
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Automation and Control Systems Journal, 2015, 7, 1243-1249 1243

 1874-4443/15 2015 Bentham Open

Open Access
The Application of Computerized Algorithms in the Design Method of
Software-Hardware Dual-Track Partitioning in an Embedded System
Abstract

Wang Yuanqiang, Yang Jie, Hao Shangfu*, Zhang Xiao and Yang Jingjing

School of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, Hebei, China

Abstract: It has been proved that the hardware/software partitioning problem is NP-hard. Currently, we have tried a va-
riety of computerized algorithms to resolve it, which can be divided into two major categories: accurate algorithms and
heuristic algorithms. This paper will discuss accurate algorithms and heuristic algorithms respectively. Accurate algo-
rithms take the example of a greedy algorithm. It abstracts the hardware/software partitioning problem into 01 knapsack
model and obtains the exact optimal solution by the greedy algorithm, while heuristic algorithms use a genetic algorithm
as an example. It converts the hardware/software partitioning problem into a multi-constraint 0-1 knapsack problem and
solves it by employing the genetic algorithm therein. By steps like "variation” and "crossover", this algorithm makes an
offspring solution quickly approach an optimal solution, thereby constructing a near-optimal heuristic solution of the
HW/SW partitioning problem. Experimental results demonstrate that the algorithm proposed in this paper can effectively
resolve the hardware/software partitioning problem, have a good global searching capability, and the heuristic algorithm
performs faster than the traditional accurate algorithm, but the heuristic algorithm only acquires a near-optimal solution,
which is not perfect.

Keywords: Hardware/software partitioning, Computerized algorithm, Accurate algorithm, Heuristic algorithm, Dynamic pro-
gramming, Genetic algorithm

1. INTRODUCTION

1.1. Hardware-software Co-design

Hardware/software co-design is a brand new system de-
sign idea proposed to address the problem of embedded sys-
tem design. It supports concurrent engineering to shorten the
design cycle, uses automatic or semi-automated design tech-
nologies and integrates reliable hardware/software methods
to improve the design quality [1-3], and utilizes the valida-
tion and assessment technique to detect design errors before
it is too late.

In accordance with the system objectives and require-
ments, through a comprehensive analysis of system hardware
and software services and available resources, it farthest ex-
cavates the system concurrency between hardware and soft-
ware and collaboratively designs the software/hardware ar-
chitecture, so that the system can work in the best working
status. This design approach can make full use of the exist-
ing hardware/software resources, shorten the systematic de-
velopment cycle, lower development costs, improve system
performance, and avoid the drawbacks incurred by the inde-
pendent design software/hardware architecture.

*Address correspondence to this author at the School of Information Sci-
ence and Engineering, Hebei North University, Zhangjiakou 075000, Hebei,
China; E-mail: r78z-yang@126.com

The hardware/software co-design method emphasizes on
coordination between hardware designers and software de-
signers, concurrent design of systematic hardware and soft-
ware [4-6], and control of the consistency of hard-
ware/software and correctness of the system during the
whole designing process.

1.2. The Hardware/Software Partitioning Problem

Hardware/software system design is the core technology
for the development of modern embedded systems, while the
hardware/software partitioning problem is a key part of the
hardware/software co-design. In the system design stage,
hardware/software partitioning determines software/hard-
ware implementation ways for each part as per the design
constraints and the characteristics of each part of the system,
in order to obtain a high-performance, low-cost optimized
design scheme. It determines how to divide system services
into hardware and software, which has an important impact
on the system performance.

The hardware/software partitioning problem is NP-hard
[7-9]. In recent years, research into the automatic partition-
ing algorithm catches increasing attention. Currently, meth-
ods used in the partitioning problem can be summarized into
three categories:

(1) Integer Linear Programming (ILP)/Mixed Integer
Linear Programming (MILP) methods;

1244 The Open Automation and Control Systems Journal, 2015, Volume 7 Yuanqiang et al.

(2) Heuristic algorithms, such as simulated annealing al-
gorithm, tabu search, and the genetic algorithm discussed in
this paper, etc.

(3) Other methods such as a cluster-based algorithm, dy-
namic programming method, PACE method, bidirectional
search, Kernighan/Lin algorithm and CGLP/IBS algorithm,
etc.

1.3. Traditional Design Methods

The traditional embedded system design model of first
hardware and then software needs repeated amendments and
repetition tests. The entire design process is largely depend-
ent on the designer's experience. The long design cycle and
high development costs often depart from the requirements
of original design in the process of repeated amendments.

Due to the low efficiency of traditional design methods,
the computerized algorithms are introduced to settle the
hardware and software partitioning problem. The typically
used algorithms are principally divided into two major cate-
gories: accurate algorithms and heuristic algorithms. Below
are discussed and compared the genetic algorithm and the
greedy algorithm that represent heuristic algorithms and ac-
curate algorithms respectively.

2 HARDWARE/SOFTWARE PARTITIONING OF AN
EMBEDDED SYSTEM BASED ON HEURISTIC AL-
GORITHMS

2.1. Hardware/Software Partitioning Problem Based on a
Genetic Algorithm

A heuristic algorithm means that among the random
group optimization process, individuals use their own or
overall experience to develop search strategies and usually
obtain a near-optimal solution. Common modern heuristic
algorithms include simulated annealing algorithms (SA),
genetic algorithms (GA), list search algorithms (TS), evolu-
tionary programming (ES), evolution strategies (ES), ant
colony algorithms (ACA), and artificial neural network
(ANN). Fig. (1) shows a modern heuristic algorithm parti-
tioning scheme based on this method.

In this paper, the genetic algorithm is taken as an exam-
ple to discuss the software/hardware partitioning problem by
using the heuristic algorithms. The heuristic algorithm is
used to address the hardware/software partitioning problem.
Usually according to the characteristics of the algorithm, the
hardware/software partitioning problem is first modeled.

An embedded system is a collection of function nodes.
SYSTEM= {C1, C2,…Ci…Cn} is employed to represent
these function nodes. Each Ci unit can be achieved in the
way of software or hardware. The symbol IP is used uni-
formly in this paper. Each IP has parameters like cost, execu-
tion times, and execution area. The function nodes can be
identified with triples.

, ,C x s t=（ ） (1)

where x� {0,1}, 0 means the node function is realized by the
software method, while 1 means the node function is realized
by the hardware method.

s represents the hardware area of the node function real-
ized by the hardware,

t = (th, ts, tim) represents the execution time of the node,
th represents the hardware execution time of the node
ts represents the software execution time of the node
tim represents the number of calls to the node

When designing each IP, designers have to sacrifice cer-
tain performance in exchange of some other performance,
and ultimately optimize the performance of the whole system.
In order to achieve this purpose, different implementation
ways or different architectures can be made use of to design
different IPs to achieve the same functionality. Each function
node in the system has two implementation ways, which are
hardware and software. The hardware and software partition-
ing problem is essentially the optimization problem in the
space C1×C2×…Cn, which is to find a combination of IP
{IP1i, IP2j,...IPnk}, so that the overall performance is the
best and the least costly. This paper explores the shortest
solution for embedded systems running under certain condi-
tions of the hardware area.

Fig. (1). Heuristic algorithm partitioning based on this method.

The Application of Computerized Algorithms The Open Automation and Control Systems Journal, 2015, Volume 7 1245

The partitioning problem is transformed into a classic 0-1
knapsack problem for solution:

minimize xi
i=0

n

! * Sthi + (1" x i)*Stsi

object to xi
i=0

n

! * Si < Smax

#

$
%%

&
%
%

(2)

where

iSth is the total running time for the IP when implement-
ed in the hardware *i i iSth th tim= ;Stsi is the total running
time for the IP when implemented in the software *i i iSts ts tim=

The software/hardware partitioning process is grounded
on the genetic algorithm principle. Adopt genetic manipula-
tion such as reproduction, crossover and mutation, and con-

tinue to iterate until the pre-set termination condition is met,
as shown in Fig. (2).

By analysis of the software/hardware partitioning model,
it can be found that for each function node IPi in the embed-
ded system, two implementation ways of hardware and soft-
ware are respectively denoted as Ki, Ki={0,1}. The solution
domain for the software/hardware partitioning problem is K,
K=K1×K2×…×Km, where m is the total number of function
nodes.

In this paper, binary encoding is adopted. The binary
string B whose length is Li represents the implementation
way of the system hardware and software; Bi corresponds to
the implementation scheme of node IPi.

Bi=(bLi-1bli-2…b0), r=br;
r=1 indicates that the node is implemented in a hardware

manner

Fig. (2). Algorithm flow chart.

1246 The Open Automation and Control Systems Journal, 2015, Volume 7 Yuanqiang et al.

3. HARDWARE/SOFTWARE PARTITIONING OF AN
EMBEDDED SYSTEM BASED ON GREEDY ALGO-
RITHMS

A greedy algorithm is to seek the optimal solution for
each sub-problem, which is to obtain the global optimal solu-
tion by getting the local optimal solution. The greedy algo-
rithm strategy is to select the currently optimal choice every
time.

The software/hardware partitioning problem is converted
into the path model. iB node represents each scheduling
module. The high-frequency access path consists of
1 2, , , nB B BL , namely

1 2{ , , , }nP B B B= L . For any [1,n 1]i∈ − ,

1iB + is the successor node for iB , similar to the previous sec-
tion.

is s represents the hardware area of the node i function
realized by the hardware,

(, ,)i i it th ts tim= represents the execution time of the
node i,

ith represents the hardware execution time of the node i

its represents the software execution time of the node i

H and S denote the sets of hardware and software imple-
mentation, respectively. For a determined P, find a soft-
ware/hardware partitioning solution that meets P H S= ∪ ,
H S φ∩ = . When the constraint condition of hardware area
is satisfied, achieve maximum system efficiency.

Here the software/hardware partitioning problem is trans-
formed into the shortest path problem of a directed graph.
The figure has only one exit and entrance. The shortest path

should meet the hardware area constraints. This graph can be
represented by Fig. (3).

If the adjacent nodes are realized in the same way, as-
sume that its communication cost is zero, otherwise , 1i ic + is
used to indicate the communication cost between adjacent
nodes iB and

1iB +
. In order to conform to the assumption,

the hardware implementation can fasten the running speed in
relation to the software implementation. The constraints are
added in the figure.

, 1[1,n 1],Tsi i i ii Th c +∀ ∈ − +?
 (3)

Set xŔ {0,1}, 0 means the node function is realized by
the software method, while 1 means the node function is
realized by the hardware method. 1 2 n(x x x)L， ，， is a solution
to the hardware/software partitioning problem. Correspond-
ingly, set the function 1 2 nT(x x x)L， ，， to be the corre-
sponding run-time.

T(x1,x2,!,xn) =

xi
i=0

n

! *Thi + (1" x i)*T si+ x i" x i+1
i=0

n"1

! i ci.i+1

 (4)

Then the maximization problem is:

1 2 n

max
0

 T(x x x)

 *
n

i i
i
x S S

=

⎧
⎪
⎨ <⎪⎩

∑
minimize

object to

L， ， ，
 (5)

The same as a genetic algorithm in the last section, the
hardware/software partitioning problem is transformed into a
01 knapsack problem.

Fig. (3). Task Execution Flow Chart.

The Application of Computerized Algorithms The Open Automation and Control Systems Journal, 2015, Volume 7 1247

Here the communication cost between hardware and
software is ignored in order to simplify the problem, then

T(x1,x2,!,xn) = xi

i=0

n

! *Thi + (1" x i)*T si (6)

In order to obtain the optimal solution to the knapsack, a
greedy algorithm is to sort the value and weight, select the
items at the top successively until the knapsack can’t hold
them. The greedy algorithm is used to solve the hard-
ware/software partitioning model above. The value of the
node is defined as , which is the ratio of
hardware based acceleration time and the hardware area. Sort

 again, making align in a non-increasing sequence, and
then successively select to fill the knapsack until there are
no blocks of the suitable size that can be loaded into the
knapsack. The specific program flow chart is as shown in
Fig. (4).

The time complexity of the greedy algorithm is the time
complexity for sorting, which is O (nlogn). In the running
time, the greedy algorithm is very efficient, but it cannot
guarantee that the solution obtained is a global optimal solu-
tion.

4. COMPARISON OF ALGORITHM PERFORMANCE

In order to evaluate the execution performance of the
hardware/software partitioning algorithm based on genetic
algorithms, while identifying several important parameters
that determine the algorithm performance, we refer to the
method proposed in Literature [10, 11] and generate a test set;
each test objective in the test set contains different numbers
of function nodes, node connection, and a set of input/output
variables corresponding to each connection.

In addition, we also use an application as a test object.
This application contains 218 EHDL description statements,
and its corresponding CDFG contains 45 nodes and 57 edges.

iB () / si i i ie Ts Th= −

ie ie
iB

Fig. (4). Flow chart of a greedy algorithm.

1248 The Open Automation and Control Systems Journal, 2015, Volume 7 Yuanqiang et al.

Under the software implementation way of the node, the
execution time is estimated by 8086 processor. Estimation is
made of the execution time and the required area of nodes
under different hardware schemes by using ActelACT 3
FPGA hardware library. Fig. (5) demonstrates a performance
comparison of hardware/software partitioning schemes ob-
tained respectively by using a genetic algorithm and a greedy
algorithm under different hardware resources constraints.
The ordinate is the speed-up ratio obtained by different divi-
sion schemes. The reference value for the system execution
speed is the system execution time under the pure software
implementation mode.

CONCLUSION

The solutions to the hardware/software partitioning prob-
lem by a genetic algorithm and a greedy algorithm are com-
pared. A heuristic algorithm represented by a genetic algo-
rithm is usually an iterative algorithm. It starts from a set of
solutions which are the initial value and continuously opti-
mizes the initial solutions by a specific search strategy, thus
approaching the optimal solution. Heuristic algorithms have
high operating efficiency, but only get a near-optimal solu-
tion, so it is applicable to the large-scale hardware/software
partitioning problem that has less stringent requirements for
optimal efficiency.

Accurate algorithms represented by a greedy algorithm
can usually acquire the global optimal solution, in which
dynamic programming is more commonly used algorithm
that has low operation efficiency. The time complexity is up
to O (n^2). When it is of a small scale, the running efficiency
will not be lower than the heuristic algorithms, and the solu-
tion acquired will be much better than heuristic algorithms.
Therefore, it is suitable for solving the small-scale hard-
ware/software partitioning problem that has stringent re-
quirements for optimal efficiency.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work was supported by the National Science and
Technology Support Program (No. 2012BAJ18B08) of Min-
istry of Science and Technology, Zhangjiakou Municipal
Science and Technology Bureau (No.1321019B) and Hebei
North University (No. 120164, No. Q2014002).

REFERENCES
[1] W. Wolf, “A decade of hardware/software codesign,” Computer,

vol. 36, no. 4, pp. 38-43, 2003.
[2] R. Ernst, H. Jörg, and B. Thomas, “Hardware-software cosynthesis

for microcontrollers,” Readings in Hardware/Software Co-Design,
vol. 10, no. 4, pp. 18-29, 2002.

[3] L. Séméria, and G. Abhijit, “Methodology for hardware/software
co-verification in C/C++ (short paper),” In: Proceedings of the
2000 Asia and South Pacific Design Automation Conference. ACM,
2000.

[4] T. Wiangtong, Y.K.C. Peter, and W. Luk, “Hardware/software
codesign: a systematic approach targeting data-intensive applica-
tions,” Signal Processing Magazine, IEEE, vol. 22, no. 3, pp. 14-
22, 2005.

[5] G.S. Walia, and J.C. Carver, “A systematic literature review to
identify and classify software requirement errors,” Information and
Software Technology, vol. 51, no. 7, pp.1087-1109, 2009.

[6] H.P. Breivold, C. Ivica, and L. Magnus, “A systematic review of
software architecture evolution research,” Information and Soft-
ware Technology, vol. 54, no. 1, vol. pp. 16-40, 2012.

[7] P. Arató, Á.M. Zoltán, and O. András, “Algorithmic aspects of
hardware/software partitioning,” ACM Transactions on Design Au-
tomation of Electronic Systems (TODAES), vol. 10, no .1, pp. 136-
156, 2005.

[8] J. Du, and J.Y.T. Leung, “Minimizing total tardiness on one ma-
chine is NP-hard,” Mathematics of Operations Research, vol. 15,
no .3, pp. 483-495, 1990,

[9] A. Kalavade, and A. Lee, “The extended partitioning problem:
hardware/software mapping, scheduling, and implementation-bin

Fig. (5). Performance comparison.

The Application of Computerized Algorithms The Open Automation and Control Systems Journal, 2015, Volume 7 1249

selection,” Design Automation for Embedded Systems, vol. 2, no. 2,
pp. 125-163, 1997.

[10] N. Srinivas, and K. Deb, “Muiltiobjective optimization using non-
dominated sorting in genetic algorithms,” Evolutionary computa-
tion, vol. 2, no. 3, pp. 221-248, 1994.

[11] R. Günter, “Convergence analysis of canonical genetic algorithms,”
IEEE Transactions on Neural Networks, vol. 5, no. 1, pp. 96-101,
1994.

Received: May 26, 2015 Revised: July 14, 2015 Accepted: August 10, 2015

© Yuanqiang et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-commercial
use, distribution and reproduction in any medium, provided the work is properly cited.

