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Abstract: Because traditional obstacle avoidance path planning methods have a lot of problems, such as large amount of 

calculation, low efficiency, poor optimization capability, and lack of dealing with dynamic obstacles, a new method which 

implements real-time path planning of mobile robot is presented. The method builds a neural network model for the robot 

workspace, and then it uses the model to obtain the relationship between the dynamic obstacles and the network output. It 

can choose the local optimal collision-free path by the path planning in a dynamic environment (PPIDE) algorithm to find 

the path between two points for dealing with obstacles. The proposed method is suitable for dynamic environment where 

both linear and planar obstacles exist. Simulation results prove its effectiveness. 

Keywords: BP neural networks, dynamic environment, obstacle avoidance, path planning. 

1. INTRODUCTION 

A path planning method for mobile robots is to generate 

an optimal or near-optimal collision-free path between an 

initial location and the desired destination with specific con-

straint conditions [1-3]. Path planning method can be utilized 

to system simulation, urban traffic, and urban planning & 

design [4, 5]. According to mobile robots under the space 

environment of work proficiency information can be divided 

into two types: known environmental information for global 

planning and environmental information completely un-

known or partially unknown cases of local planning. There 

exist a number of specific kinds of methods for global path 

planning, such as visibility graph methods [6], grid method 

[7], free-space method [8]. Simultaneously there are methods 

for local path planning, including neural networks [9], artifi-

cial potential field method [10], and fuzzy logic algorithm 

[11]. Because of the ambiguity of the actual situation of 

workspace and the practical demand of time and spatial 

characteristics of algorithm, the researches on local path 

planning are more than global path planning. Under inten-

sive dynamic obstacle environment, there is a lack of effec-

tive methods to consider the control deviation of the moving 

process of robots for path planning. 

The neural network is an arithmetic model, which imi-
tates the behavior characteristic of the animal neural net-
work. As a highly parallel distributed system, it offers the 
possibility to solve the problem of high real-time robot sys-
tem. Therefore, artificial neural network model of complex 
dynamic environment has been widely used [12-18].  
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In this paper, we present the method of mobile robot path 
planning in dynamic environment. The static search of algo-
rithm for path planning was firstly proposed to obtain an 
optimal collision-free path from the beginning to the end 
point. Artificial neural network is employed to describe the 
relationship between the dynamic obstacles and the network 
output. And the searching algorithm for path planning has 
been revised to solve the local optimal path of the current 
round. Compared with the traditional path planning algo-
rithm, simulation results show that the path planning in dy-
namic environment (PPIDE) is more practical and efficient. 

2. PATH PLANNING ALGORITHM BASED ON NEU-

RAL NETWORK 

2.1. Description of the Workspace 

First, this paper proposes the following suppositions to 
the workspace: 

• The robot moves in the two-dimensional bounded 
space, which will not surpass the boundary. 

• The robot itself can be abstracted as a particle, and the 
particle is the geometric center of the robot. 

• Limited obstacles, including linear obstacles and pla-
nar obstacles, are assigned in the workspace ran-
domly. 

• Obstacles random motion in the workspace, but do 
not change their shape. 

• The robot moves with constant speed, and has good 
brakes. 

• Movement trajectory of the obstacles can be described 
by the continuous function, which is advantageous for 
the comparison of the real value and predicted value. 

Based on the above suppositious, the workspace of the 
robot can be set as shown in Fig. (1). The robot works in a 
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finite two-dimensional space, which is indicated with the Oxy 
coordinate system. Point p represents the starting point of the 
robot, and point q represents the end point of the robot. In 
the figure, black shaded area oi represents the i-th obstacle to 
the positive direction of the x-axis. oi,j expresses the j-th ver-
tex of the i-th obstacle. 

2.2. Static Search Algorithm for Path Planning 

In Fig. (1) as described in the robot workspace, all the 

obstacles have been vectorized line or polygons. Each obsta-

cle keeps still in the static space. As a result of the robot to 

the overall situation environment understanding, the best 

collision-free path from beginning p to end point q can be 

achieved. For the convenient expression on the searching 

algorithm, the relevant symbols are defined as follows: As-

sume that abscissa of p is not greater than q. L denotes the 

set of linear obstacles, and S denotes the set of planar obsta-

cles. path1 and path2 respectively are the obstacle paths of 

the left and right side of pq ; p1 and p2 denote the starting 

points of the paths that will be added to the path1 and path2 

separately; Similarly, q1 and q2 denote the end points of the 

paths that will be added to the path1 and path2 separately. 

Function reach(p, q) is to judge whether point p and q are 

directly reachable, and dis(p, q) is the Euclidean distance 

between point p and q.  

The search algorithm shows as follows: 

Algorithm 1: Search algorithm for path planning 

1: path1= ; path2= ; p1 = p2 = p ; q1 = q2 = q ; i = 0. 

2: If (reach(p, q) = TRUE) 

3: Dpq = dis(p, q); path1 = path1
11

qp ; path2 = 

path2
22

qp ; return; 

4: End if 

5: Find the obstacles intersect with obstacle group. 
The obstacles expressed in turn are O1, O2,…, Om, in 
which m is the number of the obstacles. Sorting the verti-
ces of Oi (1  i  m) in descending order according to its y-

coordinate values, denoted as oi, j (j = 1, 2, ..., k, k is the 
number of vertices of Oi). 

6: If (Oi L) 

7: q1 = Oi, 1, q2 = Oi, 2. The point of intersection 

of pq and O
i,1

O
i,2

, denoted as h. 

8: If (reach(p1, q1) = TRUE) 

9: path1 = path1 11qp ; 

10: Else 

11: path1 = path1 hp1 1hq . 

12: End if 

13: If (reach(p2, q2) = TRUE) 

14: path1 = path1
22

qp ; 

15: Else 

16: path2 = path2 hp2 2hq . 

17: End if 

18: Set p1 = q1; p2 = q2; i++; Go 43. 

19: End if 

20: If (Oi S) 

21: The point with the smallest abscissa of intersection 

points of pq and Oi, denoted as h; V1 and V2 respectively 

are the sets of vertices of Oi on the left and right side 

of pq . Sorting the vertices of V1 in descending order ac-

cording to its ordinate, denoted as oi, j (j = 1, 2, ..., k, k is 

the number of vertices of V1). Sorting the vertices of V2 in 

ascending order according to its ordinate, denoted as  

oi, j’ (j’ = 1, 2, ..., k’, k’ is the number of vertices of V2). 

Let oi, k +1 = h; oi, k’+1 = h. 

22: If (reach(p1, q) = TRUE) 

23: path1 = path1 qp
1

; Go 43. 

24: Else 

 

Fig. (1). Schematic diagram of workspace with obstacle constraint. 
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25: Set j = 1, q1 = oi, j; 

26: If (reach(p1, q1) = TRUE) 

27: 
j

k
kiki OOqppathpath

2=
1,,111=1 ; Go 32. 

28: Else 

29: Let j = j + 1; q1 = oi, j; Go 26. 

30: End if 

31: End if 

32: If (reach(p2, q) = TRUE) 

33: path2 = path2 qp
2

; Go 43. 

34: Else 

35: Set j’= 1, q2 = oi, j’; 

36: If (reach(p2, q2) = TRUE) 

37: 

   

path2 = path2 p
2
q

2
O

i,k '
O

i,k ' 1

k=2

j '

; Go 43. 

38: Else 

39: Let j’= j’+ 1; q2 = oi, j’; Go 36. 

40: End if 

41: End if 

42; End if 

43: If (i < m) 

44: go 6; 

45: Else 

46: path1 = path1 qp
1

, path2 = path2 qp
2

. 

47: Compare the length of path1 and path2, and 

choose the shorter one. 

48: End if 

2.3. Prediction Model Based on Back-propagation (BP) 

Neural Network 

Since the movements of obstacles are mutually inde-
pendent in a dynamic environment, the movement trend of 
obstacle should be predicted in path planning. The position 
data of the previous moments and the next moment to be 
predicted are taken as input and the position data of the next 
moment by mathematical dynamic models as output. Predic-
tion model only emphasizes input and output, which has no 
structural limits on specific mathematical models. For the 
whole work space and obstacles are studied as a macroscopic 
system in the process of path planning, it is difficult to get 
accurate mathematical model for each obstacle for multi-step 
prediction. 

The neural network can carry on study and training to the 
system data approaching the real system, without knowing 
the internal structure of the real system. BP neural network 
can learn and store large amounts of input-output model 
mapping, which does not need to know mathematical equa-
tion to describe this kind of mapping relations in advance. 
Due to the following advantages, such as massively parallel 
processing, self-organizing, self-learning, BP neural network 
model is used to predict the location of obstacles in this pa-
per. The prediction model based on BP neural network is 
represented in Fig. (2). 

2.4. Path Planning in Dynamic Environment (PPIDE) 
Algorithm 

This paper presents a dynamic environment of path plan-
ning algorithm. The algorithm first uses neural network to 
predict the position of obstacles in the next turn, followed by 
the searching algorithm for path planning to determine the 
local optimal path of the current round, and finally update 
the actual location of obstacles through the robot's sensors. 
An optimal collision-free path from the beginning to the end 
in a dynamic environment can be achieved by the iterations. 
The diagram of the algorithm, denoted PPIDE algorithm, is 
shown in Fig. (3).  

Search algorithm for path planning needs to be revised to 

solve the local optimal path of the current round. U = (xU, yU) 
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Fig. (2). Prediction model based on BP neural network. 
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denotes point U in the workspace, where xU and yU respec-

tively are the abscissa and ordinate. v0 represents the moving 

speed of a robot. Let t0 be the time interval for each round. 

Let U, V represent the position which the robot reaches with 

the movement in the direction of 
1 1

PQ  and 
2 2

P Q after one 

round. Let the angle between the positive x-axis and 
1 1

PQ be 

1, the angle between the positive x-axis and P
2
Q

2
be 2.  

The coordinates of point U and point V can be expressed 

as follows: 
1 1

1 PQU Q L= + , where U = (xU, yU), 
1 11 ( , )Q QQ x y= , 

and 
1 1 0 0 1( cosPQL v t=  

0 0 1sin )v t . Similarly, 
2 2

2 P QV Q L= + , 

where V = (xV, yV), 
2 22 ( , )Q QQ x y= , and

2 2 0 0 2( cos ,P QL v t=  

0 0 2sin )v t . Subsequently, the paths can be replaced by 

path1 = path1
1

PU and path2 = path2
2

PV . 

 

Fig. (3). Flow diagram of the PPIDE algorithm. 

Fig. (4). The movement of obstacles and path planning in dynamic environment. 
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3. EXPERIMENTAL RESULTS 

The actual movement of the state transition and path 

planning process is shown in Fig. (4), where only four repre-

sentative intermediate states are selected. Solid line with 

nodes represents the currently selected path. Dotted lines 

represent different moments, in which the last one is the cur-

rent time, and the interval between the two dotted lines rep-

resents the 5s time-gap. The dotted line polygon and dotted 

represents the position of the line linear obstacles and planar 

obstacles in the previous state time respectively, and the 
solid shadow part is the current position of obstacle. 

Radial Basis Functions (RBF) neural network a class of 

widely used neural networks (Fig. 5). To compare the per-

formance of BP neural network and RBF neural network, the 

continuous function is used to describe the obstacle path in 

movement. Uniform rectilinear motion X1 = x0 + vt  

(x0 = 0.3, v = 0.6), uniformly decelerated linear motion  

2
0

( 0.2)
t

X atdt a= = , cos( )

sin( )

X r

Y r

=

=
  
( = at, r=1 , / 6)a =  are 

selected as the reference examples separately. X1, X2 , X, Y  

 

are taken separately as input vector P. The setting of BP neu-

ral network parameters is as follows: S1=6, S2=6, R=6; W1, 

W2, b1 and b2 are initialized by function initnw of neural 

network toolbox. Parameters of RBF neural network are set 

as follows: W1, W2, b1 and b2 are initialized by function 

initnw of neural network toolbox. RBF neural network prob-

ability density SPREAD = 1. The experiments have been 

conducted based on the proposal conjectured in 2.1. 

Since there is a stable relationship between the horizontal 

and vertical coordinates, the simulation to two kinds of 

movement x-coordinates should be conducted to obtain the 

predicted value of abscissa and ordinate as shown in Table 1 

and Table 2. As can be seen by comparing Table 1 and  

Table 2, the error between neural network predictive value 

and the true value of RBF neural network is bigger than BP 

neural network. 

  
X

1

* , 
  
X

2

*  denote the predicted values for X1, X2 respec-

tively. Let D = * 2 * 2( ) ( )X X Y Y+ , where *
X , *

Y denote 

the predicted values for X, Y respectively. According to  
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Fig. (5). Prediction model based on RBF neural network. 

Table 1. Neural network predictive value and the true value of BP neural network. 

Round X1 
*

1
X  |

  
x

1
- x

1

*
| X2 

*

2
X  |

  
x

2
- x

2

*
| X Y D 

1 0.3   -0.1   1 0  

2 0.9   -0.4   0.809 0.5878  

3 1.5   -0.9   0.309 0.9511  

4 2.1   -1.6   -0.309 0.9511  

5 2.7   -2.5   -0.809 0.5878  

6 3.3 3.3640 0.0640 -3.6 -3.6559 0.0559 -1 0 0.4104 

7 3.9 3.9000 0 -4.9 -4.9000 0 -0.809 -0.5878 0.0001 

8 4.5 4.5000 0 -6.4 -6.4000 0 -0.309 -0.9511 0.0001 

9 5.1 5.1000 0 -8.1 -8.1000 0 0.309 -0.9511 0.0001 

10 5.7 5.7000 0 -10 -10.0000 0 0.809 -0.5878 0 

11 6.3 6.3000 0 -12.1 -12.1000 0 1 0 0 
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Table 1, through the true values and the predicted values of 

the error, the two movements using neural network simula-

tion can get the predicted values which are close to the true 

values, and in which better forecast results has been achieved 

separately in 6
th 

and 7
th

 round. As it can be seen from (Fig. 6) 

that the error between the output value of the neural network 

in the 3
rd

, 4
th

 generation and the true values achieve 10
-20 

order. Therefore it can be recognized that this model con-

verges rapidly. The simulation results show that the per-

formance of the model is good. But it simultaneously indi-

cates that achieving good results requires training sample as 

much as possible. For workspace it reduces the time scale for 

each round, which makes robotic perception greatly increase 

the speed of samples collection. 

A* algorithm is an efficient heuristic search method for 
path planning, and will therefore be compared with the 
PPIDE algorithm. To verify the correctness and validity of 
the algorithm, this paper conducts simulation experiments 

Table 2. Neural network predictive value and the true value of RBF neural network. 

Round X1 
*

1
X  |

  
x

1
- x

1

*
| X2 

*

2
X  |

  
x

2
- x

2

*
| X Y D 

1 0.3   -0.1   1 0  

2 0.9   -0.4   0.809 0.5878  

3 1.5   -0.9   0.309 0.9511  

4 2.1   -1.6   -0.309 0.9511  

5 2.7   -2.5   -0.809 0.5878  

6 3.3 2.9032 0.3968 -3.6 -3.3943 0.2057 -1 0 1.4024 

7 3.9 3.6950 0.2050 -4.9 -4.3712 0.5288 -0.809 -0.5878 0.6668 

8 4.5 4.3002 0.1998 -6.4 -6.8722 0.4722 -0.309 -0.9511 0.7011 

9 5.1 5.2771 0.1771 -8.1 -8.4720 0.372 0.309 -0.9511 0.4412 

10 5.7 5.5893 0.1107 -10 -9.8923 0.1077 0.809 -0.5878 0.1558 

11 6.3 6.2844 0.0156 -12.1 -12.2251 0.1251 1 0 0.0785 

 

Fig. (6). Two groups of experimental training relationship between generations and errors. 
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using Matlab 2012b and Visual C++ 6.0. R represents the 
ratio of the length of an optimized collision-free path and the 
length of the straight distance between p and q. Assume that 
the robot makes uniform motion with the 3M/s speed. And 
obstacle set including linear obstacles and planar obstacles is 
generated randomly. With a mean value of 500 random 
simulations to compare their performances, experimental 
results are shown in Table 3. Experimental results show the 
efficiency of the path planning algorithm based on BP neural 
network in a dynamic environment. 

CONCLUSION 

This paper presents a mobile robot path planning method 
based on artificial neural networks and a search algorithm for 
path planning in a dynamic environment. Compared with the 
traditional path planning algorithm, it solves the problems of 
traditional obstacle avoidance path planning method for 
computer-intensive, low efficiency and optimizing capacity 
and unable to cope with dynamic issues such as obstacles. 
By comparative analysis of BP neural network and RBF neu-
ral network, simulation results show that neural network 
model accurately predicts the movements of the dynamic 
obstacles, and it converges rapidly. Local optimization strat-
egy based on searching algorithm also achieves good results 
that the optimum collision-free path can be obtained. The 
next step will be to consider the volume of the robot, so that 
the robot denoted by the particle would be extended to a 
convex polygon case. Meanwhile, further research about the 
mode of motion of obstacles would be conducted.  
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Table 3. Comparison of PPIDE algorithm and A* algorithm. 

10 Obstacles (50 Vertices) 50 Obstacles (250 Vertices)  

Average Time Cost/s Average Value of R Average Time Cost/s Average Value of R 

PPIDE algorithm 44.6 1.136 123.8 1.345 

A* algorithm 89.7 1.432 201.5 1.896 


