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Abstract: To deal with fuzzy and uncertain information in reliability analysis of multi-state systems, an approach based 
on fuzzy Bayesian networks is proposed. In this approach the fuzzy set theory and Bayesian networks methodology are 
applied. The fuzzy assessment information from different experts is described by triangular fuzzy numbers, which denotes 
the fuzzy probabilities of different states of root nodes. The depended uncertain ordered weighted averaging (DUOWA) 
operator is used to aggregate assessments information. Through defuzzification calculation, the crisp probabilities are ob-
tained as the prior probabilities of the root nodes. Bayesian network (BN) is used to handle the uncertainty of logical rela-
tionship between nodes and to compute system reliability. A case study concerning the reliability analysis in cell produc-
tion line is provided and conducted using the proposed approach to illustrate its effectivity and practicability. 
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1. INTRODUCTION 

The traditional reliability theories including Reliability 
Block Diagram (RBD), Binary Decision Diagram (BDD), 
Fault Tree Analysis (FTA), etc. have been applied extensive-
ly in reliability analysis of systems [1-3]. Faced with increas-
ingly complex systems and work environments, the require-
ments for systems reliability analysis are getting stringent, 
which makes the application of these traditional reliability 
theories restricted a lot [4]. The uncertainty and fuzziness are 
inherent to complex systems. 

In recent years, originated in the field of artificial intelli-
gence, Bayesian Network (BN) as the representative of de-
scribing uncertain knowledge and advanced inference tech-
nology has been widely applied in reliability analysis [5, 6], 
risk analysis [7, 8] and fault diagnosis [9, 10]. Due to its rep-
resentation ability of multi-state characteristic and uncertain-
ty of logical relationship between nodes, Mahadevan [11] 
and Wilson [12] established reliability analysis models of 
two-state and multi-state system using BN technique. And 
through BN bidirectional inference, the marginal probability 
and posterior probability were obtained to analyze the weak-
nesses in the system, which provided decision-making basis 
of design and maintenance of the system. 

BN model above is based on the condition that the ele-
mentary events probabilities are the exact values, but 
in practical cases, due to the lack of historical data, systems 
and environments complexity, the exact values of the ele-
mentary events probabilities are difficult to obtain. To this  
 
 

end, in the risk forecast of subway fire Lu [13] used fuzzy 
numbers in fuzzy set theory to represent the fuzzy probabili-
ties of elementary events, by defuzzification, the crisp values 
of fuzzy probabilities of elementary events were obtained, 
but failed to establish a reliability analysis modeling of a 
multi-state system. Chang et al. [14] considered both fuzzy 
states and fuzzy information. Simon [15] and Weber devel-
oped a Bayesian network model for determining reliability of 
the system with fuzzy states and imprecise probabilities. 

In the process of synthesizing multiple expert judgments, 
Lu [13] integrated the multiple expert assessments using 
arithmetic average method, ignoring the different experts’ 
weights. And in many cases, due to the policy-makers’ lim-
ited expertise in related problem areas, it is difficult to speci-
fy the experts’ weights, which makes experts’ weights uncer-
tain. And determining the experts’ weights is mostly subjec-
tive, which may also cause a large deviation and affect the 
final evaluation. 

A reliability analysis method of multi-state system based 
on fuzzy Bayesian networks is proposed to handle the fuzzi-
ness of data and uncertainty of logical relationship between 
events. The fuzzy uncertainty of the elementary events prob-
abilities is described using fuzzy numbers in fuzzy set theo-
ry, the uncertainty of experts’ weights is determined using 
depended uncertain ordered weighted averaging (DUOWA) 
[16] operator, the BN model is used to express the uncertain 
causal relationship between events and to compute system 
reliability. 

The rest of this paper is organized as follows: Section 2 
introduces the representation and integration of the experts’ 
assessments. Section 3 briefly reviews the Bayesian network 
and introduces how to model multi-state system reliability 
based on BN. Section 4 illustrates the proposed approach 
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application in a cell production line. Section 5 draws the 
conclusion. 

2. REPRESENTATION AND AGGREGATION OF 
THE EXPERTS’ ASSESSMENTS  

2.1. Representation of the Experts’ Assessments 

Under the conditions of being difficult to obtain exact 
events probabilities, the results are drawn from the experts’ 
experience through the method of group decision-making. 
As the experts’ assessments are often fuzzy information, in 
order to objectively describe the experts’ assessments, in this 
paper the fuzzy numbers in fuzzy set theory is used to repre-
sent the experts’ assessments, i.e. the fuzzy probabilities of 
events. Using fuzzy numbers to describe the occurrence 
probabilities of events may reduce the difficulty of obtaining 
the exact values. 

There are many forms of fuzzy number, such as the in-
terval fuzzy number, triangular fuzzy number, trapezoidal 
fuzzy number, normal fuzzy number and LR fuzzy number. 
This paper takes the form of triangular fuzzy number to rep-
resent the experts’ assessments. The fuzzy probability may 
be expressed in the form of fuzzy set, shown in Fig. (1).  
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2.2. Aggregation of the Experts’ Assessments  

In the case of being difficult to determine the experts’ 
weights, in order to achieve the objective evaluation of the 
results, this paper relies on DUOWA operator to integrate 
the experts’ assessments, that is, by calculating the similarity 
degree between individual values and the average assessed 
value to determine the experts’ weights. The more similar it 
is, the bigger the weight is. The less similar it is, the smaller 
the weight is. 

 Suppose an expert panel composed of n experts makes 
events probabilities assessments. The triangular fuzzy num-
ber of assessment value of k-th expert is 
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Using DUOWA operators to integrate the experts’ as-
sessments, the group assessment value   !R is obtained as: 

   
!R = (R

L , R
M , R

U ) = DUOWA( !R
1
, !R

2
,…, !R

n
)  

=

   

s( !R
k
, !R

a
)! !R

k

s( !R
k
, !R

a
)

k=1

n

"k=1

n

"

 

(4) 

Using the mean area method to defuzzify, the group as-
sessment value  !R is transformed into the crisp group assess-
ment value R. The defuzzification formula of the mean area 
method is: 

2
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3. MULTI-STATE SYSTEMS RELIABILITY MODEL-
ING BASED ON BN 

3.1. Bayesian Network  

BN is a Directed Acyclic Graph (DAG) of statistical de-
pendence between random variables, which can be expressed 
as B = {G, P} = {X, E, P}, where G is a DAG representing 
variable domain, P represents a group of the corresponding 
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Fig. (1). Expert assessment in the form of triangular fuzzy number. 
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set of conditional probabilities, X is a random variable set, 
X={x1, x2,…, xl}, each node in G represents a random varia-
ble, and each node corresponds to a conditional probability 
table (CPT), E is the set of directed edges, each edge in G 
represents the dependency between variables. Each node xi 
in a BN predetermined graph is independent of any child 
nodes consisted of xi non descendant nodes given by xi par-
ent node. 

If A (xi) represents a subset of any node consisted of non-
descendant nodes, indicating the direct parent node of xi with 
π (xi), then according to the conditional independence as-
sumptions, there is:  
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Assuming x1, x2… xl are the nodes of BN, the joint prob-
ability of all nodes in the network as follows: 
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So, BN can express joint probability distribution of the 
variables, and greatly simplify the solving of joint probabil-
ity of variables. 

3.2. Multi-state Systems Reliability Modeling Based on 
BN  

Procedure for modeling multi-state system reliability 
based on BN is as follows: 

1. Determining the nodes of BN, the root node of net-
work representing the elementary events in the sys-
tem, leaf nodes representing the system.  

2. According to the causal relationship between the 
nodes determining the parent node, the child node, 
and establishing DAG which expresses the interde-
pendence relationship between the nodes. 

3. Determining the distribution parameters of priori 
probability of the root node and CPT. 

In this paper, the BN model is established using method 
of Fault Tree (FT) mapping. FT model is established based 
on logical relationships between variables, and then the FT 
model is mapped into a BN model. A mapping algorithm 
includes graphical and numerical tasks. In graphical map-
ping, primary events, intermediate events, and the top event 
of the FT are represented as root nodes, intermediate nodes, 
and the leaf node in the corresponding BN, respectively. In 
numerical mapping, the occurrence probabilities of the pri-
mary events are assigned to the corresponding root nodes as 
prior probabilities [11]. 

In BN model, the root node variable of BN is xi (i = 1, 2, 
…, l), its state is vi (vi= 0, 1, …, r-1); intermediate node vari-
able is yj (j = 1, 2, …, m), its state is wj (wj = 0, 1, …, s-1); 
the leaf node variable is T, and its state is QT (QT = 0, 1, …, 
n-1), Where in the normal state is state 0. Given occurrence 
probability of various fault states of each root is P (xi = vi), 
using the bucket elimination method, the occurrence proba-
bility P (T =QT) is obtained when the leaf node T =QT: 
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When the root node xi = vi, the probability of leaf node  
T =QT is: 
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When a leaf node T =QT, the state probability (posterior 
probability) of root node xi = vi is: 

  

P(x
i
= v

i
|T = Q

T
) =

P(x
i
= v

i
,T = Q

T
)

P(T = Q
T

)
 

   

=

P(x
1
,x

2
,!,x

l
, y

1
,y

2
,!, y

m
,T = Q

T
,x

i
= v

i
)

x
1
, x

2
,!,x

l
,y

1
,y

2
,!,y

m

!

P(T = Q
T

)
 (10) 

According to Bayes’ theorem: 
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In order for the reliability analysis of multi-state system, 
importance analysis is indispensable. Next, the state im-
portance and the probability importance of the node will be 
defined. 

Definition 1: When the root node xi is in the fault state vi, 
the state importance 
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It represents the effective degree on the leaf nodes T =QT 
when root node xi = vi. 

Definition 2: when the leaf node T is in the state QT, the 
probability importance 
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It represents the effective degree of the root node xi on 
the leaf node T =QT. 

Thus calculating the state importance and probability im-
portance of each root node in the different fault states of sys-
tem, we can know their impact on the system and find out 
the weak link of system. Calculating the posterior probabili-
ties, we can identify the occurrence probability of each root 
node when the system is in fault state, and find out the cause 
of system fault. Finally, we provide reliable decision support 
for the design and maintenance of the system. 

4. CASE STUDY 

The following will be the reliability analysis of a cell 
production line for an enterprise. The main task of the pro-
duction line is: putting the lithium-chip, the separator paper 
and the manganese cathode soaked by electrolyte into the 
negative electrode with set nets, and supplementing with 
volatile electrolyte in cathode film. Under the premise to 
ensure complete penetration of electrolyte, there are some 
other processes such as stamping cathode casing, sealing etc.  

4.1. Establishment of BN Reliability Modeling 
According to the function of the system, the system is di-

vided into five working subsystems, namely the subsystem  
 

of feeding negative shell and lithium, subsystem of dividing 
the paper into negative shell, subsystem of feeding MnO2, 
subsystem of assembling positive steel shell, sealing subsys-
tem. Among them the subsystem of feeding MnO2 is select-
ed for analysis. 

According to the logical relationship between events, FT 
model which top event is subsystem fault of feeding MnO2 is 
established, shown in Fig. (2). 

Specification between the events and the notations is 
shown in Table 1. 

The FT model being built is mapped to the BN model 
(omitted CPT due to space reason) as shown in Fig. (3), so 
the reliability model based on BN is established. 

According to the practical situation, the components and 
the system are set in three states 0, 1, 2, that is, QT = 0, 1, 2 
and vi = 0, 1, 2. Where 0 is normal operation state, 1 is a 
state of slight fault state, 2 is serious fault state. 

4.2. Reliability Analysis System 

1) Experts’ assessments.  
First, a panel of 4 experts is established, according to 

their experience the experts assess the occurrence probability 
of each fault mode and the state, and then give the corre-
sponding triangular fuzzy numbers. Using DUOWA operator  
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y4 y5

 

Fig. (2). Fault Tree Model of Feeding MnO2 Subsystem. 
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Fig. (3). BN model of subsystem feeding MnO2. 
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Table 1. Nodes description. 

Node Event Node Event 

T Subsystem feeding MnO2 fault x5 Sensor fault 

y1 Device feeding negative shell fault x6 Cylinder feeding MnO2 jam 

y2 Device feeding MnO2 fault x7 Defective MnO2 

y3 Out-feeding device fault x8 Solenoid valve fault 

y4 Cylinder feeding negative shell fault x9 Conveyor belt fault 

y5 Cylinder feeding MnO2 fault x10 Sensor fault 

x1 Cylinder feeding negative shell jam x11 Solenoid valve fault 

x2 Negative shell deformation x12 Out-feeding cylinder jam 

x3 Solenoid valve fault x13 Sensor fault 

x4 Conveyor belt fault   

 

Table 2. Expert assessment value and the exact value of the fault probability of the root node. 

(2-1) 

Title x1=1 x2=1 (x3, x8, x11) =2 x4=1 x4=2 (x5，x10，x13) =1 

Expert 1 (0.15,0.22,0.3) (0.1,0.16,0.22) (0.38,0.43,0.52) (0.22,0.26,0.32) (0.1,0.15,0.2) (0.05,0.1,0.15) 

Expert 2 (0.18,0.25,0.32) (0.08,0.18,0.25) (0.35,0.45,0.55) (0.24,0.28,0.32) (0.08,0.16,0.22) (0.08,0.15,0.2) 

Expert 3 (0.2,0.25,0.3) (0.1,0.18,0.22) (0.4,0.45,0.5) (0.2,0.25,0.3) (0.09,0.14,0.19) (0.06,0.1,0.17) 

Expert 4 (0.16,0.2,0.25) (0.08,0.13,0.20) (0.37,0.42,0.47) (0.22,0.28,0.33) (0.08,0.13,0.18) (0.1,0.15,0.2) 

Group (0.173,0.231,0.295) (0.092,0.164,0.223) (0.377,0.437,0.509) (0.220,0.268,0.323) (0.089,0.145,0.197) (0.072,0.125,0.180) 

Exact value 0.232 0.161 0.44 0.270 0.144 0.126 

(2-2) 

Title x6=1 x7=1 x9 =1 x9 =2 x12=1 

Expert 1 (0.18,0.24,0.3) (0.12,0.18,0.24) (0.24,0.28,0.34) (0.1,0.15,0.2) (0.28,0.35,0.4) 

Expert 2 (0.2,0.25,0.3) (0.1,0.18,0.25) (0.26,0.3,0.34) (0.08,0.16,0.22) (0.25,0.3,0.35) 

Expert 3 (0.22,0.26,0.32) (0.1,0.15,0.22) (0.23,0.28,0.35) (0.09,0.14,0.19) (0.26,0.32,0.36) 

Expert 4 (0.2,0.26,0.3) (0.12,0.18,0.25) (0.24,0.3,0.25) (0.08,0.13,0.18) (0.27,0.33,0.38) 

Group (0.200,0.253,0.304) (0.111,0.174,0.241) (0.242,0.290,0.345) (0.089,0.145,0.197) (0.265,0.325,0.372) 

Exact value 0.252 0.175 0.292 0.144 0.322 

 

method, according to Eq. (2-4) the estimation information of 
experts are integrated, the results of group assessment are 
obtained, after defuzzification by Eq. (5) the exact value of 
occurrence probability of each fault mode in different states 
is obtained, as shown in Table 2. 

2) Calculation of the importance. 

The exact values gained after defuzzification as priori 
probabilities are used to conduct inference calculation. Next 
we take node x4 for example. 

As the fault state of node x4 is 1, i.e. v4 =1, the state im-
portance Pr

1 4( 1)I x = when T =1 can be obtained by Eq. (12) 
as follows: 
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The state importance and the probability importance of 
other nodes can be obtained as shown in Table 3 and Table 
4. 

3) The posterior probability calculation. 
Taking the node x4 for example, the posterior probability 

of node x4 can be obtained using Eq. (10) when system fault 
state T=1: 
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= 53.0 
4) Reliability analysis. 
The weaknesses of the system can be identified through 

the importance of the root node, and by increasing the relia-
bility of links the system reliability can also be improved. 

Table 3 shows that the effect of the current fault status of 
the root node on the system is as follows: in the state of 
slight fault, the node x7 has the greatest impact; in the state of 
serious fault, the nodes x3, x8, x11 have the greatest impact. 

Table 4 shows that the effect of the root node on the sys-
tem is as follows: in the state of slight fault, the node x7 has 
the greatest impact; in the state of serious fault, the nodes x3, 
x8, x11 have the greatest impact. 

Table 3. State Importance of Nodes. 

Node 
State Importance  

Node 
State Importance  

  
I

1

Pr (x
i
=1)   

  
I

2

Pr (x
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=1)  
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I
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Pr (x
i
=1)  

  
I
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Pr (x
i
=2)   

  
I

2

Pr (x
i
=2)   

x1 0.99353 0 0 0 x8 0 0 0 0.99883 

x2 0.9949 0 0 0 x9 0.99374 0 0 0.99520 

x3 0 0 0 0.99883 x 10 0.99343 0 0 0 

x4 0.99372 0 0 0.99854 x 11 0 0 0 0.99883 

x5 0.99343 0 0 0 x 12 0.99362 0 0 0 

x6 0.99355 0 0 0 x 13 0.99343 0 0 0 

x7 0.99504 0 0 0      

Table 4. Probability Importance of Nodes. 

Node 
Probability Importance  

Node 
Probability Importance  

  
I

1

Pr (x
i
)  

  
I

2

Pr (x
i
)  

  
I

1

Pr (x
i
)  

  
I

2

Pr (x
i
)  

x1 0.49677 0 x8 0 0.49942 

x2 0.49745 0 x9 0.49687 0.49760 

x3 0 0.49942 x 10 0.49672 0 

x4 0.49686 0.49927 x 11 0 0.49942 

x5 0.49672 0 x 12 0.49681 0 

x6 0.49678 0 x 13 0.49672 0 

x7 0.49752 0    
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These nodes mentioned above are needed to be paid at-
tention to and to be improved. 

According to the posterior probability of each root node, 
fault probability of each node can be gained after a system 
fault, and thus fault diagnosis for system can be made, that is 
according to the posterior probability, the corresponding root 
nodes are detected top down. 

Table 5 summarizes when the slight system fault occurs, 
the order of checking slight fault nodes is x7, x2, x12, x9, x4, x6, 
x1, (x5, x10, x13); when serious system fault occurs, the order 
of checking serious fault nodes is (x5, x10, x13) , x4, x9, the 
order of checking slight fault nodes is x7, x2, x12, x9, x6, x4, x1, 
( x5, x10, x13). 

5. CONCLUSION 

The proposed method combines the advantages of fuzzy 
set theory and BN technology to solve the problem of the 
uncertainty and fuzziness in reliability analysis of complex 
system. 

In this paper, the triangular fuzzy number is adopted to 
describe the fuzzy probability of the event, which solves the 
problem of being difficult to obtain precise data; through the 
method of group decision, using DUOWA operator, the as-
sessments of experts with uncertain weights are integrated, 
which solves the problem of the influence of uncertain 
weights to the results of assessment. 

Bayesian network model is used to handle the uncertainty 
of logical relationship between events and to compute sys-
tem reliability. Through the calculation of importance of 
node and posterior probabilities, a more effective decision 
support is offered for the design and maintenance of com-
plex systems. 

The analysis of cases has proved that this method pro-
vides a powerful analytical tool for the reliability analysis of 
complex systems in a complex environment. 
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