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Abstract: Support Vector Machine can well solve the classification problem of small sample, but when the dimension of 
input feature vector is very large, the structure of classifier is complex, the training time is long, and the performance is 
decreased. To solve this problem, a feature extraction method based on wavelet coefficients clustering was proposed. All 
the wavelet coefficients were clustered, the energy value of wavelet coefficients in each clustering was calculated and 
used as the input feature vector of a classifier. The dimension of input data was greatly reduced and information of 
specific problem was reserved. Support Vector Machine was used to identify the defects in steel plate, experiment results 
showed that the proposed method has higher classification accuracy. 
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1. INTRODUCTION 

 In industrial field, ultrasonic nondestructive testing of 
workpieces is often required [1]. In the process of detection, 
a large number of ultrasonic echo signals need to be 
collected, and then processed and classified. In the process 
of classification recognition, the accuracy of classification 
depends mainly on extracted features and classifier used. The 
time-frequency localization of wavelet transform [2] makes it 
a common feature analysis method. However, the dimension 
of the discrete wavelet coefficients matrix of actual sampled 
signals is very large. To reduce the dimensionality, it is 
necessary to extract important features from the wavelet 
coefficients matrix. In the past, feature extraction methods 
based on wavelet transform often used wavelet coefficients 
of one scale or some scales as features [3-4]. But the wavelet 
coefficients at different scales obtained by wavelet transform 
represent the magnitude of signal components in different 
frequency ranges. Once the wavelet coefficients of some 
scales are discarded, the signal information contained in 
these scales will be lost and the accuracy of classification 
will be reduced. In addition, the position of wavelet 
coefficients is variable. 

 Based on above problems, a feature extraction method 
based on wavelet coefficients clustering was proposed in this 
paper. Firstly, fast wavelet transform of collected signals was 
used to obtain a wavelet coefficients matrix [5]. Secondly, in 
each row of the matrix, the coefficients containing larger 
signal information were extracted, and the coefficients with 
smaller information were merged, that is, clustering of 
wavelet coefficients at each scale, and finally, the wavelet 
coefficients  energy value of each cluster was calculated and 
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used as the input vector of a classifier. Proposed feature 
extraction method was combined with support vector 
machine classifier   [6-7] to identify internal defects in 
medium heavy steel plates, the experiment results showed 
that proposed method has higher classification recognition 
accuracy. 

2. FAST WAVELET TRANSFORM 
 The Daubechies wavelet basis has been widely used in 
signal analysis because it has the properties of ideal 
approximation accuracy and numerical stability [8]. 
Parameters corresponding to discrete wavelet decomposition 
are given by real sequence (ℎ!, ℎ!,⋯ , ℎ!), and these values 
satisfy the following equation: 

!! = !!
!!!          (1) 

(−!)!!!!! = !!
!!! ,! = !,!,⋯ , (! − !)/! (2) 

!!!!!!" = !,!!!"
!!!     ! = !,!,⋯ , (! − !)/! (3) 

Therein, N is a singular natural number, the number of 
solutions is  2(!!!)/!. 
 It is assumed that the sampled signal obtained by 
ultrasonic sensor is a finite series of data    (!! = !!! ! =
0,1,⋯ , ! − 1 )  with  a  length  of  !  , N is order of the 
Daubechies wavelet basis, and then the wavelet basis 
expansion has the following relation. 
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Therein,   n = 0,1,⋯ , !!!!!    
!

(L is even); n =

0,1,⋯ , !!!!!
!

    (L is odd). They are the decomposition of 
information contained in  a!, and by computing equation (1), 
(2) and (3) we can obtain the following equation. 

!!" = !!!!"!!" + −! !!!"!!!!!!" ,! ∈ !!
!!!!  (6) 

 Namely sequence a!  can be reconstructed precisely by a! 
and  d!. The energy of sequence a! is divided into a! and  d! 
and the following definition is given. 

 Definition 1: The energy p !  of a limited sequence 
p = (p!) is defined as 

! ! = !!!!
!!!!  (7) 

 If p is regarded as a vector, the square root of the energy 
! ! is the Euclidean norm ! ! of p. 

 Theorem 1: The energies of sequence a!, a!  and  d!   
satisfy the following equation. 

!! ! = !! ! + !! ! (8) 

 By iteration of equation (4) and (5), signal a! can be 
decomposed into a sequence  d!, d!,⋯ , d!, a!. The sequence 
contains the same information as a! and has the following 
properties. 

!! ! = !! ! + !! !!
!!!  (9) 

 The index M of a sequence !! = (!!") or !! = (!!") 
represents decomposition scale or decomposition level, 
coefficients !!"  and !!"  represent approximate 
coefficients and detail coefficients respectively, d! 
represents coefficients of the highest frequency range, d! 
represents coefficients of the next frequency range. For each 
measured signal the wavelet coefficients contained in 
d!, d!,⋯ , d!  and a! are arranged in a matrix as shown in 
Fig. (1), wherein, W represents the part with 0 filling. 

a0

d1

d2

d3

...

dM

aM

W

 
Fig. (1). Fast wavelet transform coefficients matrix of sequence a!. 

 Based on above analysis, the sequence d!, d!,⋯ , d!  and 
a! can be obtained after decomposing signal a!  with a fixed 
length of L by means of wavelet transform at scale M, that is, 
signal a!  can be replaced by d!, d!,⋯ , d!  and a! , so the 
size of obtained wavelet coefficients matrix is ! + 1 ×
! + ! − 1/2 ( L is even) or ! + 1 × ! + !/2 (L is 

odd). When L is large the resulting matrix is large, and the 
structure of classifier becomes complex. Extracting 
information containing large features and merging 
information containing small features can reduce the 

dimensionality of input features, thus reducing the structure 
of classifier, and the classification process becomes 
relatively easy. 

3. FEATURE EXTRACTION METHOD BASED ON 
WAVELET COEFFICIENTS CLUSTERING 

3.1. Determination of Clustering 

 Fast wavelet transform is performed for K ultrasonic 
sampling signals. Wavelet coefficients matrix of each signal 
s is obtained respectively. 

  !! = !!" !
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Wherein, i = 1,2,⋯ ,! + 1; j = 1,2,⋯ , !!!!!
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 (L is even), 

  j = 1,2,⋯ , !!!
!

(L is odd), N is a singular nature number. The 
clustering process requires the following two results. 

 Theorem 2(central limit theorem) [9]: Let Y!  be a 
sequence of independent random variables, for an arbitrary 
k ∈ N and a closed interval  [α, β],    p Y! ∈ α, β = 1, and 
let:  
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Wherein, n ∈ N, EY!   and   VY!  respectively represent the 
expected value and variance of random variable  !! , then 
when and only when ! → ∞, !! → ∞,   !!  obeys the standard 
normal distribution, that is !!

!
!(0,1). 

 Theorem 3 [9]: Let !! be an independent random variable 
sequence of obeying the ! 0,1  distributed, γ ≥ e! (e is 
Euler number) is a constant. Then, for any small  ε(ε > 0),  
there is a natural number !(!) so that each of the random 
variables   !!  satisfies the following relation: 

!! = !!,!! ≥ !"# !
!
,! = !,!,⋯ ,!    (12) 

For every natural number  N ≥ N(ε), the expected value of 
Z! satisfies the inequality: 

!
! !"#$

< !"! < ! + ! !
! !"#$

 (13) 

 From Theorem 3 we know that when N is large enough, 
all independent random variables !!(! ∈ !) [9] satisfy the 
following relation: 

!! =
!,          !! ≥ !"# !

!

      !,            !! < !"# !
!
    
 (14) 

That is, Z! obeys binomial distribution, then Z!: 

!! = !!!
!!!  (15) 

also obeys  binomial distribution. 



Ultrasonic Signal Based on Wavelet Coefficients Cluster The Open Automation and Control Systems Journal, 2015, Volume 7     1019 

 Using the above results, clustering can be obtained from 
a group of K representative signals. In different wavelet 
coefficients matrix  B!, the elements in the same position can 
be considered as independent random variables, because they 
are signals sampled at different times, and the samples are 
independent of each other. A sequence of random variables 
(!!")!, (!!")!,,⋯ , (!!")!  can be formed by the elements in the 
same position of the wavelet coefficients matrix  !! . Thus 
according to the equation (11), after the random variable is 
transformed, a new random variable    !!" can be obtained. 

Zij =
(bij )k !

k=1

K

" E(bij )k
k=1

K

"
#K

 (16) 

Wherein, E(b!")! is the even value of random variable  (b!")!, 
and Z!"  obeys the standard normal N(0,1) distribution, so a 
new matrix can be obtained. 

! = !!"    (17) 

 The matrix is obtained by doing statistic and analyzing K 
wavelet coefficients matrices, therefore, it has the statistical 
properties of the wavelet coefficients matrix of K sample 
signals. Because each row of the wavelet coefficients matrix 
represents the size of sample signals at different scales, i.e., 
the magnitude of the components of different frequency 
regions. In other words, if the value of a row elements !!" in 
the matrix Z   is larger, the information contained in the scale 
is larger, and if the value     is smaller, the information 
contained in the scale is smaller. Thus the wavelet 
coefficients with larger information can be used as 
eigenvalues, and the wavelet coefficients with smaller 
information are merged, i.e., clustering. In this paper, the 
method of mathematical statistics was used for the clustering 
of wavelet coefficients. Since the size of wavelet coefficients 
indicates the amount of information contained, it is 
independent of the symbol of wavelet coefficients, therefore, 
wavelet coefficients are expressed by absolute values when 
clustering, let matrix: 

!! = !!" !            
 (18) 

 In practice, the mathematical expectation E(b!")!  in 
equation (16) can not be obtained, but average estimation 
can be used instead of mathematical expectation, then, the 
matrix in equations (16), (17) can be expressed as: 
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Wherein, R is an operator, applied to any matrix A, which 
represents the reduction of the dimensionality of matrix A, 
! !   and  ! !  represent respectively the sample mean and 
standard variance of the elements in the matrix A, the matrix 
I is the same size as the matrix  !!, but contains only element 
1. According to Theorem 3, the element g!" in G also obeys 
N(0,1)  distribution, so by applying a threshold T =
2 InL/γ  (γ ≥ e!,  L is the number of calculated detail 

coefficients) to the matrix G, the following binary matrix can 
be obtained. 

!! = ! !!" − !  (20) 

 For the above function   ! ! , when   ! ≥ 0 ,! ! = 1 , 
when  ! < 0,  ! ! = 0. Thus in the matrix G! , the wavelet 
coefficients corresponding to the element 1 are larger and 
contain more sample information. On the same row, the 
coefficients and the nearby wavelet coefficients with a value 
of 0 are clustered into a class. The wavelet coefficients 
between the two 1s are divided into two classes at the center. 
Clustering of wavelet coefficients in different rows, i.e., at 
different scales, does not overlap. Thus each clustering 
contains a 1, and if the entire row of the matrix G! does not 
contain 1, the row is treated as a clustering. 

3.2. Feature Extraction 

 The clustering process of wavelet coefficients described 
above shows that clustering !!,!!,⋯ ,!!   (c is the number of 
clustering) can be determined by a representative set of 
signals. In this paper, the square root of the wavelet 
coefficients energy is used as signal feature, thus the number 
of signal features is equal to the number of clusters. Thus the 
eigenvectors can be obtained by three steps. In the first step, 
fast wavelet transform is applied to sampled discrete digital 
signal to obtain the wavelet coefficients matrix B.  In the 
second step, the same clustering is performed on the matrix 
B based on the matrix model of equation (20), and the 
resulting clustering is represented by!!,!!,⋯ ,!! . Row 
vector formed by each clustering element  !!  of matrix B is 
represented by   !!(! = 1,2,⋯ , !)  . In the third step, the 
Euclidean norm of each vector !!  is determined as a 
feature  !!, that is, each feature !! is defined as the square 
root of energy of wavelet coefficients in the corresponding 
clustering  !!. 

!! = !! ! = !!!∈!!  (21) 

 Thus, the number c of eigenvalues of a signal s is equal 
to the number of clusters determined by the method in this 
paper. Based on above process, it can be seen that each 
feature u! represents a set of wavelet coefficients. That is, it 
represents time domain information and frequency domain 
information of the sampled signal s, and in addition, the 
wavelet coefficients at different scales describe the features 
in a certain frequency range. According to the feature 
extraction process the following relation is established.  

!! ! = !!!!
!!!  (22) 

 It shows that the eigenvector constructed is robust to the 
noise in the corresponding signal s. 

4. CLASSIFICATION EXPERIMENT 

 Using neural network to train samples has many 
disadvantages such as slow training speed and easy falling 
into local minimum. But support vector machine (SVM) [10] 
can solve these problems very well. SVM has been widely 
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used in the field of pattern recognition, and has shown 
excellent performance. In the absence of prior knowledge 
and samples, the SVM method is superior to other methods 
in identifying internal defects in workpieces. Next, the 
feature extraction method proposed in this paper was 
combined with SVM to classify and identify the defects 
existing in steel plates. 

 The steel plates studied in this study contain three 
common internal defects: delamination, porosity, and white 
spots [11]. The sampling frequency was 2.5MHz, 10 samples 
were collected from each defect, and 1024 data points near 
the defect waveform were intercepted. Daubechies wavelet 
base was adopted, the order of wavelet was 7(N=7), and the 
scale of wavelet transform was 5(M=5). Fast wavelet 
transform of each sample signal was carried out. Next, the 
decomposed wavelet coefficients were clustered according to 
the method proposed in this paper. The formula (20) is two 
valued, if the threshold T is too large, it contains more 
eigenvalues, network structure is complex, but the 
classification accuracy is high. Instead, if the threshold T is 
too small, it contains less eigenvalues, network structure is 
simple, but the classification accuracy is low. All things 
considered, T=1.5 was selected, and the clustering results are 
shown in Table 1. Original signal was decomposed into 5 
layers by discrete wavelet transform. Thus according to the 
clustering method in 3.1, matrix A was clustered into 14 
classes   U!,U!,⋯ ,U!"  . In Table 1, the signal sequence 
corresponding to scale 4 contains four clusters, and the 
signal sequence corresponding to scale 3 contains two 
clusters, indicating that the signal sequence corresponding to 
scale 4 carries more useful information than the signal 
sequence corresponding to scale 3. In this experiment, there 
were 3 * 10 = 30 learning samples, so there were 30 sets of 
clustered wavelet coefficients, and the dimension of the 
feature vector of each sample was 14. 

 Ten test samples were obtained from each kind of defect, 
so thirty test samples were collected. Using SVM as 
classifier and radial basis function as kernel function of 
SVM classifier, one-to-one classification method was used, 
and the classification accuracy was as high as 96%. The 
wavelet coefficients of the fourth scale were used as the 

extracted features, and the same recognizer was used. The 
accurate rate was as high as 90%. The wavelet coefficients of 
the fifth scale were used as the extracted features, and the 
same recognizer was used. The accurate rate was as high as 
83%. The proposed feature extraction method can retain all 
the wavelet decomposition coefficients and does not lose any 
information. In addition, the clustering of wavelet 
coefficients can reduce the dimensionality of data. So it can 
simplify the recognition process of recognizer. Therefore, 
the proposed feature extraction method can improve the 
accuracy of defect recognition, and it is effective and reliable 
for the defect recognition of ultrasonic nondestructive 
testing. 

CONCLUSION 

 In this paper, the identification of defects in steel plate 
was taken as an example. Firstly, the fast wavelet transform 
of sample signals was used to obtain the wavelet coefficients 
matrix. Secondly, the wavelet coefficients containing more 
sample information in the matrix were extracted by the 
clustering method of probability and statistics, and the 
wavelet coefficients containing less sample information were 
merged. And finally, the wavelet coefficients energy value of 
each cluster was calculated and used as the input feature 
vector of the SVM classifier. Each feature represents a set of 
wavelet coefficients, which can preserve the information of 
particular problem of measurement signal, and greatly 
reduce the dimension of input vector. Proposed feature 
extraction method makes the pattern recognition process 
easier and improves the classification accuracy. 
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Table 1. The clustering of coefficients obtained by fast wavelet transform. 
 
(1-1) 
 

Scale    m Wavelet Coefficients of Signal s Clustering Number 

1 !!(!),!! ! ,⋯ ,!!(!"#)  1 

2 !!(!),!! !" ,⋯ ,!!(!"#)  1 

3 !!(!),!! ! ,⋯ ,!!(!") ,   !!(!"),!! !" ,⋯ ,!!(!"#)  2 

4 !!(!),!! ! ,⋯ ,!!(!) ,   !!(!),!! ! ,⋯ ,!!(!") , !!(!"),!! !" ,!!(!") ,   !!(!"),!! !" ,⋯ ,!!(!"#)  4 

5 d!(!), d! ! , d!(!) , d!(!), d! ! ,⋯ , d!(!) , !!(!),!! !" ,⋯ ,!!(!"#)  3 

5 a!(!), a! ! , a!(!) ,   a!(!), a! ! , a!(!) ,   a!(!), a! ! ,⋯ , a!(!"#)    3 
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