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Abstract: Bipartite networks are an important category of complex networks in human social activities. Newman and 
Girvan proposed a measurement called modularity to evaluate community structure in unipartite networks called modular-
ity. Due to the success of modularity in unipartite networks, bipartite modularity is developed according to different un-
derstandings of community in bipartite networks which all contains an intrinsic scale that depends on the total sizeof links 
and ignores the number of nodes in the bipartite network. In addition, the size heterogeneity of communities and degree of 
nodes often affects the measure of community. In this work, we propose a quantitative measure forevaluatingthe partition of 
bipartite networks into one-to-one correspondence between different type communities basedon the concept of average bi-
partite modularity degree. Unlike the bipartite modularity measures previously proposed, the new measure can overcome 
the resolution limits. Experiments on the artificial and real-world bipartite networks validate the accuracy and reliability of 
our bipartite modularity density. 
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1. INTRODUCTION 

Various kinds of real-world complex systems could be 
modeled as complex networks [1], where nodes (or vertices) 
represent the objects and edges represent the interactions 
among these objects. Bipartite network is an important cate-
gory of complex networks in naturally real world systems, 
where the nodes (vertexes) are divided into two types, and 
no two nodes of the same type are connected. Many real-
world networks are naturally bipartite networks, such as sci-
entists-papers cooperation network [2, 3], the actor-films 
network [4], disease-gene network [5], club members-
activities network [6], audience-songs network [7], computer 
terminals-data networks in P2P system [8], and investors-
company network [9, 10] and so on. 

An important feature of the real world networks is typi-
cally the community structure [11-13]. Networks can often 
be divided into communities, and nodes within the same 
community are densely connected, but connections between 
nodes of different communities are much sparser [14]. Since 
many networks demonstrate such a community structure, the 
description and detection of such a community structure 
have great practical importance. Because communities are 
relatively independent of one another structurally, it is be-
lieved that each of them may correspond to some fundamen-
tal functional unit. Identifying and analyzing such communi-
ties in a large network provided an approach for functional  
 
 

dissection of the network and sheds light on its organization-
al nature. 

In order to evaluate the qualities of detected communities 
from unipartite networks, Newman and Girvan [15] intro-
duce the measurement called modularity which reflects the 
extent, relative to a null model network, to which edges are 
formed within modules instead of the between modules. For-
tunato and Barthélemy [21] recently claimed that modulari-
tycontains an intrinsic scale that depends on the total sizeof 
links in the network. The modules which are smaller than 
this scale may not be resolved even in the extreme case that 
they are complete graphs connected by single edges. To 
solve this problem, Zhenping Li et al. [16] presented a mod-
ularity measurement called modularity density, and claimed 
that their modularity density is superior to the widely used 
modularity and also prove its equivalence with the objective 
function of the kernel k means. Though modularity suffers 
from the resolution limit problem, it has been widely accept-
ed as a de facto standard measurement. 

In recent years, the problem of evaluating community 
structure in bipartite network has drawn much attention of 
the researcher. On account of the success of modularity in 
unipartite networks, some researchers extend it to bipartite 
networks and propose bipartite modularity. According to 
different understandings of bipartite network community, 
there are different versions of bipartite modularity measures, 
such as the ones proposed by Guimera et al. [17], the one 
proposed by Baber [18], the one proposed by Murata [19] 
and so on etc. These bipartite modularity measures are based 
on different requirement for the communities of bipartite  
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networks. Therefore, their quantification is still a subject of 
debate. Two aspects greatly complicate this problem. In gen-
eral, the size heterogeneity of communities often greatly 
affects the measure of community [20]. Another aspect is 
that, even in a specific network, the generation mechanism or 
link degree may vary greatly. 

Although the resolution limit problem raised by Fortuna 
to and Barthélemy aims at the unipartite networks originally, 
but the problem also exists in the existing modularity 
measures for bipartite networks. Using those modularity 
measures, the modules which are smaller than the scale of 
bipartite networks may not be resolved even in the extreme 
case that they are complete graphs connected by single edges 
is also exist in bipartite networks. 

In this work, we propose a quantitative measure foreval-
uating the partition of bipartite networks into one-to-one 
correspondence between different type communities based 
on the concept of average bipartite modularity degree. We 
call this quantitative measure the bipartite modularity density. 
Inaddition to its simple form, we show that the proposed 
criterion also improves the resolution limit in bipartite com-
munity structure detection. We show the effectiveness of the 
bipartite modularity density by theoretical analysis and nu-
merical tests of on both artificial and real-world bipartite 
networks. 

2. RELATED WORKS 

Currently, the method of detecting community structure 
in complex networks can be divided into two main classes. 
One class is the global methods, of which the most notable 
example is the modularity introduced by Newman and Gir-
van [15] Global methods regard community detection as a 
global optimization problem, where the objective functions 
are different various methods. Due to the complexity of such 
optimization problems, the global methods are typically sto-
chastic in nature. The other class is the local methods, among 
which the best known example is the k-clique method pro-
posed by Palla et al. [22, 23] which utilizes local structural 
information to reveal the community structure of a network. 
The local methods are usually deterministic. 

In unipartite networks, communities are often modeled as 
sets of nodes closely connected. Nodes in different commu-
nities are sparsely connected. To evaluate the quality of a 
particular community partitioning of a network, Newman 
and Girvan introduces a qualitative measure called modulari-
ty [15]. A widely used and quite successful method for the 
identification of communities in unipartite networks is max-
imizing the modularity function. Using modularity as the 
objective function, the community identification problem 
becomes a combinatorial optimization which is analogous to 
the identification of the ground state of a disordered magnet-
ic system. 

For bipartite networks, Guimera et al. [17] proposed a 
bipartite modularity which focuses on the connectivity of 
only one node type, and employ simulated annealing for 
modularity optimization. Consequently, their algorithm aims 
at partitioning communities for nodes of one type at one step. 
As we know, in some cases two types of node could not be 
treated symmetrically. 

Barber [18] extended the definition of Newman’s modu-
larityin unipartite network to be appropriate for bipartite 
networks and presents a bipartite modularity based on the 
assumption that there is a one-to-one correspondence be-
tween communities of different node type. He also proposed 
an algorithm called Adaptive Brim for detecting community 
structure by maximizing this bipartite modularity. However, 
the main weakness of Baber’s bipartite modularity is that the 
number of communities has to be determined in advance. It 
should be noticed that in most of the existing community 
detection algorithms, the number of communities must be-
specified in advance, and cannot be found by the method 
itself. This is not practical in many real applications. 

Murata proposed another bipartite modularity [19], which 
gives consistent result as the modularity of Newman and 
Girvan when apply to unipartite networks. Unlike previous 
proposals, his proposal treats two types of nodes in a uni-
form framework. Murata’s bipartite modularity favors the 
case when edges coming from or going out of a cluster con-
nect with the same cluster on the opposite side. Murata 
claimed that his bipartite modularity overcomes the weak-
ness of the constraint of one-to-one correspondence between 
communities of different types. That is to say, a community 
of one type nodes may correspond to many communities of 
the other type of nodes, and vice versa. Although Murata’s 
bipartite modularity allows one-to-many correspondence 
between communities of different node types, experiments 
on different datasets show that using Murata’s measurement 
as the objective function can obtain one result: there is one-
to-one correspondence between communities of two node 
types. Unlike previous bipartite modularity, Murata’s bipar-
tite modularity can measure the qualities of one-to-many 
correspondence between communities of different vertex 
types. 

3. BIPARTITEMODULARITY DENSITY 

As we mentioned in the last section, severalbipartite 
modularity measures for identifying communities in bipartite 
networks are proposed. Guimera’s bipartite modularity fo-
cuses on the connectivity of only one type of nodes [17], and 
Barber’s bipartite modularity is based on the assumption that 
there is one-to-one correspondence between communities of 
different vertex types [18]. Murata’s bipartite modularity, 
which gives consistent result as Newman’s modularity ap-
plied to unipartite networks, is one-to-many correspondence 
between communities of different vertex types [19].  

Bipartite network can be represented by a bipartite graph 
G=(V,E), where V =!! ∪ !!. Here, !! and !!are respec-
tively the two types of vertices in G.E is the set of its edges. 
There is no edge between the vertexes in the same set of !! 
(!! ), namely, every edge (!!!, !!!) ∈ !  satisfies !!! ∈ !! , 
and  !!! ∈ !!. Assuming that !! has n vertices, and !! has 
m vertices, the adjacency matrix of G has a block off-
diagonal form as:  

! =
0!×! !!×!
!!!×! 0!×!

                                                                                                                              (1) 
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where  0!×!and0!×! are all-zero!×! and !×! matrix-
es respectively, !!×! and !!!×! are!×!and !×!non-zero 
matrixes. Since the adjacency matrix is symmetric, we can 
just use the matrix !!×! to represent the bipartite graph G, 
where each row represents a vertex in the set of  !!, each 
column represents a vertex in the set of !!. 

Community detection in a bipartite graph G= (!! ∪ !!, 
E) is to partition into C sub-graphs !! = (!!!,!!!,!!) , 
whereCis the number of the partitioning communities, 
  !!! ⊂ !! ,  !!! ⊂ !! , !!!!

!!! = !!  and !!!!
!!! = !! . Let 

!!!   and  !!! respectively be the number of nodes in the set 
of !!! and   !!! . We further 
fine !(!!!,   !!!) = ! !, !!∈!!

!!∈!!
! , !(!!!,!!!) =

! !, !!∈!!
!!∈!!

! and !(!!!,   !!!) = ! !, !!∈  !!
!!∈!!

!  
where   !!! ∪ !!! = !! and   !!! ∩ !!! = ∅ . The well-known 
Murata’s bipartite modularity !! is defined as follows: 

!! = !!!
!(!! ,!!)
! !,!

!

−
!(!! ,!)
! !,!

×
!(!!,!)
! !,!

 

! = !"#$!%
!

!!"                                                                                                                                         (2)   

Modularity optimization for !! seems to be an effective 
method to detect communities in bipartite networks. Howev-
er, Fortunato and Barthélemy [21] recently pointed out the 
seriousre solution limit of Newman’s modularity applied to 
unipartite networks, and claimed that the size of a detected 
module depends on the size of the whole network. In section 
V, we will empirically show that this resolution limit also 
exists in Murata’s bipartite modularity. This is mainly be-
cause Murata’s bipartite modularity measure does not con-
tain information on the number of nodes in a community 
andthe choice of partition is highly sensitive to the total 
number of links in the network [24]. 
 To overcome such limit, we introduce a new quantitative 
measure, which is related to the density of sub-graphs. We 
first define the degree of a bipartite network equal to the 
number of edges of bipartite network: D (G) = E (G) =M. 
Let !! = (!!!,!!!,!!) be a community of G, then we define 
the average bipartite modularity degree of bipartite sub-
graph!! = (!!!,!!!,!!) as follows: 

! !! = !!" !! − !!"# !!                                                                                                         (3) 

where !!" !!  is the average inner degree of the sub-graph!!, 
which is equal to the number of edges in bipartite sub-graph 
!!  divided by the total number of nodes in sets!!!  and 
!!! .!!"#(!!)is the average outer degree of sub-graph !! , 
which is equal to the number of edges in bipartite sub-graph 
!! divided by the total number of nodes in sets!!!and!!!. 
Then the average degree of bipartite sub-graph !! =
(!!!,!!!,!!) can be easily formulated as follows: 

! !! =
! !!!,!!! − !(!!!,!!!) − !(!!!,   !!!)

!!! + !!!
                                (4) 

Here, the intuitive idea is that ! !!  should be as large as 
possible for a valid community in bipartite networks. Then 
we define the bipartite modularity density of a partition as 

the summation of the average bipartite modularity degrees of 
all the communities!! for i=1,…,c. Suppose a bipartite net-
work G is partitioned into communities  !!,…,!!, the bipar-
tite modularity density of such a partition can be calculated 
as follows: 

! = ! !!

!

!!!

=
! !!!,!!! − !(!!!,!!!) − !(!!!,   !!!)

!!! + !!!

!

!!!

                                            (5) 

The modularity density of a community partition is the 
summation of the modularity degrees of all communities !!of 
in the given partition. Notice that this measure provides a way 
to determine if a certain microscopic description of the graph 
is accurate interms of communities. The larger the value of Q, 
the higher quality a partition is. Therefore the community 
detection problem in bipartite networks can be treated as a 
problem of finding a partition of a network such that its bipar-
tite modularity density Q is maximized. Sinceour approach is 
to maximize the modularity density Q, every term ! !!  
must be non-negative. Therefore, the communities of bipartite 
networks by optimizing Q are consistent with the strong and 
weak community definition in unipartite networks suggested 
by F. Radicchi et al. [25] which is also suited to bipartite 
networks. 

4. SUPERIORITY - BIPARTITE MODULARITY 
DENSITY 

To overcome the resolution limit in the existing modular-
ity measurements, we introduce a new quantitative measure 
called modularity density which is related to the density of 
sub-graphs. In this senction, we use example to illustrate the 
superiority and reliability of the bipartite modularity density. 

A Complete Bipartite Graph 

We now define a !!,! clique as a complete bipartite sub-
graph with n nodes of the !! type and m nodes of the !! 
type.Given such a complete bipartite graph !!,! with n 
modes of the !! type and m nodes of the !! type, communi-
ty detecting methods by maximizing Murata’s bipartite 
modularity divides !!,!  into two or more bipartite sub-
graphs as communities. But it is obvious that the best solu-
tion is treating !!,! itself as one community since it is a 
completed sub-graph. Therefore, Murata’s bipartite modular-
ity optimization obviously is not reasonable in this situation. 
But our bipartite modularity density can obtain the optimal 
solution and avoids partitioning it into two or more bipartite 
sub-graph. 

Now we prove this superiority of our bipartite modularity 
density. Suppose a partition scheme P divides the complete 
bipartite graph !!,!G into two communities  !!  and  !!, and 
the numbers of nodes in   !!  and  !! are !!of the !! type, !! 
of the !! type, !!of the !! type, !! of the !! type, respec-
tively. Another partition scheme G treats the complete bipar-
tite graph !!,! as one community. Obviously, scheme G is 
the optimum and better than scheme P. Let !!  and !!be the 
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bipartite modularity densities of G and P respectively. By (2) 
and (5), we can get the value of !!  and !! as follows: 

!! =
!×!
! +!

=> 1 

!! =
!!!! − !!!! −!!!!

!!+!!
+
!!!! − !!!! −!!!!

!! +!!
 

It is easy to verify that when 2 ≤ !,!and1 ≤ !!,!! ≤
!,!, 

!! < 0 

Because!!>!!, optimizing bipartite modularity density 
can reach the optimal solution G, and does not divide the 
complete bipartite graph into two or more parts. If we opti-
mize Murata’s bipartite modularity as objective function, we 
cannot obtain such optimal solution G since Murata’s bipar-
tite modularity for G is zero. Therefore our bipartite modu-
larity density is superior to Murata’s bipartite modularity. 

Small Complete Bipartite Sub-graph 

Given a bipartite network consisting of four cliques, two 
of which are !!,!  and the others are  !!,! , where2 ≤ ! ≤
!and2 ≤ ! ≤ !. Since the resolution limits of Murata’s bi-
partite modularity, it has a tendency to merge small complete 
bipartite sub-graph and small bipartite modules. In the fol-
lowing we prove the bipartite modularity density based op-
timization does not have such a problem. Let P1 be the parti-
tioning scheme which divides the network into four commu-
nities, each clique is a community. Let P2  be the partitioning 
scheme which divides the network into three communities: 
each of the large clique !!,! is a community, and the two 
small bipartite cliques   !!,!are merged into one community.  

Obviously, scheme P1 is the optimum and better than 
scheme P2. Let !! and !!  be the bipartite modularity densi-
ties of P1 and P2 respectively. By (2) and (5), we can get the 
value of !! and !! as follows: are as follows 

!! =
!" − 1
! +!

+
!" − 3
! +!

+
!" − 2
! + !

+
!" − 2
! + !

 

Q! =
!" − 1
! +!

+
!" − 3
! +!

+
!" + !" + 1 − 2
! + ! (! + !)

 

It is easy to verify that when 2 ≤ ! ≤ !and2 ≤ ! ≤ !, 

!! − !! =
!" − 3.5
! + !

> 0 

Because!!>!!, optimizing bipartite modularity density 
can reach the optimal solution P1. If we optimize Murata’s 
bipartite modularity as objective function, we cannot obtain 
such optimal solution P1, and it will merge the two small 
bipartite cliques into one community. We will empirically 
illustrate this fact by examples in Section V. The experi-
mental results show that our bipartite modularity density is 
superior to Murata’s bipartite modularity. 

From those examples, we can see that correct community 
partitioning results in bipartite network can be achieved by 
maximizing the bipartite modularity density. Such a fact 
demonstrates the effectiveness of our bipartite modularity 
density acting as a quantitative function for community 
structure. 

5. EXPERIMENT RESULTS 

We conduct experiments on both artificial network and 
well-studied real networks to compare our bipartite modular-
ity density with other measurements for evaluating commu-
nity structure in bipartite networks, such as the modularities 
proposed by Guimera [17], Baber [18], and Murata [19], we 
adopt these measures to evaluate the partitioning community 
structure. We will empirically illustrate the effectiveness of 
our bipartite modularity density and demonstrate that our 
bipartite modularity density is more effective and reasonable 
than other ones in detecting communities in bipartite net-
works. 

Artificial Bipartite Network 

To show the superiority of our bipartite modularity densi-
ty, we use an artificial bipartite network as shown in Fig. (1). 
This bipartite network has 30 nodes where each type has 15 
nodes. In the network, there are four bipartite cliques with 
different sizes:!!,!,  !!,!,  !!,! and !!,!. 

Let P0 denote the partition which has 4 communities with 
different size: !!,!,  !!,!,  !!,! and !!,!, and let P1denote the 
partition which divides the network into 3 communities 
where !!,! and !!,! are merged into one community. Then we 
use our modularity and Murata’s modularity to evaluate the  
 

 

 
Fig. (1). A bipartite network with small complete bipartite sub-graph. 
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two different partitions P0 and P1, and the evaluation results 
are summarized in Table 1. 

From the Fig. (1), we can directly know the communities 
structure of the artificial bipartite network. Since two adja-
cent bipartite cliques are connected by only one edge, obvi-
ously P0 is the best solution since each community it detected 
is a clique. From Table 1, we can see that our modularity get 
higher value for the partition of P0, while Murata‘s modulari-
ty get higher value for the partition of P1. This result proves 
that Murata‘s modularity has a tendency to merge small 
complete bipartite sub-graph and small bipartite modules, and 
his modularity is obviously unreasonable in this example of 
community detecting. Through the comparison and analysis, 
we can know that our modularity is more reasonable and 
believable than Murata’s. 

Southern Women Network 

To verify the accuracy and reliability of our bipartite 
modularity density, we test on the southern women network 
[26]. Southern women network is a well-known benchmark 
of network analysis, and its community structure is already 
known. This dataset was collected by Davis et al. in the town 
of Natchez, around Mississippi during the 1930s as part of 
an extensive study of class and race in black and white socie-
ty in the Deep South. The network describes the participation 
of 18 women in 14 social events. If a woman attended an 
event, there will be an edge linking their nodes. 

Southern women dataset and its bipartite community 
structure have been much studied by social scientists. In the 
original investigation, Davis et al. [26] used general ethno-
graphic knowledge of the community to assign the women to 
two communities. The communities consisted of women 
numbered 1-9 and of women numbered 9-18, and woman 9 
is a secondary member of both communities. A similar 
grouping that put women 1-9 in the first community and 
women 10-18 in the second one has been identified by 
Freeman [27] as the consensus from 21 different studies. 
Taking these two statements into account, we believe that the 
partition that divides women into two communities: {1-9} 
and {10-18}, is the more reasonable partition. 

As we know, when the correct community structure is 
available, the most widely used measure for evaluating a 
given partition is normalized mutual information (NMI) [28], 
which is based on information theory and calculates the 
agreement between the two partitions. If we only look at the 
part of women, for whom we know the correct partition, we 
can make an objective evaluation for different partition using 
NMI in contrast to the correct partition. For example, when 
the two partitions match completely, we have a maximum  
 

value of 1, and when the given partition is totally independ-
ent of the correct partition, we have a minimum value of 0. A 
larger value of NMI indicates a better partition. 

Firstly, we use our bipartite modularity density as an ob-
jective function to detect the community structure on the 
Southern women bipartite network, and the optimization 
method is based on ant colony optimization for detecting 
community structures from bipartite networks proposed by 
Yongcheng Xu et al. [29]. And the best partition is as shown 
in Fig. (2d), and here the communities of different node type 
are one-to-one correspondence. 

Then we using previously mentioned bipartite modulari-
ties as an objective functions to optimization can obtain dif-
ferent partitions of the Southern Women bipartite network, 
as shown in Fig. (2a-c). Firstly we calculate 4 different parti-
tions of the Southern Women bipartite network with the 
measure of NMI. Then we use different bipartite modularity 
to evaluate partition (a)-(d), and compare their evaluation 
results with the objective evaluation discussed above. All of 
the evaluation results are summarized in Table 2. 

We should pay attention that comparing the absolute val-
ues between modularity is not enough to show the rationality 
of the measurements, since different bipartite modularity 
concern different features. To make it clear, we rank these 
partitions according to the absolute values as shown in  
Table 3 where each row lists the ranking of different parti-
tions, from 1 to 4, as evaluated by the corresponding bipar-
tite modularity. As shown in Fig. (2), we can see that (c) 
which is obtained by optimizing Murata‘s modularity using a 
simple agglomerative algorithm and (d) which is obtained by 
optimizing our modularity using an ant colony optimization 
algorithm are all the best solution according to at the rank-
ings of NMI.  

From Tables 2 and 3, we can see that our modularity and 
Murata’s modularity are the most reliable, because the corre-
sponding rankings coincide with that of the objective evalua-
tion rankings according to NMI. Our modularity can identify 
partitions (d) and (c) as the best solution, (b) and (a) as the 
second best and the third best partitions. Compared with Ba-
ber’s modularity, our modularity coincides with the corre-
sponding rankings according to NMI. Moreover, the main 
weakness of Baber’s modularity is that the number of com-
munities has to be determined in advance. It should be em-
phasized that in most of the community detection algorithms, 
the number of communities must be specified in advance not 
be found by the method itself. This is not practical in many 
real applications. In contrast to Guimera‘s modularity which 
only focuses on the connectivity of only one node type and 
aims at partitioning communities for nodes of one type at a  

  

Table 1. Evaluations of the partitions P0 and P1. 

Partitions 

Measure 
P0 P1 

Our-Modularity 6.167 5.999 

Murata-Modularity 0.789 0.793 
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(a) 

 

 
(b) 

 

 
(c) 

 

 

(d) 

Fig. (2). Communities of the Southern women bipartite network. Women nodes are indicated as circle symbols located at the top side, while 
event nodes are indicated as circle symbols located at the bottom side. (a) Final division obtained by BRIM, an algorithm for optimizing Ba-
ber-Modularity. (b) Final divisionobtained by optimizing Guimera-Modularity using simulated annealing. (c) Final division obtained by op-
timizing Murata-Modularity using a simple agglomerative algorithm. (d) Final division obtained by optimizing Our-Modularity using ACO 
for community detection on bipartite networks. 

 
Table 2. Evaluations of the partitions (a), (b), (c) and (d) in Fig. (2) by different measures. 

Partitions 

Measures 
(a) (b) (c) (d) 

NMI 0.451 0.743 1.000 1.000 

Our-Modularity -4.07 2.813 2.965 2.965 

Guimera-Modularity 0.135 0.217 0.215 0.215 

Baber-Modularity 0.345 0.35 - 0.318 

Murata-Modularity 0.465 0.579 0.586 0.586 
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Table 3. Rankings of the partitions (a), (b), (c) and (d) in Fig. (2) by different measures. 

Partitions 

Measures 
(a) (b) (c) (d) 

NMI 3 2 1 1 

Our-Modularity 3 2 1 1 

Guimera-Modularity 3 1 2 2 

Baber-Modularity 1 3 2 2 

Murata-Modularity 3 2 1 1 

 

time, our modularity can partition two types of nodes into 
communities symmetrically. 

From this example, we can believe that our modularity is 
more accurate and reliable than other measurements for 
evaluating community structure in a real-world bipartite 
network. Our modularity can be used as an objective func-
tion for optimization in detecting communities in a real-
world bipartite network. 

CONCLUSION 

In this work, we propose a new measurement for evaluat-
ing community structure in bipartite networks. As traditional 
bipartite modularities contain an intrinsic scale that depends 
on the total size of edges in the bipartite networks and ig-
nores the total size of nodes in the bipartite networks. In ad-
dition, when optimizing these traditional bipartite modulari-
ties, they tend to merge tiny bipartite communities which are 
smaller than a scale. Those small communities may not be 
resolved even in the extreme case that they are complete 
graphs connected by single edges. Fortunately, our bipartite 
modularity density can resolve these resolution limits. Our 
experimental results on the artificial and real-world bipartite 
networks, it is show that our bipartite modularity density is 
quiet accurate and reliable. 

Moreover, we optimize our bipartite modularity density 
with ant colony optimization algorithm for detecting com-
munities on the famous Southern Women bipartite networks, 
the result show us that our bipartite modularity density can 
be used as the objective function in optimization for com-
munity detection in bipartite networks, and can obtain more 
accurate solution than using other modularity measurements. 
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