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Abstract: In the recent years, the assessment and forecasting of flight performance based on pilot’s multiple physiological 
parameters has become an important theme of research. However, traditional forecasting and assessment of flight perfor-
mance is mainly based on the manual assessment or explicit mathematical models, and rarely take the physiological pa-
rameters into consideration. Based on the complex structure with multi-dimension, nonlinearity and information-related to 
physiological parameters, a hybrid model based on chaotic genetic algorithm and Elman neural network (CGAE) is pro-
posed in this paper. We optimize the weights and thresholds of Elman by chaotic genetic algorithms (CGA) and demon-
strate that the CGAE hybrid model is well suited for the assessment of flight performance through experiments. Moreover, 
GA is also adopted to optimize the Elman neural network (SGAE). Experiments also show that CGAE have better predi-
cation accuracy and convergence rate than SGAE and Elman, which is indicated that CGA-Elman network has the great 
application prospect in the field of the assessment of flight performance. 
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1. INTRODUCTION 

Safety is one of the vital elements of civil aviation. With 
the fast development of the technology and management, the 
number of accidents caused by mechanical failure decreased 
significantly. Human factors become more and more leading 
cause of accidents. An important aspect of human factor is 
assessment of a pilot’s workload. Piloting an aircraft is a 
complex task that places demands on several aspects of a 
pilot’s cognitive capabilities [1]. Either excess workload or 
under-load can have an impact on flight performance. Up to 
now, many researchers have assessed pilot’s workload 
though multiple physiological parameters [1-3]. Yung-Hui 
Lee indicated that the pilot’s workload could be assessed by 
the performance and the assessment of flight performance 
could be defined by the consequence of landing roughly or 
the deviation of flight path [3]. Thus it can be seen that there 
exists some relationships between the flight performance and 
the pilot’s physiological features.  

Up to now, many researchers have assessed pilot’s work-
load though multiple physiological parameters [4-6]. Yung-
Hui Lee indicated that the pilot’s workload could be assessed 
by the performance and the assessment of flight performance 
could be defined by the consequence of landing roughly or 
the deviation of flight path [6]. Thus it can be seen that there 
exists some relationships between the flight performance and 
the pilot’s physiological features.  

Multiple physiological signals are characterized by non-
linear, high dimension, complex structure and information.  
 
 

GA as a representative of evolutionary computation is a di-
rect random search algorithm. Due to its flexibility, versatili-
ty and robustness, it shows superiority in optimizing prob-
lems of multidimensional and complex data. However, there 
are some defects on GA. For example, the optimization may 
get stuck at a local optimum and it tends to converge prema-
turely. In order to avoid these overcome, it is necessary to 
adopt some improvements on GA to speed up the conver-
gence and heighten the effectiveness of GA. The chaotic 
optimization method based chaos theory has come into use 
as a novel type of random search algorithm during the past 
decade. Chaos often exists in nonlinear systems. It is the 
highly unstable motion of deterministic systems in finite 
phase space [7]. Taking advantage of the universality, ran-
domicity and sensitivity dependence on initial conditions, it 
is more likely to acquire the global optimum solution. Thus, 
the combination of chaotic mapping and GA become an ef-
fective optimization approach to solve the concerning prob-
lems [7-9]. Elman neural network, as one of the artificial 
neural network, adds a context layer in the hidden layer as a 
delay operator to store internal states, which make the sys-
tem a dynamic time-varying capacity and strong global sta-
bility. Use chaotic genetic algorithm to optimize the Elman 
neural network has not been studied in the filed of assessing 
the flight performance yet. For that sake, this paper is fo-
cused on the hybrid model by means of the integration of 
chaotic mapping, genetic algorithm and Elman network. 

By combining the chaotic genetic algorithm with Elman 
neural network, here we put forward a new chaotic genetic 
Elman, called CGAE. Based on the CGAE, an evaluation 
model for flight performance is proposed and verified the 
effectiveness by experiments. The rest of this paper is orga-
nized as follows. Elman and genetic algorithm are intro-
duced briefly in Section 2 and Chaotic Genetic algorithm 
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(CGA) is proposed in this section. Section 3 presents the 
simulation results and discussion. The final conclusion is 
drawn in Section 4. 

2. THE HYBRID MODEL OF CGA-BASED ELMAN 

2.1. Elman Neural Network 

The Elman neural network is one kind of globally feed-
forward locally recurrent network model proposed by Elman 
[10]. The structure of an Elman neural network is illustrated 
in Fig. (1). 1z−  is a step delay operator. It is obvious that the 
Elman network consists of four layers: input layer, hidden 
layer, context layer, and output layer. There are adjustable 
weights connecting every two adjacent layers. Context layers 
are used to store the internal states. 

The training algorithm for the Elman neural network is 
based on the gradient descent principle, similar to the BP 
learning algorithm. From Fig. (1), at iteration k we have the 
following relationship: 

( ) ( )_ _k k
i io c net c=  (1) 

where _ io c  and _ inet c  are the output and input of con-
text node i , respectively. Note that the node activation func-
tion of the context nodes is linear. To calculate the input as 

well as output of hidden node j , we have: 
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where
  
j = 1,2,...,n . The output of context node i  at the kth 

training iteration is one-step-delayed output of the corre-
sponding hidden node i : 

( ) ( 1)_ _k k
i inet c o c −=  (5) 

We can see that the context weights play an important 
role in the error back-propagation procedure. However, local 
minimal caused by the regular BP learning algorithm often 
result in an unavoidably large approximation error that may 
reduce its prediction accuracy. Integration the chaotic genet-
ic algorithm with the Elman network is an alternative solu-
tion to this problem, which is to be introduced in the follow-
ing sections. 

2.2. Genetic Algorithm 

GA is a learning mechanism of natural selection and evo-
lution. It is a highly parallel, randomized and adaptive search 
algorithm, which uses the group search technology with 
population as a solution. Based on the survival and reproduc-
tion of the fitness, GA continually exploits new and better 
solution without any pre-assumption. GA evolves a  
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Fig. (1). Structure of elman neural network model. 
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population of candidate solutions and each solution is repre-
sented by a string called chromosome, which is usually cod-
ed as a binary string. GA actually is an iterative process; in 
each iteration, it retains a candidate solution and sorts their 
pros and cons, then choose some of the solution according 
some indicators and use genetic operators computing to pro-
duce a new generation of candidate solutions, repeat this 
process until meet the target convergence [11]. Firstly, indi-
vidual is encoded by real numbers and every individual is 
represented by a chromosome. Then, the fitness of each in-
dividual is calculated. Following these, individuals evolve 
towards an optimal solution over successive generations via 
selection, crossover, and mutation processes. The flowchart 
of Genetic Algorithm is shown in Fig. (2). 

2.3. Implementation Steps of Chaotic Genetic Algorithm 

Chaos often exists in nonlinear systems. Chaos is not 
disorderly and unsystematic, but a phenomenon that has a 
delicate internal structure. It is the highly unstable motion of 
deterministic systems in finite phase space, which character-
ized by randomicity, ergodicity and regularity. Many chaotic 
mappings in the literature possess certainty, ergodicity and 
stochastic property. In the recent years, chaotic theory have 
been used to improve the performance of evolutionary algo-
rithm [12, 13]. 

The most well-known chaotic mapping is Logistic map-
ping, whose equation is [14]: 

  
X

n+1
= µX

n
(1! X

n
)  (6) 

 in which µ  is a control parameter,  n = 0,1,2...,  and x  is 
a stochastic variable. The behavior of system Equation (6) is 

greatly changed with the variation of µ , i.e. when µ =4, the 
equation is changed to:  

  
X

n+1
= 4X

n
(1! X

n
)  (7) 

Thus, very small difference in the initial value of x caus-
es large difference in its long-time behavior, which is the 
basic characteristic of chaos.  

In this paper, we use Logistic mapping to initialize the 
population for improving the performance of optimization. 
The initial group of genetic algorithm is generated by Equa-
tion (7). 

2.4. CGA-Based Optimization on Elman 

Genetic algorithms have been used in three main tasks: 
training the weights of connections, designing the structure 
of a network and finding an optimal learning rule. In this 
paper, CGA is used to train the weights and threshold of the 
Elman neural network (ENN). The structure of ENN has 
been decided firstly. CGA-Elman optimization can be seen 
as an adaptive system without human intervention and auto-
matically adjust its connection weight and threshold, which 
realizes the integration of CGA and Elman and is shown in 
Fig. (3).  

In briefly, the basic steps of the proposed hybrid model 
are as following: 

1. Initialize the population. Individual is encoded by real 
numbers and every individual is represented by a 
chromosome. The initial weights and thresholds are 
encoded by CGA, generating the initial population 
composed by a number of chromosomes. 

 

Fig. (2). The flowchart of GA. 
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2. Evaluate the fitness. Evaluate the fitness of each 
chromosome. Forecasting problem is to established a 
network model which make the forecast error mini-
mum, so the MSE is usually used for this purpose .It 
formula is described by: 

 

2

1

1 ˆ( )
N

i i
i

MSE y y
N =

= −∑
 (8) 

where iy  is the real value from the testing set, ˆiy  is the 
forecasting value.  N is the length of the testing sample. 

3. Selection. Based on the fitness function, chromo-
somes with lower fitness values are more likely to be 
chosen. The roulette wheel selection principle is ap-
plied to choose chromosomes for reproduction. 

4. Crossover operations. In crossovers, chromosomes 
are paired with randomly and set a crossover-point in 
the individual string. Then interchange the part of 
chromosome and get a new individual.  

5. Mutation. Whether the current chromosome is mutat-
ed depends on the mutation probability and the posi-
tion of mutation is randomly confirmed. 

6. Stop condition. If the number of generations reached 
to a given scale, then the best chromosomes are pre-
sented as a solution; otherwise, go back to Step 2. 

7. Train the Elman network using the optimal weights 
and thresholds. The genes on the best chromosome 
represent the optimal weights and thresholds which 
set as the initial values of weights and threshold. Then 
calculate the error of the network. 

8. When reaching the largest training epochs, the train-
ing is ended. 

3. EXPERIMENT AND DISCUSSION 

3.1. The Data Description 

The CGA-Elman is used to solve the matter of the evalu-
ation of flight performance via multiple psycho-
physiological parameters. The apparatus of this experiment 
is comprised of two parts: the Boeing 777-200ER flight sim-
ulator and the physiology monitoring system. The flight 
simulator, as shown in Fig. (4), was built for simulated flight. 
The flight path is set by the open software, FlightGear. Psy-
cho-physiological devices are the Smarteye 5.8 eye tracker 
device and the BioHarness physiological parameters moni-
toring equipment (wore by subjects to record the heart rate 
data and respiration data). The instantaneous variations of 
some physiological measurements can be seen on the com-
puter, as depicted in Fig. (5). The flight data, such as air-
speed, altitude and acceleration, are also recorded by 
FightGear. 

 
Fig. (3). The structure of CGA-Elman. 

 

 
Fig. (4). The flight simulator and monitoring system. 
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Because the approach and landing phase is the process of 
the highest accidents rate, which require pilots to concentrate 
highly on all kinds of information and to manipulate the air-
craft frequently, the performance of flight will affect the avi-
ation safety directly. Four novice pilots were invited to per-
form the planned flight mission: approach and landing. Dur-
ing the process, subjects need to pilot the aircraft according 
to the glide slope, extend flaps 5 times at the given altitude 
based on instructions as well as controlling the airspeed. 
Each subject performed 5 times. So the total time of flight is 
20 and we got 20 sets of data. The whole process lasts 3-4 
minutes. According to the past papers [1-4, 15], physiologi-
cal parameters and eye movement data were chosen as fol-
lowing: Heart Rate (HR), Respiration Amplitude (Res_Amp) 
and Respiration Rate (Res_Rate), Eye Blink Interval (BI), 
Eye Fixation Time (FT). According to the definition of 
Yung-Hui Lee in his paper [6], the performance in this paper 
is represented by flight path deviations. 

The original data was sampled at different frequency 
from the devices and become the experimental data sets 
through two sampling. All the values were preprocessed and 
normalized. We use min-max normalization method, which 
transforms the data into the desired range [0,1]. The formula 
is as follows: 

  

x
norm

=
x ! min

max! min
 (9) 

where 
 
x

norm
 is the result of the normalization , x  is the val-

ue to be normalized, max  is the upper value of the dataset 
and  min is the smallest value of the dataset.  

Heart Rate, Respiration Amplitude, Respiration Rate, 
Fixation Time and Blink Interval are the inputs of neural 
network. The value of the performance is the output. Be-
cause the duration of each flight is slightly different, the 
number of data in each dataset is slightly different, between 
300 and 600. The form of selected parameters and perfor-
mance are all dimensionless and numerical. The selected 
parameters and the performance are shown in Table 1.  

3.2. Hybrid Model to Assess the Flight Performance 

In this section, we use MATLAB to establish the three 
different neural networks to assess and forecast the perfor-
mance. For each run, the last 50 patterns are the forecasting 
samples and the former patterns are training samples. Data of 
each flight is run and get the results. 

 

 

 
Fig. (5). Variations of physiological measures when flight. 



980    The Open Automation and Control Systems Journal, 2014, Volume 6 Jingjing et al. 

The first network is Elman neural network. It has 5 input 
layer neurons and 1 output layer neuron, which correspond 
to the five selected physiological parameters and one per-
formance value. The number of hidden layer neurons is set 
as 15 by a series of trials, which verified that when the num-
ber of hidden layer is 15, the forecasting error of the Elman 
network is the minimum. The transfer function of hidden 
layer is “tansig” and the transfer function of output layer is 
“purelin”. The second network is CGA-Elman. The GA ini-
tial parameters are set as following: population size: 80; evo-
lution generation: 100; crossover rate: 0.3; mutation rate: 
0.01.Fig. (6) and Fig. (7) show the training result and fore-
casting results of one data. The trend of the change in the 
fitness value of each generation is shown in Fig. (8). It is 
obvious that the CGA-Elman is convergent. The relative 
error is 5.84%. To verify the superiority and generalization 
of CGA-Elman, Elman, GA-Elman were used to run the 
same 20 sets of data. For the effective of the comparison, the 
initial parameters of GA-Elman are the same with that of 
CGA-Elman. 

 

Key measurements (MAE, MAPE, MSE) are used to 
evaluate the forecasting capability of the three networks. 
Table 2 sets out the expressions of these indexes [16]. The 
comparison results of key measurements of the 20 datasets 
of the three networks are shown in Fig. (9). Fig. (9a-c) show 
the MAE, MAPE and MSE values respectively, which can 
be indicated that the prediction performance of CGA-Elman 
is vastly superior to GA-Elman and Elman. The average val-
ue of the key measurements of the 20 forecasting results and 
average training time of the four models are shown in Table 
3. 

4. DISCUSSION 

As is shown in Table 3, all index values of CGA-Elman 
model are smaller than that of Elman and GA-Elman. The 
MAE of CGA-Elman is both reduced by 50% compared with 
Elman and about 13.5% compared with GA-Elman. The 
MAPE of CGA-Elman is both reduced by 69% compared 
with Elman and about 23% compared with GA-Elman. The  
  

Table 1. The illustration of physiological parameters and performance. 

Index Unit Expression 

Heart Rate Dimensionless Numerical value 

Respiration Amplitude Dimensionless Numerical value 

Respiration Rate Dimensionless Numerical value 

Eye Blink Interval Dimensionless Numerical value 

Eye Fixation Time Dimensionless Numerical value 

Performance Dimensionless Numerical value 

 

 
Fig. (6). The training error of CGA-Elman. 
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Fig. (7). The forecasting error of CGA-Elman. 

 

 
Fig. (8). The fitness degree of training samples of CGA-Elman. 

 
Table 2. The expression of the error indexes. 

Index Expression Formula 

MAE Mean Absolute Error 
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(a) MAE of the Three Networks 

 
(b) MAPE of The Three Networks 

 
(c) MSE of the Three Networks 

Fig. (9). The MAE, MAPE and MSE of the 20 sets of data based on the three models. 
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Table 3. Comparison of average error analysis and average fitness of the three models. 

Model MAE MAPE MSE(*100) Fitness 

Elman 0.02656 12.77% 0.1528 No 

GA-Elman 0.01532 7.12% 0.0616 135.85 

CGA-Elman 0.01325 6.15% 0.0473 110.82 

 

MSE of CGA-Elman is reduced by about 52% than Elman 
and by 13.6% than GA-Elman. The average fitness of CGA-
Elman is 18.4% smaller than that of GA-Elman. It is con-
cluded that the forecasting property of CGA-Elman neural 
network is better than the Elman and GA-Elman network. 
Considering the nonlinear influence of multi-dimensional 
data, it can be seen that CGA-Elman is more appropriate for 
assessing and forecasting the flight performance in this ap-
plication. CGA-Elman does provide a new intelligence 
method for flight performance assessing and forecasting 
based on multiple physiological parameters. 

CONCLUSION 

In this paper, a new network called CGA-Elman is pro-
posed to assess and forecast the flight performance based on 
multiple physiological signals. Compared with the other two 
forecasting models, the CGA-Elman model is presented to 
approximate the real performance value, generating better 
results. The CGA-Elman shows the superiority and effective 
in the matter of the forecasting of flight performance. It can 
be concluded that CGA-Elman network has the great appli-
cation potential in the field of the assessment of the flight 
performance. The CGA-Elman optimized networks, to our 
best knowledge is for the first time being applied to assess 
and forecast flight performance in the scope of aviation, es-
pecially based on multiple physiological signals. This paper 
put forward a new kind of method for the assessing and fore-
casting of flight performance objectively, so there is a need 
for more efforts from researchers to develop more efficient 
method to solve this novel aviation problem. 
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