjmje ππ

 j=2,…,p,. (15)

))(,),((jmjie π =

max{e(! (i), j "1,m(j "1))+ t(! (i), j "1,

m(j !1)),

min(e(! (s), j +1,m(j +1)))}

s=1,…,i-1, and before processing job)(iπ , job)(sπ is the
last job on each machine.

Z=max(

e(! (i), p,m(p))+ t(! (i), p,m(p)))

4.2. Computation Steps of Production Period

The computation of period for BHFSP-UPM is elaborat-
ed in more detail:

Step 1

e(! (1),1,m(1)) =0;

Step 2 Set j=1

Step 3 Set m(j)=1,

 M=

t(! (1), j,m(j)) .

 Step 3.1 m(j)= m(j)+1, if m(j)> jm go to step 4, other-
wise go to step 3.2.

 Step 3.2 if M >

t(! (1), j,m(1)) , then

M =

t(! (1), j,m(j)) , go to step 3.1.

Step 4

t(! (1), j,m(j)) = e(! (1), j,m(j))+ M , output m(j).

Step 5 update j=j+1, if j > p then go to step 6, otherwise
go to step 3.

Step 6 Set j=1, i=2,

e(! (i),0,m(0)) = 0 ,

e(! (0), j +1,m(j +1)) =0.

Step 7 Set m(j)=1, N=

e(! (s), j +1,m(j +1)) .

 Step 7.1 m(j)= m(j)+1, if m(j)> jm then go to step 8, oth-
erwise go to step 7.2.

 Step 7.2 if N >

e(! (s), j +1,m(j +1)) , then

 N =

e(! (s), j +1,m(j +1)) , go to step 7.1.

Step 8

e(! (i), j,m(j)) =

max{T (! (i), j "1,m(j "1)), N} ,

output m(j).

Step 9 Update j=j+1, if j > p then go to step 10, otherwise
go to step 7.

1

1

1

1

2

2

2

2M4'

M3'

M2

M1
t

e(4,1)

3

3

3

3

e(4,2)

M1'

M2'
M3

M4

4

4

4

4

e(4,5)

Fig. (2). Computation of)),((kje π of BHFSP-UPM.

596 The Open Automation and Control Systems Journal, 2014, Volume 6 Tao et al.

Step 10 Update i=i+1, if j > n then go to step 11, other-
wise go to step 7.

Step 11 Stop and output the final sequence, and Z= max(

e(! (i), p,m(p))+ t(! (i), p,m(p))).

Where

T (! (1), j,m(j)) is the finishing time of operation

o(! (1), j,m(j)) .

5. GASA

In theory, GA and SA are both based on probability dis-
tributions. However, SA reaches an almost zero probability-
jumping phenomenon through endowing a key time variety
in searching, and avoiding converging to a local optimum
and attaining total optimization. GA realizes optimization
through population generic operation based on survival of
the fittest. GASA hybrid algorithm is good for searching for
an optimum process, enhancing whole and local search abil-
ity and efficiency.

The details of GASA are as follows:
• Permutation representation represents a solution of

a problem as chromosome.

• Create initial population and fitness function.

• Crossover operation: Before the operation, divide
population into K sub-populations (4 sub-
populations in simulation): select the optimum indi-
vidual in each sub-population and crossover with
other individuals until producing K new popula-
tions, then select the best individual. Adopt MPPX,
MGOX, MGPMX1, and MGPMX2 [12] in simula-
tion, which can make the population have obvious
diversity.

• Selection. Select optimum chromosome between
offspring chromosome produced by crossover in
different sub-population and parent.

• Mutation: INV mutation is used to produce small
perturbations on chromosomes.

• Metropolis sample process. The stochastic rule, in
which the probabilistic decision is made to prevent
the optimization process from sticking at a possible
local minima, is the main idea behind simulated an-
nealing. The probability of accepting a new individ-
ual under the circumstances: min {1, exp(- !

/t)}>random[0,1] (here t denotes the temperature,
Δ denotes difference of aim value between new
and old).

• Enhancing memory ability: In order to avoid losing
the current optimum solution in the search process,
save the current optimum solution through adding
memory.

• Cooling scheme: Exponential cooling,

t

k
= !t

k"1
,

and ! =0.9 in simulation.

• Criterion of temperature changing and algorithm
termination: In order to adapt dynamic variety of
algorithm performance, pay attention to optimum
and time performance, adopt two criteria of temper-
ature changing and algorithm termination. In the op-
timizing process, if the optimum value remains con-
stant through 30 eras then start cooling; if the opti-
mum value remains constant through cooling 30 it-
erations then stop searching, the optimum value is
the solution.

6. CASE STUDY AND ANALYSIS

In order to test the validity and feasibility of GASA and
the method proposed in this paper, two cases in [11] are ap-
plied.

6.1. Case 1

There are three stages, in each stage, the parallel ma-
chines are 3, 2, 4, respectively. The detailed information of
jobs and machines are given in Table 1. Firstly, the GASA
algorithm is tested and compared to GA [13], SFLA [14],
and EDA [11]. The scheduling results are obtained based on
GASA with minimizing the production period as function
objective. The algorithm parameters are that population size
is 100, crossover rate is 0.8, mutation rate is 0.01. Run the
simulation 10 times, and the comparison results given in
Table 2.

In [11, 13, 14], the results are corresponding to the hybrid
flow shop scheduling problem with intermediate buffer and
unrelated parallel machines. So the results for above problem
are given in Table 2. From Table 2, it shows that not only
GASA has better solutions than conventional GA and SFLA,
but also the stability of GASA is much better than that of
GA, the optimal solution can be found the production period
Z=23. The Gantt graph of one of the optimal results is given
in Fig. (3). Fig. (4) is Gantt graph of one scheduling result of
BHFSP-UPM.

6.2. Case 2

In order to further test the validity of GASA algorithm, a
large scale hybrid scheduling problem is applied. There are
four stages, in each stage, the parallel machines are 3, 3, 2, 2,
respectively. The detailed information of jobs and machines
are given in Table 3.

Run the simulation 10 times and compared with algo-
rithm EDA [11], GA [13], SFLA [14]. In [13], it only gave
one result, 10 results are given based on other algorithms.
The comparisons are given in table 4. From Table 4, it shows
that not only GASA has better solutions than conventional
GA and SFLA, but also the stability of GASA is much better
than that of GA, the optimal solution can be found Z=299.
Compared with EDA [11], the results performance of GASA
is bit poor than that of EDA. The Gantt graph of optimal
result is given in Fig. (5).

Study on Hybrid Flow Shop Scheduling Problem The Open Automation and Control Systems Journal, 2014, Volume 6 597

Table 1. Processing information of jobs.

Job
Stage 1 Stage 2 Stage 3

M1 M2 M3 M4 M5 M6 M7 M8 M9

1 2 2 3 4 5 2 3 2 3

2 4 5 4 3 4 3 4 5 4

3 6 5 4 4 2 3 4 2 5

4 4 3 4 6 5 3 6 5 8

5 4 5 3 3 1 3 4 6 5

6 6 5 4 2 3 4 3 9 5

7 5 2 4 4 6 3 4 3 5

8 3 5 4 7 5 3 3 6 4

9 2 5 4 1 2 7 8 6 5

10 3 6 4 3 4 4 8 6 7

11 5 2 4 3 5 6 7 6 5

12 6 5 4 5 4 4 4 7 5

Table 2. Scheduling results and comparisons.

No. 1 2 3 4 5 6 7 8 9 10

GA 30 27 26 27 29 27 26 27 26 28

SFLA 24 24 24 24 24 24 24 24 24 24

EDA 23 24 23 23 23 23 24 24 23 24

GASA 23 23 23 24 24 23 24 24 23 23

Table 3. Processing information of jobs.

Job

Stage 1 Stage 2 Stage 3 Stage 4

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

1 45 48 50 35 35 30 30 35 25 26

2 45 50 45 35 36 35 35 34 25 30

3 50 45 46 35 36 36 31 34 30 31

4 50 48 48 34 38 35 32 33 27 31

598 The Open Automation and Control Systems Journal, 2014, Volume 6 Tao et al.

Table 3. contd…

Job

Stage 1 Stage 2 Stage 3 Stage 4

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

5 45 46 48 30 35 50 34 32 28 31

6 45 45 45 30 35 50 33 32 30 26

7 47 50 47 31 30 35 35 31 29 25

8 50 45 48 32 30 34 34 30 24 27

9 48 46 46 33 34 30 34 30 25 25

10 45 47 47 33 33 30 35 34 32 26

11 46 50 45 34 30 50 30 35 31 25

12 48 50 47 35 31 35 32 30 25 30

Fig. (3). Gantt graph with intermediate buffer.

Table 4. Scheduling results and comparisons.

No. 1 2 3 4 5 6 7 8 9 10

GA 347

SFLA 297 313 297 297 313 310 313 311 316 306

EDA 297 297 297 297 298 297 297 298 298 298

GASA 299 299 299 299 301 299 299 301 299 299

Study on Hybrid Flow Shop Scheduling Problem The Open Automation and Control Systems Journal, 2014, Volume 6 599

Fig. (4). Gantt graph of BHFSP-UPM.

Fig. (5). Gantt graph with intermediate buffer.

The validity and feasibility of GASA has been verified
through case 1 and case 2. And then the hybrid flow shop
scheduling with no intermediate buffer, and there are unre-
lated parallel machines is tested based on the math model
and the computation method of period proposed in this pa-
per. The case is the same with case one. The comparison
Gantt graphs between hybrid flow shop scheduling with in-
termediate buffer and BHFSP-UPM are given in Fig. (3) and
Fig. (4), respectively. The optimal result of BHFSP-UPM is
24. Due to there is no intermediate buffer, the free time of
machines is longer than that results with buffer in Fig. (3). In
Fig. (3), the free time of machine 1, 2, and 3 are all 0, but in
Fig. (4), the free time of corresponding machine 1, 2, and 3
are 2, 5, and 4, respectively. The starting time of the first
operation of job 8 in machine 1 is 5 in Fig. (3), but in Fig. (4)
the starting time is 6. Because the former job 10 is not on the
machine 1 until its next operation begins to process on time
6. Compared to the scheduling in Fig. (3), there is no inter-
mediate buffer in Fig. (4). The first processing machine of
job 3 adjusted from machine 3 in Fig. (3) to machine 1 in
Fig. (4), the operational time of machine 3 is 19, although
the finishing time of operation 051 is 15. But the operational

time of machine 1 is 14, although the processing time of job
3 is 6 on machine 1, it is a bit longer than the processing
time on machine 3, the finishing time is 20. In machine 3,
the finishing time of job 3 is 23.

From case 1 and case 2, the GASA algorithm and the
computation method of scheduling method is feasible for
BHFSP-UPM. Compared with other existing algorithms, the
results performance obtained with the method proposed in
this paper is higher.

CONCLUSION

In this paper, a blocking hybrid flow shop scheduling
problem with multi-stage unrelated parallel ma-
chines(BHFSP-UPM) is studied. The math model is con-
structed considered that there is no intermediate. The pro-
cessing time in parallel machines is different according to
the conditions of jobs and machines. The evolution of pro-
cessing sequence decision can be obtained using a GASA
with production period as the criterion based on the compu-
tation method of production period. When these factors are

600 The Open Automation and Control Systems Journal, 2014, Volume 6 Tao et al.

considered during scheduling, generally, a more effective
schedule can be obtained. In order to test the performance of
the method, scheduling results based on two cases and com-
parisons with some existing algorithms show that the method
proposed in this paper is effective and feasible.

CONFLICT OF INTEREST

The author confirms that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

Project supported by the education department of Liao-
ning Province (L2012067), and program for Liaoning Excel-
lent Talents in University (No.LJQ2012019).

REFERENCES
[1] Q. K. Pan, L. Wang, L. Gao, and W. D. Li, “An effective hybrid

discrete differential evolution algorithm”, Information Sciences, vol.
181, pp. 668-685, 2011.

[2] Q. L. Zhang, and Y. S. Chen, “Effective hybrid particle swarm
optimization algorithm for the blocking flow shop scheduling prob-
lem”, Information and Control, vol. 42, no. 2, pp. 252-257, 2013.

[3] J. J. Liang, Q. K. Pan, T. J. Chen, and L. Wang, “Solving the
blocking flow shop scheduling problem by a dynamic multi-swarm
particle swarm optimizer”, The International Journal of Advanced
Manufacturing Technology, vol. 55, pp. 755-762, 2011.

[4] W. Trabelsi, C. Sauvey, and N. Sauer, “Heuristics and metaheuris-
tics for mixed blocking constraints flow shop scheduling prob-

lems”, Computers & Operations Research, vol. 39, pp. 2520-2527,
2012.

[5] A. Elmi, S. Topaloglu, “A scheduling problem in blocking hybrid
flow shop robotic cells with multiple robots”, Computers & Opera-
tions Research, vol.40, pp. 2543-2555, 2013.

[6] L. Wang, Q. K. Pan, P. N. Suganthan, W. H. Wang, and Y. M.
Wang, “A novel hybrid discrete differential evolution algorithm for
blocking flow shop scheduling problems”, Computers & Opera-
tions Research, vol. 37, pp. 509-520, 2010.

[7] Q. K. Pan, L.Wang, and L. Gao, “A chaotic harmony search algo-
rithm for the flow shop scheduling problem with buffers limited
buffers”, Applied Soft Computing, vol. 11, pp. 5270-5280, 2011.

[8] C. Almeder, R. F. Hartl, “A metaheuristic optimization approach
for a real-world stochastic flexible flow shop problem with limited
buffer”, International Journal of Production Economics, vol. 145,
pp. 88-95, 2013.

[9] G. Moslehi, and D. Khorasanian, “Optimizing blocking flow shop
scheduling problem with total completion time criterion”, Comput-
ers & Operations Research, vol. 40, pp. 1874-1883, 2013.

[10] L. Wang, Q. K. Pan, M. FatihTasgetiren, “Minimizing the total
flow time in a flow shop with blocking by using hybrid harmony
search algorithms”, Expert Systems with Applications, vol. 37, pp.
7929-7936, 2010.

[11] S. Y. Wang, L. Wang, Y. Xu, and G. Zhou, “An estimation of
distribution algorithm forsolving hybrid flow-shop scheduling
problem”, Acta Automatic Sinica, vol. 38, no. 3, pp. 437-443, 2012.

[12] J. Byung, R Hyung., and S. Hyun, “A hybrid genetic algorithm for
the job shop scheduling problems”, Computers & Industrial Engi-
neering, vol.45, pp. 597-613,2003.

[13] H.R. Zhou, W. S. Tang, and Y. H. Wei, “Optimize flexible flow-
shop scheduling using genetic algorithm”, Compute Engineering
and Applications, vol. 45, no. 30, pp. 224-226, 2009.

[14] Y. Xu, L. Wang, G. Zhou, and S. Y. Wang, “An effective shuffled
frog leaping algorithm for solving hybrid flow-shop scheduling
problem”, In: Proceedings of the International Conference on In-
telligent Computing, 2011, pp. 560-567.

Received: November 22, 2014 Revised: January 06, 2015 Accepted: January 21, 2015

© Tao et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

