
Send Orders for Reprints to reprints@benthamscience.net

 The Open Automation and Control Systems Journal, 2014, 6, 69-76 69

 1874-4443/14 2014 Bentham Open

Open Access

Robot Path Planning Based on Chaos Concise Differential Evolution and
RFNN Control

Xiaosheng Wang
1,*

 and Gaochao Xu
2

1Information & Technology School, Shandong Women’s University, Jinan, China

2Computer Science & Technology School, Jilin University, Changchun, China

Abstract: In order to reduce the memory footprint and energy consumption of embedded microcontroller in mobile robot,

the concise differential evolution algorithm based on chaotic local search (CDE-CLS) is proposed for online optimization

of recurrent fuzzy neural network (RFNN) controller in robot path planning so that the robot can be adaptive real-time ob-

stacle avoidance. The CDE-CLS algorithm reduces the memory footprint of the controller using virtual population and in-

creases the ability to explore help to fast convergence introducing a simple and efficient chaotic local fine search and in-

hibit premature convergence perturbing the virtual population. Contrast tests on the typical Benchmark functions verify

the global convergence and stability of the algorithm comparing with other concise evolutionary algorithm. Finally, the

simulation result on the robot path planning controller shows the effectiveness of the proposed method.

Keywords: Chaotic local search, concise differential evolution, online optimization, recurrent fuzzy neural network (rfnn), robot path plan-

ning, virtual population.

1. INTRODUCTION

Online optimization of controller in mobile robot path
planning control system also needs to constantly enrich the
optimization method and introduce the new algorithm. Dif-
ferential Evolution (DE) algorithm is an optimization algo-
rithm with real-value encoding and random search in contin-
uous space [1], which is simple, robust, fast convergence,
and has the better performance than the particle swarm and
other evolutionary algorithms [2], and can be applied to
online optimization. However, in practical applications, the
DE algorithm has also been exposed to many shortcomings,
such as it is easily trapped into local optimum, slow conver-
gence in the late and a certain blind search on solving diffi-
cult high-dimensional and multi-peak complex optimization
problems, resulting in poor feasibility in practical engineer-
ing applications of the large scale and highly nonlinear and
real-time requirement [3]. Therefore, some scholars had
made improvements in DE. In [4] a novel mutation was used,
i.e. using the history of the target individual optimal solution
to guide the new population search direction. In [5] the bi-
nomial crossover strategy was used. The above methods can
accelerate the convergence rate and reduce precocious prob-
ability, but stability of the algorithm needs to be strength-
ened. Additionally, the DE and other evolutionary algo-
rithms, such as Genetic Algorithms (GA), Particle Swarm
Optimization (PSO) are population-based meta-heuristic
methods and generally require a general purpose computer to
perform the optimization, but directly executing the optimi-

*Address correspondence to this author at the Information & Technology

School, Shandong Women’s University, Jinan, China;

Tel: +86 (0531)86526783; Fax: +86 (0531)86526786;

E-mail: wxs1010@126.com

zation algorithm is not feasible for embedded controller with

limited memory and power supply etc, as it consumes huge

hardware resources for realization of the algorithm. For the

embedded control engineering, such as a small robot control

or a manipulator control and an intelligent vehicle control

etc., it is not possible to use a high-power general-purpose

computing device due to the limitations of the cost and the

size. To solve these problems, some concise evolutionary

algorithms have been proposed. In [6] a real-value compact

genetic algorithm (RCGA) was proposed. The RCGA is

based on the idea of virtual population to reduce the memory

footprint, but it slows the search speed relatively and has the

phenomenon of premature convergence. In [7] a memetic

compact differential evolution (MCDE) algorithm was pro-

posed to implement online optimization of a three-joint ma-

nipulator controller. The MCDE references the RCGA and

combines an additional local search algorithm to improve the

optimization efficiency, but it may increase the probability

of the premature convergence during operation. In order to

solve the above problems, this paper proposes a new modi-

fied concise differential evolution algorithm, namely a Con-

cise DE based Chaotic Local Search (CDE-CLS). The CDE-

CLS employs an intensively exploitative evolutionary

framework based on a DE logic aided by a concise efficient

fine exploitative chaotic local search algorithm to improve

the algorithm's ability to help help explore fast convergence,

and a perturbation mechanism was applied to the virtual

populations to help global convergence. In addition, the

CDE-CLS algorithm is run with less memory use due to the

virtual populations. Thus, the CDE-CLS algorithmis not only

concise and efficient but requires much less memory devices

and is particularly suitable for embedded controller online

70 The Open Automation and Control Systems Journal, 2014, Volume 6 Wang and Xu

optimization. The numerical results and simulation on recur-

rent fuzzy neural network controller optimization for robot

path planning show effectiveness of the proposed algorithm.

2. CONCISE DIFFERENTIAL EVOLUTION BASED
CHAOTIC LOCAL SEARCH (CDE-CLS) ALGO-
RITHM

Assume that the fitness function is f(x) for optimization
problems, the optimization problem can be described as fol-
lows:

min f (x) (1)

where x is a vector of n design variables in the decision

space D, that is, x=[x1, x2,, xn]. Without the loss of gener-

ality, it is assumed that the parameters are standardized so

that each search interval is in [-1,1].

2.1. CDE-CLS Algorithm Processes

Step 1. By the Gaussian probability distribution function
(PDF) within U[-1,1] an n 2 probability vector VP is gener-
ated:

VP(t) = [(t) (t)] (2)

where, VP is an n 2 matrix, n is the dimension of the solu-

tion space. (t)=[1(t), 2(t),…, n(t)]
T and (t)=[1(t), 2(t),…,

n(t)]
T are mean vector and standard deviation vector of a

PDF within the interval [-1,1] for each design variable I,

respectively. The height of the PDF has been standardized so

as to maintain their area which is equal to 1. t is the genera-

tion.

Step 2. (Initialization) t=0. For each design variable i, set

i(0) =0, i(0)= , i=1,2, , n =10.

Step 3. An individual is sampled from VP, and marked as
elite xelite.

Step 4. (Chaos local search) A random number rand (0,1)
is Generated, if rand (0,1)<Ls then Step (a) to perform chaos
local traversal search will be performed, else it would go to
Step 5.

Step (a). A n-dimensional vector is generated randomly

V

0
= [V

0
1

,V
0

2

, ,V
0

n

] , where

V

0
k

(0,1) and

V

0
k

[0.25,0.5,0.75] ,

(k=1,2,…,n). Set μ=4 and let

V

(q+1)
k

= μV
q

k

(1 V
q

k

), q=0, 1,...,

Q-1, thereby Q chaos vector are generated iteratively.

Step (b). Let X
q+1

= x
elite

+ V
q+1

, where is the chaos ad-

justment parameters and its value is determined by the Eq.

(3).

=
1, if rand(0,1) 0.5

1, otherwise
 (3)

The is introduced so as to ensure the best individual
traverse towards the positive and negative directions.

Step (c). The fitness values of Xq+1 are computed to find
the local optimal individual Xopt, and the fitness of the Xopt is
compared with fitness value of the xelite, if the Xopt is better

than the xelite, then the xelite is replaced with Xopt, otherwise it
cannot be replaced.

Step (d). Go to Step 8.

Step 5. (Mutation operating) 3 individuals are generated

by means of VP: xk1, xk2 and xk3. The mutation is performed

according to Eq.(4), then a temporary offspring

x

off

' is gener-

ated:

x

off

' =xk3+F(xk1-xk2) (4)

where F [0,1] is a scale factor.

Step 6. (Crossover operating)

x

elite

'
= x

elite
. Each gene of

the individual

x

off

' is exchanged with the corresponding gene

of

x

elite

' with a uniform probability and then final offspring

xoff is generated:

x
off

[j] =

x
off

' [j] if (rand(0,1)) < Cr

x
elite

' [j] otherwise
 (5)

where j =1,2, ..., n is the index of the gene under checking,
Cr is the constant value namely crossover rate. This crosso-
ver strategy is a binomial crossover (bin). Since the binomial
crossover strategy is usually better than the exponential
crossover in performance [4].

Step 7. (Selection operating) The fitness value of final

offspring xoff is computed and compared with that associated

with xelite. If

f (x

off
) < f (x

elite
) then the elite is replaced with

xoff, else the elite xelite is preserved.

Step 8. (The VP is updated) The VP is updated by Eqs.
(6), and (7) [6, 7].

(t +1) = (t) +
b l

Np
+ (rand(0,1) 0.5) (6)

((t +1))2
= ((t))2 ((t +1))2

+
b2 l2

Np

+ rand(0,1)

 (7)

Where,

=
1, if rand(0,1) < Mp

0, otherwise
 (8)

The Np is the virtual population size, b is the individual
of the current winner and l is the current loser among elite
and newly generated offspring. In Eqs. (6) and (7), the last
term is an additional perturbation, where is the maximum
amplitude of perturbation. Mp is a constant representing per-
turbation probability.

Step 9. t=t+1. If the termination condition is met (such
as to achieve the maximum generation), then the algorithm is
ended and the obtained elite solution is outputted, otherwise
the parameters Ls is updated by Eq. (9), through Step 4.

Ls(t) = Ls

min
+

Ls
max

Ls
min

t max
t (9)

where t is the current generation, tmax is the maximum gen-

eration of the algorithm, Lsmin and Lsmax are the maximum

and minimum values of Ls, respectively.

Robot Path Planning Based on Chaos Concise The Open Automation and Control Systems Journal, 2014, Volume 6 71

2.2. CDE-CLS Algorithm Features

It is through parameters Ls that the chaotic local search
(CLS) algorithm is determined whether it needs to be exe-
cuted to replace the normal mutation and crossover. After
each iterate, the CLS performs local fine search near the elite
individual for Q times, if the found individual is better than
the previous elite, then the elite is replaced. The usual chaot-
ic model is one-dimensional Logistic map [8]. As can be
seen from Eq. (9) that CLS executed probability Ls increases
with the iteration number, that is, at a later stage, the CDE-
CLS algorithm will have more opportunities to execute the
CLS algorithm to deeply develop viable solutions and to
prevent from premature convergence.

Another important feature of the proposed algorithm
CDE-CLS is that, due to its simplicity and low memory re-
quirement (only four memory use, i.e. two for the VP, one
for xelite, and one for the offspring) using virtual population
compared with population-based version, it can easily be
implemented into embedded hardware characterized by a
limited memory and power, such as PIC32 microcontroller
with 8-32KB RAM. The optimization of a population-based
algorithm is likely to overflow in the computational power or
the available memory resources.

The balance between global and local search in the pro-
posed CDE-CLS algorithm is obtained by using perturbation
in VP update rule. The perturbation mechanism then inhibits
the algorithmic premature convergence and force the algo-
rithm to search elsewhere in the decision space, possibly
exploring new promising solutions.

3. NUMERICAL RESULTS

In order to verify the effectiveness of the proposed algo-
rithm CDE-CLS, it is tested on five typical Benchmark func-
tions, and compared with other concise algorithms RCGA
and MCDE, lasting elitist strategy is used in the RCGA, and
lasting elite, DE/rand/1 mutation and the binomial crossover

strategy and other parameters set same as [7]. These test
functions selected are as follows: f1 (x) is a Sphere function,
f2 (x) is a Rosenbrock function, f3 (x) is a Ackley's function,
f4(x) is a Griewank function and f5 (x) is a Rastring function,
each function mathematics expression are given in [9, 10].
For each function, n = 30.

For three algorithms, the termination condition of each
single run is fixed as 5000 n =150,000 fitness evaluations.
The CDE-CLS algorithm parameters are: Q = 10, F = 0.5,
Cr = 0.7, Np = 2 * n = 60, =0.2, the probabilities of activat-
ing chaotic local search Ls and perturbing the virtual popula-
tion Mp have been set as 0.002 and 0.001, respectively.
Table 1 shows the average fitness and standard deviation
value detected by each algorithm over 30 times runs. The
best results are highlighted in bold face.

Numerical results showed that the algorithm CDE-CLS is
better than RCGA and MCDE on average. Simultaneously,
standard differential results showed that CDE-CLS algorithm
is more stable.

For example of f4(x), the problem of low-dimensional
and f5(x), high dimensional, Fig. (1) and Fig. (2) showed the
convergence rate of CDE-CLS algorithm is close to the
MCDE, and clearly better than RCGA. For solving f5(x)
high-dimensional problem, RCGA and MCDE appear at
premature convergence, while CDE-CLS can converge to
better solutions. Therefore, CDE-CLS algorithm not only
can guarantee the convergence rate, but also improve the
optimization accuracy and stability.

4. MOBILE ROBOT PATH PLANNING BASED ON
CDE-CLS ALGORITHM AND RECURRENT FUZZY
NEURAL NETWORK CONTROL

4.1. Mobile Robot Kinematics Model

Assume that the robot's current coordinate is (x , y) and
the goal point coordinate is (xg, yg). As shown in Fig. (3), E

Table 1. Fitness value and standard deviation comparison for three concise algorithms.

Function

RCGA MCDE CDE-CLS

Fitness Value

(Standard Deviation)

Fitness Value

(Standard Deviation)

Fitness Value

(Standard Deviation)

f1(x)
1.91E+04

(9.61E+03)

6.53E-25

(8.45E-25)

2..62E-02

(2.17E-02)

f2 (x)
2.01E+09

(2.23E+09)

1.48E+04

(6.91E+04)

5.64E-02

(3.67E-02)

f3 (x)
1.86E+01

(4.12E-01)

1.87E+00

(1.73E+00)

1.65E+00

(4.65E-01)

f4(x)
2.31E-03

(4.23E-03)

6.87E-03

(1.90E-02)

5.45E-03

(1.81E-03)

f5 (x)
2.134E+02

(2.81E+01)

6.49E+01

(1.42E+01)

1.64E+01

(3.21E+00)

72 The Open Automation and Control Systems Journal, 2014, Volume 6 Wang and Xu

Fig. (1). Optimization curve of the f4 (x).

Fig. (2). Optimization curve of the f5 (x).

Fig. (3). Mobile robot kinematics model diagram.

Robot Path Planning Based on Chaos Concise The Open Automation and Control Systems Journal, 2014, Volume 6 73

Fig. (4). Fuzzy recurrent neural network structure.

is a vector which the robot (x , y) points to goal (xg, yg). The
modulus of the E and its direction angles are:

E = (x x

g
)2

+ (y y
g
)2 (10)

= arctan

y
g

y

x
g

x
 (11)

 is the angle between the current robot and goal point,
which is constantly revised according to current position of
the robot, always pointing to the goal position. The subscript
 is time.

In reactive navigation [11], the mobile robot plans local
path based on sensor information. In the process of the robot
moving, if there are no obstacles around the robot, the robot
moves toward the goal point at angle . If there is an obsta-
cle ahead, a perturbation needs to be artificially added,
thereby establishing the following equation:

= + m (12)

where, is pre aiming direction of the robot, m is a propor-

tionality coefficient, is a perturbation angle added and its

value will be determined by the adaptive fuzzy recurrent

neural network (RFNN) controller according to the robot

current environment in [-30°, 30°], the negative number rep-

resents an increased perturbation amount in clockwise direc-

tion, positive number represents an increased amount in

counterclockwise direction for the robot. The robot is closer

to the obstacle, the absolute value of is greater. When

there are no obstructions ahead i.e. =0, the robot moves

toward the goal, while there is an obstacle ahead i.e. 0,

the robot moves forward according to the goal direction after

the offset of the additional perturbation.

4.2. Fuzzy Recurrent Neural Network Controller

The fuzzy recurrent neural network (RFNN) controller
real-time outputs perturbation angle and online adjustments
pre-aiming direction of the mobile robot so that the mobile
robot can trend a collision free goal. Designed RFNN is a
four-layer structure shown in Fig. (4). The two-input & one-
output structure is selected to reduce system complexity,
inputted data are measured obstacle distance around left and
right sides by the sensor of the robot (minimum measured
value should be taken among them respectively), the output
is a disturbance angle in [-30°, 30°] based on the current
robot environment. Each hidden layer node represents a
fuzzy subset, which is divided into five fuzzy subsets: {NB,
NS, ZE, PS, PB}; If the two feedback connections are re-
moved, the structure of the network becomes a feed-forward
Fuzzy Neural Network (FNN).

The first layer is the input layer, its output is expressed as:

y

i

1(k) = s
i
(k)w

oi
(k 1) i = 1,2 (13)

where,

y

i

1(k) is the output of the layer, woi is recurrent weight
from output to input layer, k is the number of iterations.

The purpose to introduce recurrent layer is to describe the
nonlinear dynamic behavior of the system through additional
state feedback neurons. The recurrent node memories output
the value of the previous time, equivalent to a step of delay
operator. It can be seen that the recurrent layer can store past
information of the system to make the network increase the
processing capability of dynamic information.

The second layer is a fuzzification layer, has 10 nodes,
each node represents a membership function. Here we use
the Gaussian function as the membership function, the input-
output relationship is:

74 The Open Automation and Control Systems Journal, 2014, Volume 6 Wang and Xu

u
ij

2(k) =
(y

i

1(k) a
ij
)2

(b
ij
)2

, y
ij

2(k) = exp(u
ij

2(k))

i=1,2 j=1,2,…,5 (14)

where aij and bij represent the central value and width value
of the Gaussian function respectively.

The third layer is fuzzy reasoning layer. The number of
nodes is equal to the number of rules, up to 25 (i.e. 52) nodes.
The input-output relationship is:

u
j

3(k) = y
ij

2(k)
i=1

2

, y
r

3(k) = u
r

3(k) (15)

where, j =1,2, ...,5; r =1,2,...,25 or 11 (experience value)

The fourth layer as output layer completes defuzzifica-
tion and generates the network output.

u4(k) = w
r
y

r

3(k)
r=1

N

,

(k) = y4(k) =
u4(k)

y
r

3(k)
r=1

N

 (16)

where, wr is a weight value of the r-th fuzzy rule acting on
output node.

The system uses the proposed CDE-CLS algorithm
online training RFNN. The optimized RFNN parameters
includes: the central values aij and width bij of the member-
ship function, network recurrent connection weights woi, the
weights of the output layer wr, i = 1,2; j = 1,2, ..., 5; r =1 ,
2, ..., 25. These parameters as a gene sequence constitute one
chromosome. Due to a total of 47 parameters to be optimized,
the dimension is 47 for each individual, and real-coded.

Fitness function for evaluating individual x is as follows:

2

1

))()((
1

)(tt
T

xf
i

T

i

d

ii
=

=

 (17)

where, T is the time points, d

i
and

i
are desired output and

the actual output on RFNN. The optimization goal is mini-
mizing f (xi), when f (xi) = 0, the output value and the desired
value are consistent.

4.3. Robot Path Planning Simulation

Before simulation is performed, the input parameters of
the RFNN should be normalized to guarantee the network
convergence. Computer simulation is done to test perfor-
mance of proposed algorithm for robot path planning in
Matlab 7.0. The simulation results are shown in Fig. (5),
where, the box represents obstacle. The starting position of
the robot movement is s and the goal position is g. Set

s= s= 45°, m=6. The CDE-CLS algorithm has been run
with the same parameter setting specified in section 3. The
CDE-CLS algorithm runs independently twenty-five times.
After CDE-CLS algorithm performs optimization to RFNN,
the optimal solution x = {a, b, w} is generated as the
RFNN’s optimization parameters. The Optimal RFNN con-
troller controls the robot movement from the starting point to
the goal point avoiding obstacles in real time.

The RFNN network training error is shown in Fig. (6),
after 10000 fitness evaluations the error value is reduced to
0.062° or less.

Fig. (5b) shows that the robot path is not smooth due to
directly using RFNN network with the BP learning algorithm
(without the CDE-CLS algorithm training), and leaned pa-
rameters of RFNN are imprecise.

Fig. (5c) shows that when the robot is close to the obsta-
cle and needs to avoid the obstacle, its motion direction
should be deviated from the obstacle and beyond the meas-
urement range of the sensor, the robot then moves toward the
obstacle because the controller have the ability to store past
information, thus the oscillation is generated in the process
of obstacle avoidance. The results showed that the feedfor-
ward fuzzy neural network controller can not accurately de-
scribe the dynamic performance of the system.

In order to test the robot controller adaptability to the en-
vironment and adaptive ability to unknown environment, we
change the robot local environment. The experimental results
showed that a behavior which is well evolved well using
proposed evolutionary algorithms in an environment has
better adaptability to unknown environment, as shown in
Fig. (5d). The robot’s starting point and the goal point have
been changed, a new obstacle Q has been added, after the
robot has run 15 steps, obstruction P begins to run from left
to right at the same speed as the robot, the robot can avoid
real -time obstacle by controller evolved.

(a) Robot path by CDE-CLS & RFNN controller

Robot Path Planning Based on Chaos Concise The Open Automation and Control Systems Journal, 2014, Volume 6 75

(b) Robot path by only RFNN controller

(c) Robot path by CDE-CLS & feedforward fuzzy neural network (FNN) controller

(d) Robot path by CDE-CLS & RFNN controller in an unknown environment

Fig. (5). The simulation results.

76 The Open Automation and Control Systems Journal, 2014, Volume 6 Wang and Xu

Fig. (6). Neural network training error.

CONCLUSION

This paper proposes a differential evolution algorithm
based on virtual population and chaotic local search, the al-
gorithm has a concise structure, fast convergence, high pre-
cision of optimization, and less demand for memory, it is
more suitable for online optimization within the embedded
controller with limited resources. Additionally, chaotic local
search can assist the DE to change the direction of the search
to improve the ability to global converge. The simulation
results on controlling the robot path planning based on
RFNN controller show the effectiveness of the proposed
CDE-CLS algorithm.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flicts of interest.

ACKNOWLEDGEMENTS

This research is supported by Symbolic Computation and
Knowledge Engineering of Jilin University Key Laboratory
of Ministry of Education (93K-17-2010-K05), and the Natu-
ral Science Foundation of Shandong Province (ZR2013-
FL025).

REFERENCES

[1] R. Storn and K. Price, "Differential evolution-a simple and efficient
heuristic for global optimization over continuous spaces," Journal
of Global Optimization, vol. 11, no. 4, pp. 341-359, 1997.

[2] J. Vesterstrom and R. Thomsen, "A comparative study of differen-
tial evolution, particle swarm optimization and evolutionary algo-
rithms on numerical benchmark problems," In: Proceedings of the
2004 Congress on Evolutionary Computation, 2004, pp. 1980-1987.

[3] S. Das and A. Abraham. “Differential evolution using a neighbor-
hood-based mutation operator,” IEEE Trans on Evolutionary Com-
putation, vol. 13, no.3, pp. 526-553, 2009.

[4] X.J. Bi, G.A. Liu and J. Xiao, “Dynamic adaptive differential evo-
lution based on novel mutation strategy,” Journal of Computer Re-
search and Development, vol. 49, no. 6, pp. 1288-1297, 2012.

[5] J. Lampinen and I. Zelinka, "On stagnation of the differential evo-
lution algorithm," In: Proceedings of 6th International Mendel Con-
ference on Soft Computing, 2000, pp. 76-83.

[6] E. Mininno, F. Cupertino, and D. Naso, “Real-value compact ge-
netic algorithms for embedded microcontroller optimization,” IEEE
Trans on Evolutionary Computation, vol. 12, no. 2, pp. 203-219,
2008.

[7] F. Neri and E. Mininno, “Memetic compact differential evolution
for cartesian robot control,” IEEE Computational Intelligence
Magazine, vol. 5, no. 2, pp. 54-65, 2010.

[8] R. Caponetto, L. Fortuna and S. Fazzino, “Chaotic sequences to
improve the performance of evolutionary algorithms,” IEEE Trans
on Evolutionary Computation, vol. 7, no. 3, pp. 289-304, 2003.

[9] A.K. Qin, V.L. Huang, P.N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimiza-
tion,” IEEE Trans on Evolutionary Computation, vol. 13, pp. 398-
417.

[10] J. Vesterstrøm, R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization and evolutionary algorithms
on numerical benchmark problems,” In: Proceedings of the IEEE
Congress on Evolutionary Computation, 2004, vol. 3, pp. 1980-
1987.

[11] E. Istv n and H. G bor, “Artificial neural network based mobile
robot navigation,” In: Proceedings of 6th IEEE International Sym-
posium on Intelligent Signal Processing, 2009, pp. 241-246.

Received: August 13, 2013 Revised: August 28, 2013 Accepted: August 28, 2013

© Wang and Xu; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the

work is properly cited.

