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Abstract: Given a start point s, a target point t, and a sequence of k disjoint convex polygons in the plane;
shortest path from s to t which visits each convex polygon in the given order is our focus. In thi
improved method to compute the shortest path based on the last step path maps by Dror et g/ nste.

ading the
haper, we present an
of yising of point

location in previous algorithm, we propose an efficient method of locating the points in th> path with.inear query and
make the data structures much simpler. Our improved algorithm gives the O(nk) runnipg ti e whick improves upon the

time O(nklog(n/k)) by Dror etal., where n is the total number of vertices of all“_ \lygc
implemented this algorithm by programming. The result shows that our algorithm js"correc

Purthermore, we have
ad efficient..
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1. INTRODUCTION

Path planning is one of the central problem areas in
computational geometry [1]. The shortest path problem is the
most classical example of path planning. Finding the shortest
path between two points for the given order objects or
obstacles is the main goal [2]. In this paper, we mainly stud
on the method of computing the shortest path between,twc
points s and t of touring a sequence of disjoint convex
polygons given in the plane. The problem can be dc wided
as follows.

Given a start point s, a target point t, and< se(_ence P =
(Py,..., Py) of simple disjoint convex polygors in th, "plane.
The goal is to find the shortest path thal starts from s, visits
all convex polygons according to their oi_ »r and/ends at t [3].
In Fig. (1), the path linked by bolglines 15 uie shortest path
polygons.

from s to ¢ which visits the disjoint ¢ou.

Fig. (1). The shortest path of touring disjoint convex polygons, for
k=5.
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The pf hle’ watudied in this paper is a sub-problem of the
touring poly_»ans problem (TPP), introduced by Dror, Efrat,
Lubiimand My chell in STOC ’03[4]. Algorithms for solving
the tourn.. Zonvex polygons problem have many important
applications in many geometric problems, such as the zoo-
eeper 5], safari [6], and watchman route problems [7-9]. In
« 2 fixed-source safari and zoo-keeper problems, given a
sart point s in a simple polygon P, and a set of disjoint
convex polygons (cages) inside P, each of which having a
common edge with P. In the safari problem, we need to seek
the shortest route of touring each cages, while in the zoo-
keeper problem, the cages can’t be allowed to enter, see Fig.
(2). In the fixed-source watchman route problem, given a
simple polygon P and a start point s in it. The goal is to find
a shortest route from s such that we can see each point in P
from at least one point of the route, see Fig. (3). What all
these problems have in common is that the shortest visiting
path in the given order needed to be found [3]. If the visited
order is not specified, it becomes the classical Traveling
Salesperson Problem with neighborhoods, which is NP-hard
[10].

Fig. (2). Safari problem.
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Fig. (3). Watchman route problem.

The touring polygons problem has been intensively
studied. Applying the method of last step path maps, Dror et
al. gave an algorithm running in time O(nklog(n/k)) if the
given polygons are disjoint and convex, and an O(nk’logn)
time if the convex polygons are arbitrarily intersected and
the sub-path between any two consecutive polygons is
constrained to lie within a simply connected region, where n
is the total number of vertices specifying the polygons [4].
They also proved the TPP is NP-hard for the case that they
are intersected and non-convex polygons [4, 11]. Arash
Ahadi et al. also proved that TPP is NP-hard when the
polygons are pairwise disjoint [3]. Several approximation
algorithms have been proposed for the case of disjoint
convex polygons, for example, Fajie Li and Reinhard Kett!a
in 2007 gave an approximate algorithm in K('¢ )-O(n) time
by applying the rubber-band algorithm for sequerces, of
convex polygons, where K(€)=(Ly—L)/€, Lyignan tial
path, L that of the true length of the shortest ps{» of con Jx
polygons set P, and n is the total number of wverc »s of the
given polygons [12]. The experiment by*Wang ana, luo in
2011 showed that the time compley ty of rubber-band
algorithm is O(n”) when n is larger [13, 1

Dror et al. has been solved the sing disjoint convex
polygons problem using the,last $t€p shortest path maps
method to compute iteratively [4]. Gomputing the shortest
touring path to a vestex Wur o, (0<i<k-1) will be
performed at most i/ woint 16 ytion queries for the polygons
Py, ..., Py It is cléarly” hat a query for point t in the final last
step shortest gath map * ctermines a query point for the
previous last terashortest path map. The last step shortest
path mapgmethe hadopts the point location data structure to
save adoly .on [4). Thus, a query for the shortest path from s
to any p“At ca. be computed in time O(klog(n/k)).

In this jpaper, instead of computing the point locations
independently, we compute the point locations for all the
vertices of P; once by a linear scan on the boundary of P,
thus, the point location data structure is not needed. This
method is simple and can reduce the time complexity of the
algorithm by a factor of O(logn). Thus the O(nk) running
time is obtained which improved upon the time
O(nklog(n/k)) in the algorithms by Dror etal. The data
structure is much simpler and the method of locating the
points is more efficient.

2. LOCAL OPTIMAL TOURING PATH

We denote by opt(L) a shortest touring path for the given
convex polygons Py,..., Py (i < k), i-path a path that starts at
s and visits the sequences of Py,..., P; (i <k ) polygons, and
7,(m) a path that starts at s and visits the sequences of Py,...,
P; (i £k ) polygons to m.

We assume that all given convex polygons Py,..., P are
simple, and opt(L) visits in order Py,..., Py, then the local
optimality of opt(L) with respect to the Py,..., Py is equivalent
to global optimality [4]. Denote by the Luatact point b of
opt(L) with the edge e ec P(i <k), ail nont(L) visits Py,...,
Pi. There are three cases of OPT(L) c. tacted with Py,
which are as follows.

(a)

Fig. (4). Types of contact of OPT(L) with an edge e polygon P;.
Case 1 Edge-reflection contacts

For a bend point b on the interior of an edge ¢ of P;,
OPT(L) makes a reflection contact with an edge e if the
angle of OPT(L) coming into the edge e with e (incoming
angle) is equal to the angle of OPT(L) going away from e
with e (outgoing angle), OPT(L) makes a perfect reflection
on the edge e. (see Fig. 4a), c¢' is the reflection of ¢ with
respect to the line through e.
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Case2 Vertex-bending contacts

For a bend point at a vertex v=¢,Ne;(e,€F.e;€P),
consider the rays d,' and d,' formed by reflecting the segment
pv in the two edges, respectively, then, only when the

outgoing path segment from v leaves v in the cone ®, which
bounded by d;' and d,', the local path is the shortest (see Fig.
4b).

Case 3 Passing-through contacts

OPT(L) passes the edge e through an interior point b of e,
we consider b as the second intersection point of the
boundary of P; with OPL(L), and thus OPT(L) reaches the
point b from the interior of P; (see Fig. 4c¢).

3. THE LAST STEP SHORTEST PATH MAP

Let G;j be the first contact set of P;, i.e., the points where
the shortest path first reaches a point of P; after visiting Py,...,
Pi1. G; is a (connected) chain on the boundary of P; [4]. In
Fig. (5), G, is the bold edge v,v, and v,v; of P;. We denote
by M; the last step shortest path map for P;. Suppose that all
given polygons are disjoint, let us compute the first map M,
as below. For every vertex v of Py, we first compute the
shortest path from s to v. If this path arrives at v from the
inside of Py, then v is not a vertex of Gy, otherwise it is, and
Gis a (connected) chain on the boundary of P;. We can see
that OPT(L) may make a reflection on the points and edges
of Gi or OPT(L) may go across e. The vertices and edges ox
the G, divide the whole plane into three types which arc
passing-through regions(C), vertex-bending regions () _and
edge-regions(R).

(1) The passing-through region is bound=d by ¢
boundary of G; and the extensions ¢f  » shortest
paths from s to two endpoints of G1."C regiv_rin the
Fig. (5).

(ii))  The edge-reflection region is bou. "»d by one edge e
of G and the two rays reflc ad by the shortest paths
from s to the two vertices of 2. 2\ jregion in the Fig.

3.

Let v be a veptex' ., id e' be the other edge
incident to wf The v tex-bending region of v is
bounded by thy "wo rays which are used in defining
the edgefieflectio. hegion of e and the edge-reflection
or pgsing-through region of e', which is the
triangui. regicn. B(v;) region in the Fig. (5).

(iii)

Thes, a;_these subdivision regions in the plane form the
last step Morwot path map M, of Py

Fig. (5). The last step shortest path maps M;.
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4. THE ALGORITHM

4.1. The Algorithm Shortest Touring Path for Disjoint
Convex Polygons

Suppose Given M, ..., M;, we can easily compute a
shortest i-path to any query point m as follows.

Case 1 m is contained in a passing-through region of M;.
In this case, w,(m)=r,_ (m), then we recursively compute
the (i-1)-path to m, see Fig. (6a).

Case 2 m is contained in an edge-reflestion region of M;.
In this case, we let m' be the reflection ¢/-m'with respect to e,
then recursively locate m' in M;; and cot:_te'the (i-1)- path
to m', the segment from e to m ishe i-1 pa »io m, see Fig.
(6b).

Case 3 m is contained(in verte: Jending region of a
vertex v. In this case, the l&_tsegment of 7,(m) is vm , then
we compute the (inl)-; th v (locating v in M;,, etc.)
recursively, see Fits (6¢).

Fig. (6). Three Cases for Computing the Shortest (i-1) Path to m.
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We construct each the maps My,..., My iteratively. The
algorithm is follows. Suppose we have obtained the maps
My, ..., M;, in order to construct the next map M, we first
compute the shortest touring paths from s to each vertex v of
Pi+1 as described above. If this path arrives at v from the
inside of P;, then v is not a vertex of G;. Otherwise it is, the
last segment of 7, (v) determines the subdivision of M.
Thus, the edge-reflection, passing-through regions and
vertex-bending regions of M;,; an be defined analogously.
An example of M, is shown in Fig. (7).

Fig. (7). The Last Step Shortest Path Maps M,.

Lemmal Let v' denotes the point in the sic »M; which
results from the vertex v of P;;y, called manping-p at.of v.
Then the edges consist of the points segiiences v;' (i=1,.., m,

m=‘pi+1| ) in the map M; which results f, 'm the vertices P;,
form at most three edge chains aloigsthe boundary of P;.

Proof. Let the edges in the passingtiyough region as one
edge chain because of the way /f locgting points is same, the
edges in the other zones 1. it Ti'pinto two cases according
to the trend of rising or i ‘'ing. Thus, for each convex
polygon, the edgeg’o. the boundary is formed at most three
edge chains, as shown 1. _Tig. (8). Let a and b be two vertices
of Py, and a'land b' be their mapping-points in M;. The last
portions of tw'_nort st touring paths (i.e., from a' to a and
from bAC b) ca ¥ cross in Mi, except for the following
situatl »s: / yeland b' are possible the same point, due to the
vertex-b. dling contacts of the shortest touring paths to the
vertices of .’i11; or (1) one path completely is contained by
the other. A shortest i-path to any query point m is iteratively
computed by the above mentioned method. So, if the point a
moves along the boundary of Py, the shortest path points on
P; will form two or three edge chains, which depends on the
position of starting point in P. For example, the mapping-
points in P; which result from the vertices of P, only form
one edge chain, the bold line is the edge chain in Fig. (7).

Fig. (8). The three Edge Chains of Polygon P

Lemma2 Given M,,..., M, the pa ) 7{(q) can be

i \
determined in time O(Z/_:l‘ p |), 'd the>map M;,; can be
constructed in time 0(2,-: Uj‘ + i|pi+l|) .

One can easily4Se¢ tha 't needs O(| pi|)time to locate the

shortest path pdint* sthe M; for m, and all the maps My,...,
M; neededinbe visi Zd. The time to find 7,(q) is then

O(|p[|+|p[7lf—- lﬂi) , denoted by O(Zizl‘p‘f’) . To

consi. yMi,y; for each vertex v of Pi;j, we compute 77,(v) .

For exdmple, we first compute 77,(v,) , and the time to find
1 (v)) is O(zi]_:l‘ pj’). According to Lemmal, locating all

tlie other shortest path points in M;, for the other vertices of
P;:+1 can be done by a constant number of linear scans in M,

and it needs O(ip,,|) time. So the map M. can be
constructed in time O(zij:l‘ p+il pi+l|) .

Each map M; can be constructed iteratively, so all maps
Mi,..., My can be computed inO(ZS(Z;I‘ p)|+i ))
since 0T (1lp)|=O(KX (pl)) =O(kn) . and
O(Z,.k:(zg\l?,l))=O(2i:‘n)=0(kn). Thus, all maps

can be computed in O(kn) time.

Pin

pi+1

Therorem1 The Touring polygons problem for k disjoint
convex polygons with input size n, a data structure of size
O(n) can be built in time O(kn) that enables shortest i-path
queries to any query point m to be answered in time O(n),
where n is the total number of vertices of all the polygons.

4.2. The Implementation of Algorithm

The algorithm presented in this paper has been
implemented by program, the division of the whole plane is
shown in Fig. (9), and the running result of the shortest path
is shown in Fig. (10). To make the result clearly visible, we
only present the result of 5 disjoint convex polygons. This
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example has contained edge-reflection contacts, vertex-
bending reflection contacts, and passing-through contacts
three cases of OPT(L) contacted with P; mentioned above.
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Fig. (10). The Running Result of Disjoint| ‘onvex PPolygons, for
k=5.

CONCLUSION

In this paper, we prest. har “malgorithm of locating the
path points in compdting « » shortest path of touring a
sequence of disjoint « mvex potygons and we give an O(kn)
time solution, where k 1o e number of polygons and n is the
total number 4f vertices oi the polygons. Our results improve
upon the previ s timb O(nklog(n/k)).

Thi§ r¢ earch) nas made preliminary results. A more
efficie. tif._Ipiution to the problem of touring disjoint and
convex p. wgons problem is an open problem. In addition,
finding the shortest path of touring the convex polygons
possibly intersected is also our further study.
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