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Abstract: Given a start point s, a target point t, and a sequence of k disjoint convex polygons in the plane, finding the 
shortest path from s to t which visits each convex polygon in the given order is our focus. In this paper, we present an 
improved method to compute the shortest path based on the last step path maps by Dror et al. Instead of using of point 
location in previous algorithm, we propose an efficient method of locating the points in the path with linear query and 
make the data structures much simpler. Our improved algorithm gives the O(nk) running time which improves upon the 
time O(nklog(n/k)) by Dror etal., where n is the total number of vertices of all polygons. Furthermore, we have 
implemented this algorithm by programming. The result shows that our algorithm is correct and efficient.. 
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1. INTRODUCTION 

 Path planning is one of the central problem areas in 
computational geometry [1]. The shortest path problem is the 
most classical example of path planning. Finding the shortest 
path between two points for the given order objects or 
obstacles is the main goal [2]. In this paper, we mainly study 
on the method of computing the shortest path between two 
points s and t of touring a sequence of disjoint convex 
polygons given in the plane. The problem can be described 
as follows. 
 Given a start point s, a target point t, and a sequence P = 
(P1,..., Pk) of simple disjoint convex polygons in the plane. 
The goal is to find the shortest path that starts from s, visits 
all convex polygons according to their order and ends at t [3]. 
In Fig. (1), the path linked by bold lines is the shortest path 
from s to t which visits the disjoint convex polygons. 

 
Fig. (1). The shortest path of touring disjoint convex polygons, for 
k=5. 
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 The problem studied in this paper is a sub-problem of the 
touring polygons problem (TPP), introduced by Dror, Efrat, 
Lubiw and Mitchell in STOC ’03[4]. Algorithms for solving 
the touring convex polygons problem have many important 
applications in many geometric problems, such as the zoo-
keeper [5], safari [6], and watchman route problems [7-9]. In 
the fixed-source safari and zoo-keeper problems, given a 
start point s in a simple polygon P, and a set of disjoint 
convex polygons (cages) inside P, each of which having a 
common edge with P. In the safari problem, we need to seek 
the shortest route of touring each cages, while in the zoo-
keeper problem, the cages can’t be allowed to enter, see Fig. 
(2). In the fixed-source watchman route problem, given a 
simple polygon P and a start point s in it. The goal is to find 
a shortest route from s such that we can see each point in P 
from at least one point of the route, see Fig. (3). What all 
these problems have in common is that the shortest visiting 
path in the given order needed to be found [3]. If the visited 
order is not specified, it becomes the classical Traveling 
Salesperson Problem with neighborhoods, which is NP-hard 
[10]. 

 
Fig. (2). Safari problem. 
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Fig. (3). Watchman route problem. 

 The touring polygons problem has been intensively 
studied. Applying the method of last step path maps, Dror et 
al. gave an algorithm running in time O(nklog(n/k)) if the 
given polygons are disjoint and convex, and an O(nk2logn) 
time if the convex polygons are arbitrarily intersected and 
the sub-path between any two consecutive polygons is 
constrained to lie within a simply connected region, where n 
is the total number of vertices specifying the polygons [4]. 
They also proved the TPP is NP-hard for the case that they 
are intersected and non-convex polygons [4, 11]. Arash 
Ahadi et al. also proved that TPP is NP-hard when the 
polygons are pairwise disjoint [3]. Several approximation 
algorithms have been proposed for the case of disjoint 
convex polygons, for example, Fajie Li and Reinhard Kettle 
in 2007 gave an approximate algorithm in K( ε )·O(n) time 
by applying the rubber-band algorithm for sequences of 
convex polygons, where K( ε )=(L0－L)/ ε , L0 is an initial 
path, L that of the true length of the shortest path of convex 
polygons set P, and n is the total number of vertices of the 
given polygons [12]. The experiment by Wang and Huo in 
2011 showed that the time complexity of rubber-band 
algorithm is O(n2) when n is larger [13, 14]. 

 Dror et al. has been solved the touring disjoint convex 
polygons problem using the last step shortest path maps 
method to compute iteratively [4]. Computing the shortest 
touring path to a vertex v of Pi ( 0 ≤ i ≤ k −1 ) will be 
performed at most i-1 point location queries for the polygons 
P i-1, ..., P1. It is clearly that a query for point t in the final last 
step shortest path map determines a query point for the 
previous last step shortest path map. The last step shortest 
path map method adopts the point location data structure to 
save a polygon [4]. Thus, a query for the shortest path from s 
to any point can be computed in time O(klog(n/k)). 
 In this paper, instead of computing the point locations 
independently, we compute the point locations for all the 
vertices of Pi once by a linear scan on the boundary of Pi, 
thus, the point location data structure is not needed. This 
method is simple and can reduce the time complexity of the 
algorithm by a factor of O(logn). Thus the O(nk) running 
time is obtained which improved upon the time 
O(nklog(n/k)) in the algorithms by Dror etal. The data 
structure is much simpler and the method of locating the 
points is more efficient. 

2. LOCAL OPTIMAL TOURING PATH 

 We denote by opt(L) a shortest touring path for the given 
convex polygons P1,..., P k ( i ≤ k ), i-path a path that starts at 
s and visits the sequences of P1,..., Pi ( i ≤ k ) polygons, and 
π i (m)  a path that starts at s and visits the sequences of P1,..., 
Pi ( i ≤ k ) polygons to m. 

 We assume that all given convex polygons P1,..., Pk are 
simple, and opt(L) visits in order P1,..., Pk, then the local 
optimality of opt(L) with respect to the P1,..., Pk is equivalent 
to global optimality [4]. Denote by the contact point b of 
opt(L) with the edge e e∈Pi (i ≤ k) , after opt(L) visits P1,..., 
Pi-1. There are three cases of OPT(L) contacted with Pi, 
which are as follows. 

(a) 

 
(b) 

 
(c) 

 
Fig. (4). Types of contact of OPT(L) with an edge e polygon Pi.. 

 Case 1 Edge-reflection contacts 
 For a bend point b on the interior of an edge e of Pi, 
OPT(L) makes a reflection contact with an edge e if the 
angle of OPT(L) coming into the edge e with e (incoming 
angle) is equal to the angle of OPT(L) going away from e 
with e (outgoing angle), OPT(L) makes a perfect reflection 
on the edge e. (see Fig. 4a), c' is the reflection of c with 
respect to the line through e. 
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 Case2 Vertex-bending contacts 

 For a bend point at a vertex v = eh ∩ ej (eh ∈Pi ,ej ∈Pj ) , 
consider the rays d1' and d2' formed by reflecting the segment 
pv  in the two edges, respectively, then, only when the 

outgoing path segment from v leaves v in the cone ω, which 
bounded by d1' and d2', the local path is the shortest (see Fig. 
4b). 
 Case 3 Passing-through contacts 
 OPT(L) passes the edge e through an interior point b of e, 
we consider b as the second intersection point of the 
boundary of Pi with OPL(L), and thus OPT(L) reaches the 
point b from the interior of Pi (see Fig. 4c). 

3. THE LAST STEP SHORTEST PATH MAP 

 Let Gi be the first contact set of Pi, i.e., the points where 
the shortest path first reaches a point of Pi after visiting P1,..., 
Pi-1. Gi is a (connected) chain on the boundary of Pi [4]. In 
Fig. (5), G1 is the bold edge v1v2 and v2v3 of P1. We denote 
by Mi the last step shortest path map for Pi. Suppose that all 
given polygons are disjoint, let us compute the first map M1 
as below. For every vertex v of P1, we first compute the 
shortest path from s to v. If this path arrives at v from the 
inside of P1, then v is not a vertex of G1, otherwise it is, and 
G1is a (connected) chain on the boundary of P1. We can see 
that OPT(L) may make a reflection on the points and edges 
of Gi or OPT(L) may go across e. The vertices and edges on 
the G1 divide the whole plane into three types which are 
passing-through regions(C), vertex-bending regions (B) and 
edge-regions(R). 
(i)  The passing-through region is bounded by the 

boundary of G1 and the extensions of the shortest 
paths from s to two endpoints of G1. C region in the 
Fig. (5). 

(ii) The edge-reflection region is bounded by one edge e 
of G1 and the two rays reflected by the shortest paths 
from s to the two vertices of e. R(ei) region in the Fig. 
(5). 

(iii) Let v be a vertex of e, and e' be the other edge 
incident to v. The vertex-bending region of v is 
bounded by the two rays which are used in defining 
the edge-reflection region of e and the edge-reflection 
or passing-through region of e', which is the 
triangular region. B(vi) region in the Fig. (5). 

 Thus, all these subdivision regions in the plane form the 
last step shortest path map M1 of P1. 

 
Fig. (5). The last step shortest path maps M1. 

4. THE ALGORITHM 

4.1. The Algorithm Shortest Touring Path for Disjoint 
Convex Polygons 

 Suppose Given M1, ..., Mi, we can easily compute a 
shortest i-path to any query point m as follows. 

 Case 1 m is contained in a passing-through region of Mi. 
In this case, π i (m) = π i−1(m) , then we recursively compute 
the (i-1)-path to m, see Fig. (6a). 
 Case 2 m is contained in an edge-reflection region of Mi. 
In this case, we let m' be the reflection of m with respect to e, 
then recursively locate m' in Mi-1 and compute the (i-1)- path 
to m', the segment from e to m is the i-1 path to m, see Fig. 
(6b). 

 Case 3 m is contained in vertex-bending region of a 
vertex v. In this case, the last segment of π i (m)  is vm , then 
we compute the (i-1)-path to v (locating v in Mi-1, etc.) 
recursively, see Fig. (6c). 

 
(a) 

 
(b) 

 
(c) 

Fig. (6). Three Cases for Computing the Shortest (i-1) Path to m. 
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 We construct each the maps M1,..., Mk iteratively. The 
algorithm is follows. Suppose we have obtained the maps 
M1, ..., Mi, in order to construct the next map Mi+1, we first 
compute the shortest touring paths from s to each vertex v of 
Pi+1 as described above. If this path arrives at v from the 
inside of Pi, then v is not a vertex of Gi. Otherwise it is, the 
last segment of π i−1(v)  determines the subdivision of Mi+1. 
Thus, the edge-reflection, passing-through regions and 
vertex-bending regions of Mi+1 an be defined analogously. 
An example of M2 is shown in Fig. (7). 

 
Fig. (7). The Last Step Shortest Path Maps M2. 

 Lemma1 Let v' denotes the point in the map Mi which 
results from the vertex v of Pi+1, called mapping-point of v. 
Then the edges consist of the points sequences vi' (i=1,.., m, 
m= pi+1 ) in the map Mi which results from the vertices Pi+1 
form at most three edge chains along the boundary of Pi. 
 Proof. Let the edges in the passing-through region as one 
edge chain because of the way of locating points is same, the 
edges in the other zones is divided into two cases according 
to the trend of rising or falling. Thus, for each convex 
polygon, the edges on the boundary is formed at most three 
edge chains, as shown in Fig. (8). Let a and b be two vertices 
of Pi+1, and a' and b' be their mapping-points in Mi. The last 
portions of two shortest touring paths (i.e., from a' to a and 
from b' to b) can’t cross in Mi, except for the following 
situations: (i) a' and b' are possible the same point, due to the 
vertex-bending contacts of the shortest touring paths to the 
vertices of Pi+1; or (ii) one path completely is contained by 
the other. A shortest i-path to any query point m is iteratively 
computed by the above mentioned method. So, if the point a 
moves along the boundary of Pi+1, the shortest path points on 
Pi will form two or three edge chains, which depends on the 
position of starting point in P. For example, the mapping-
points in P1 which result from the vertices of P2 only form 
one edge chain, the bold line is the edge chain in Fig. (7). 
 
 

 
Fig. (8). The three Edge Chains of Polygon P. 

 Lemma2 Given M1,..., Mi, the path π i (q)  can be 

determined in time Ο pjj=1

i∑( ) , and the map Mi+1 can be 

constructed in time Ο pjj=1

i∑ + i pi+1( ) . 

 One can easily see that it needs Ο pi( ) time to locate the 
shortest path point in the Mi for m, and all the maps M1,..., 
Mi needed to be visited. The time to find π i (q)  is then 

 
Ο pi + pi−1 + p1( ) , denoted by Ο pjj=1

i∑( ) . To 

construct Mi+1, for each vertex v of Pi+1, we computeπ i (v) . 
For example, we first computeπ i (v1) , and the time to find 

π i (v1)  is Ο pjj=1

i∑( ) . According to Lemma1, locating all 

the other shortest path points in Mi, for the other vertices of 
Pi+1 can be done by a constant number of linear scans in Mi, 
and it needs Ο i pi+1( ) time. So the map Mi+1can be 

constructed in time Ο pjj=1

i∑ + i pi+1( ) . 

 Each map Mi can be constructed iteratively, so all maps 

M1,..., Mk+1 can be computed inΟ pjj=1

i∑ + i pi+1( )i=1

k−1∑( ) , 

since Ο i pi+1( )i=1

k−1∑( ) =Ο k pi+1( )i=1

k−1∑( ) =Ο kn( ) , and 

Ο pjj=1

i∑( )i=1

k−1∑( ) =Ο n
i=1

k−1∑( ) =Ο kn( ) . Thus, all maps 

can be computed in Ο kn( )  time. 

 Therorem1 The Touring polygons problem for k disjoint 
convex polygons with input size n, a data structure of size 
O(n) can be built in time O(kn) that enables shortest i-path 
queries to any query point m to be answered in time O(n), 
where n is the total number of vertices of all the polygons. 

4.2. The Implementation of Algorithm 

 The algorithm presented in this paper has been 
implemented by program, the division of the whole plane is 
shown in Fig. (9), and the running result of the shortest path 
is shown in Fig. (10). To make the result clearly visible, we 
only present the result of 5 disjoint convex polygons. This  
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example has contained edge-reflection contacts, vertex-
bending reflection contacts, and passing-through contacts 
three cases of OPT(L) contacted with Pi mentioned above. 

 
Fig. (9). The Last Step Shortest Path Map Mi for Pi ( i=1,…, 5). 

 
Fig. (10). The Running Result of Disjoint Convex Polygons, for 
k=5. 

CONCLUSION 

 In this paper, we present an fast algorithm of locating the 
path points in computing the shortest path of touring a 
sequence of disjoint convex polygons and we give an O(kn) 
time solution, where k is the number of polygons and n is the 
total number of vertices of the polygons. Our results improve 
upon the previous time O(nklog(n/k)). 
 This research has made preliminary results. A more 
efficient time solution to the problem of touring disjoint and 
convex polygons problem is an open problem. In addition, 
finding the shortest path of touring the convex polygons 
possibly intersected is also our further study. 
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