
Send Orders for Reprints to reprints@benthamscience.ae 

184 The Open Automation and Control Systems Journal, 2015, 7, 184-198  

 

 1874-4443/15 2015 Bentham Open 

Open Access 

Control Software Modeling in Production Systems 

Sabah Al-Fedaghi
1,*

 and Faisal Al-Shahin
2 
 

1Department of Computer Engineering, Kuwait University, Kuwait 

2Department of Information System Audit, State Audit Bureau of Kuwait, Kuwait 

Abstract: To meet current challenges, manufacturing industries must develop precise designs for interactions of various 

components of production control systems, and in particular for behavior of the software controlling them. Several dia-

grammatic techniques, e.g., SDL, statecharts, and UML, have been utilized to represent the static and dynamic aspects of 

control systems. Still, a conceptual framework is lacking that would integrate components and allow assembly of applica-

tions from shared processes. This paper addresses the issue by providing schemata to be used in the conceptual modeling 

of production control systems. A flow-based specification that has been utilized in software engineering is proposed as a 

good vehicle in this area. The resulting description achieves uniformity by using a single flow system to represent all pro-

duction system elements. The methodology is demonstrated by recasting the diagrams of two specific research projects in 

unified flow models. 
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1. INTRODUCTION 

This paper builds a conceptual model in the domain of 

production control systems. Generally speaking, the term 

model refers to an abstract representation of some part of the 

“real world” developed as a means of communication among 

stakeholders when a complex system is built. Desirable fea-

tures of models include concise capture of relevant and sig-

nificant aspects of a real phenomenon, understandability, and 

completeness of activity specifications. A conceptual model 

uses diagrammatic notations to provide a high-level repre-

sentation of essential concepts and their interrelationships in 

a real-world domain. Its purpose is to convey a common 

description without technological aspects, and it serves as a 

guide for the subsequent systems design phase. In this con-

text, Unified Modeling Language, UML [1, 2], has been uti-

lized for at least two purposes: object-oriented software de-

sign, and conceptual modeling. “However, UML’s origins in 

software engineering may limit its appropriateness for con-

ceptual modeling” [3].  

Production systems for industrial goods are multifaceted 
systems involving many aspects, including cells with parallel 
machines, machine failures, assembly cells, timing, and pro-
cessing. A production control system links all parts of a 
manufacturing environment to ensure coordination of pro-
duction and distribution activities to achieve specific deliv-
ery reliability at minimum cost. It provides the mechanism 
necessary to execute production in order to achieve some 
goal. 
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1.1. Motivation 

According to Nickel et al. [4], 

Today’s manufacturing industry faces big challenges. … 
In order to meet these challenges today’s production control 
systems become more and more decentralized [5]… One 
major problem in building those decentralized systems is to 
develop a detailed and precise plan how those different com-
ponents interact and in particular how their control software 
has to behave. There is no specification approach which al-
lows to define, analyze and simulate such a production con-
trol system upfront before it is actually built, physically. 

To develop this type of specification, several diagram-
matic techniques have been used, including Specification 
and Description Language (SDL) [6, 7] and UML. UML has 
been utilized to build conceptual models representing the 
static and dynamic aspects of control systems by using class 
diagrams, collaboration diagrams, activity diagrams, and 
statecharts [4, 8-11]. 

1.2. Problem 

In large-scale systems, processes are typically large in 
scale and great in complexity, especially with currently 
emerging networked applications such as those used in con-
trol of production control systems, grids, and integrated sup-
ply chains. Development of such systems is becoming more 
and more multidisciplinary, with many stakeholders, includ-
ing client, architect, engineers, designers, contractors, and 
consultants, all of whom are dependent on each other for 
information. The impacts of failures in the design of these 
systems are quite costly. Difficulties in communication as 
well as in integration of subsystems have arisen from varia-
tions in representations of notions used by the various disci-
plines.  
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A key problem in this context is lack of a unifying 
framework for development and management. “Lack of con-
sideration of engineering projects as systems-of-systems has 
led to methodological challenges in creation of integrated 
tools and techniques for better analysis and management of 
complex projects” [12]. A great deal of current research has 
focused on methodological approaches to functional specifi-
cations, flow descriptions, and system structure definitions 
[13][14][15] such as the model-based process [16], in which 
the system is specified at various levels of granularity. Nev-
ertheless, an underlying tool for expressing the unified totali-
ty of a system’s processes and concepts is lacking. 

1.3. Outline of Proposed Solution 

This paper addresses the need for a conceptual founda-
tion for system modeling with a focus on production control 
systems. A flow-based model (called the Flowthing Model, 
FM) that has been utilized in software engineering is pro-
posed as a viable modeling apparatus in this area. Without 
loss of generality, the paper focuses on specific research that 
has developed actual diagrammatic representations in the 
field of production control systems. Specifically, the paper 
focuses on two projects in this area: 

• A simulated production process developed by Köhler 
et al. [8] is one of the most complete simulations and 
model of a factory production system in the field and 
reflects current approaches. 

• In many production lines, manufacturing operations 
are generally controlled by Programmable Logic Con-
troller programs (PLCs). Park et al. [17] proposed a 
diagrammatic modeling methodology that produces 
several integrated diagrams. 

The approach of this paper of targeting specific works for 
viewing through the lens of FM is appropriate for the nature 
of diagram-based modeling and can be justified according to 
the following discussion. 

Consider, for example, the following ways in which dia-
grammatic models are used in Unified Modeling Language 
(UML) [18]: 

• As a sketch to communicate some aspect of a system. 
“These [UML] sketches can be used in both forward 
(i.e. devising new systems) as well as reverse (i.e. un-
derstanding existing systems) engineering” [18]. 

• As a blueprint by which to build (possibly with a 
more detailed design first). “Blueprints are about 
completeness” [18]. 

• As a programming language with diagrams compiled 
down to executable code. 

This paper deals with uses of the first two types; howev-
er, there is no fundamental obstacle to extending the work to 
the third use when the field of programming of diagrams has 
become more mature. Accordingly, focusing on existing 
diagrammatic representations has the advantage of providing 
immediate contrast between views. 

 

 

2. AUTONOMOUS PRODUCTION AGENTS 

Köhler et al. [8] propose using various UML diagrams as 
visual programming language in a modeling approach to 
autonomous production agents in a decentralized production 
control system. Their proposal is suitable for the purpose of 
this paper of describing a proposed alternative to UML-
based depiction, because the closer the diagrams are to the 
programming stage, the more precise they are in exemplify-
ing the processes of the modeled system. 

The original problem discussed by Köhler et al. [8] be-
gins with difficulty in specifying production agents using 
available methodologies such as System Description Lan-
guage (SDL) [6, 7] and statecharts [19, 20]. According to 
Köhler et al. [8], SDL process diagrams and statecharts “lack 
appropriate means for the specification of the actual actions 
triggered by the received signals.”  

To overcome this problem, Köhler et al. [8] propose in-
corporating several different UML diagrams into one draw-
ing. They introduce UML activity diagrams as high-level 
control flow notations for graph rewrite rules: 

In order to facilitate the use of graph rewrite rules for ob-
ject-oriented designers and programmers, we additionally 
adapted UML collaboration diagrams as a notation for ob-
ject-structure rewrite rules. For this combination of activity 
diagrams and collaboration diagrams we use the name story-
diagrams… for the specification of complex application spe-
cific object structures [8]. 

Köhler et al. [8] have also developed a formal and ana-
lyzable specification language for manufacturing processes. 
The initial phase of such a process can be described as fol-
lows: 

After the requirements engineering and analysis work, 
our approach proposes an analysis consolidation phase, 
where the topology and the block diagrams have to be speci-
fied. From this … topology and overall behavior one may 
derive an SDL block diagram by identifying participating 
processes and communications.  

Still, we observe that a conceptual framework is missing 
that would integrate the components while allowing assem-
bly of applications from shared processes, as will be demon-
strated next. 

3. MOTIVATIONAL EXAMPLE 

Köhler et al. [8] introduced a simulated production pro-
cess based on a factory production system [9]. This produc-
tion process models a factory with multiple manufacturing 
sites and shuttles that transport goods from one site to anoth-
er. 

3.1. Description of the Production Process 

Fig. (1) shows the topology of the factory. In this factory, 
one main track has multiple transfer gates to reach assembly 
lines. 
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The assembly lines on the right as well as the storage ar-
eas on the left are called stations. Stations and their related 
robot arms build an operating unit. Assembly lines are able 
to manufacture various kinds of products. In the track sys-
tem, each shuttle executes a defined working task. The task 
starts when a shuttle is assigned to produce a certain good. 

3.2. Producing Keys  

In this production-system cycle, pieces of metal are ob-
tained from raw material storage (which we can also consid-
er a station in the production system) and moved to an as-
sembly line. The process starts when the shuttle reaches an 
assembly line and requests its assigned good (key). The re-
lated robot takes metal from the shuttle (e.g., upper right 
assembly line), and manufactures the good, using various 
tools (e.g., lower right assembly line). Later, the produced 
good is put on the shuttle surface and brought to finished 
goods storage (lower left storage). After the shuttle has 
moved to the storage area and the good is stored, the task is 
ended and the shuttle starts again from the beginning. The 
shuttle will continuously execute this task until it receives a 
new assignment or is stopped. 

3.3. SDL and UML Diagrams  

From this topology and overall behavior, one can derive 
an SDL block diagram by identifying participating processes  
 

and communications between them. In the example, the pro-
cesses are shuttles, gates, assembly lines, and storages. These 
processes can be derived from the text description in which 
shuttles, the central parts, communicate with other parts in 
the factory in order to complete their tasks. Fig. (2) shows 
the corresponding SDL block diagram for the factory exam-
ple. It contains the four processes Gate, Shuttle, Storage, 
AssemblyLine, and communication channels (Ch1...Ch5). 
While such a diagram does not present a fair description of 
SDL methodology, it is sufficient for our purpose of con-
trasting it with our own diagrammatic methodology. 

From SDL block diagrams, one can derive an initial class 

diagram with process classes for each identified process as 

well as signal methods for each signal understood by these 

process classes. In addition, the class diagrams are used to 

generate code that initializes the production control system, 

creates the production agents, and establishes the communi-

cation channels. Each process in the SDL block diagram 

generates a class in the initial class diagram. Fig. (3) shows 

part of a UML class diagram for the production process ex-

ample. It contains classes like Shuttle and Gate derived from 

the SDL block diagram. 

The translation of class diagrams to an object-oriented 
programming language is straightforward and provided by 
most current Object-Oriented Case (OO-CASE) tools [21, 
22]. Generation of code for UML class diagrams provides  
 

 

Fig. (1). Partial view of factory production system (partial view, redrawn from [8]). 

 

Fig. (2). SDL block diagram of sample factory (partial view, redrawn from [8]). 
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for the translation of behavior diagrams. Statecharts are used 
to specify the reactive behavior of process classes derived 
from SDL block diagrams. 

In order to simulate production processes, code is gener-
ated from statechart modeling; therefore, Köhler et al. [8] 
propose combining statecharts and collaboration diagrams, 
with statecharts specifying complex control flows and col-
laboration diagrams specifying transition actions. To use 
collaboration diagrams as a visual programming language, 
one must add many details showing how the participating 
objects are found and how object structure modifications are 
executed .  

Köhler et al. [8] also utilize collaboration diagrams and 
combine statecharts and collaboration diagrams to produce 

so-called story charts. Combining high-level control flow 
specifications (statecharts or activity diagrams) and high-
level object structure (collaboration diagrams) results in a 

visual programming language that can be used as a means 
for specifying the reactive behavior of a flexible production 
agent. 

4. SCRUTINY 

The methods detailed in the previous section reflect laud-
able efforts to provide a complete methodology, from a text 
description of the production process to generation of code 
through stages of diagrams; nevertheless, there is a sense of 
missing a global specification of the system, like having de-
tailed drawings of various systems in a high-rise building, 
including diagrams of electrical wiring and plumbing pipes, 
but no overall blueprint of the building itself. 

An architectural blueprint describes the underlying 
framework, the shared processes, and the standardized com-
ponents used to build the new architecture. It is highly inte-
grated in a component-based style that allows assembly of 
applications from shared process functions when available. 
In our modeling context, the blueprint can be based on a 
model to produce an infrastructure architecture comprising 
various types of operations in all spheres and subspheres 
(e.g., manual vs. automated processes). 

With regard to the SDL diagram shown in Fig. (2), we 
can observe the sketchy description rendered in this type of 
diagram. It includes programming-based notations (e.g., As-
sign(String),Stop,goOn, …), and the arrows seem to denote 
relationships and operations (e.g., stop, go). What does 
Switch mean on the bidirectional arrow between Gate and 

Shuttle? Processes are not clear; are they commands? (go, 
stop, load). To whom are these commands directed? 

Nor can the statechart diagram serve as a conceptual de-
scription of the production control system. For example, the 
unlabeled arrow from Fetch to GoProduce seems to be a 
“flow control” mechanism that denotes performing Fetch, 
then performing GoProduce; however, the directed arrow 
labeled Reached seems semantically different from a mere 
“flow control”. Similarly, the beginning points, one labeled 
Active and one with no label, seem conceptually hazy.  

To show the contrast between the new FM process speci-
fication and other methodologies, e.g., UML, in the next 
section we review the methodology of our Flowthing Model, 
as described in several publications (e.g., [23-30]), before 
reconstructing the example and its extension. The example in 
the next section is a new contribution. Section 6 is a com-
plete revision of first published materials [27], and sections 7 
and 8 are new contributions. 

5. FLOWTHING MODEL 

The Flowthing Model (FM) depicts the way a system is 
structured by providing a roadmap of its components and 
conceptual flow. Components are termed spheres (e.g., a 
company, robot, human, assembly line, station), that may 
enclose or intersect with other spheres (e.g., the sphere of a 
house contains rooms, which in turn include walls, ceilings). 
Or, a sphere embeds flows (called flowsystems; e.g., walls 
encompass pipes of water flow and wires of electrical flow).  

Things that flow in a flowsystem are referred to as 
flowthings (e.g., money, data, products, cars, parts). The 
lifecycle of a flowthing is defined in terms of six mutually 
exclusive stages: creation, process, arrival, acceptance, re-
lease, and transfer. Within a certain sphere: 

- Creation means the appearance of a flowthing in the to-
tality of the system of a sphere for the first time (e.g., crea-
tion of a new user in a computer system). 

- Process means applying a change to the form of an ex-
isting flowthing (e.g., painting a product). 

- Release means marking a flowthing “to be output” 
while the flowthing remains in the sphere (e.g., a product 
marked “to be shipped”). 

- Transfer denotes the input/output module of the sphere 
(e.g., the interface component (port) of a device with a com-
munication channel). 

 

Fig. (3). Class diagram (partial, from [8]). 
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- Arrival means that the flowthing reaches the sphere but 
is not necessarily allowed to enter it (e.g., a letter addressed 
to the wrong receipient, to be returned). 

- Acceptance means allowing the arrived flowthing to en-
ter the new sphere. 

Fig. (4) shows a flowsystem with its stages, where it is 
assumed that no released flowthing flows back to previous 
stages (e.g., DHL returns a package because an airport is 
closed after a disaster). This is a typical assumption in sys-
tems where the exceptional cases are ignored. For example, 
in a model of the crude oil refining process, different stages 
progress in producing residual, heavy gas oil, lubricating oil, 
diesel, kerosene, gasoline, and naphtha. The assumption, 
here, is continuous heating of the mixure to about 1112 °F 
(600 °C). 

If for some reason the boiler fails, then some substances 
may revert to their previous states – but this is not mentioned 
when the refining process is depicted. Similarly, a flowsys-
tem depicts a situation of one-way flow; flowthings move 
forward.  

The reflexive arrow indicates flow to the Transfer stage 
of another flowsystem. For simplicity’s sake and where ap-
propriate, the stages Arrive and Accept can be combined into 
a single stage called Receive.  

The stages in the lifecycle of a flowthing are mutually 
exclusive (i.e., the flowthing can be in one and only one 
stage at a time). All other states of flowthings are not exclu-
sive states. For example, we can have stored created 
flowthings, stored processed flowthings, stored received 
flowthings, etc. Also, flowthings can be released but not 
immediately transferred (e.g., the channel is down), or ar-
rived but not accepted, … 

In addition to flows in a flowsystem, triggering is a trans-
formation (denoted by a dashed arrow) from one flow to 
another, e.g., a flow of electricity triggers a flow of air. 

Example 1: Product lifecycle is “the entire lifecycle of a 
product from its conception, through design and manufac-
ture, to service and disposal” [31]. Fig. (5) is a typical repre-
sentation of a product lifecycle. 

Viewing such a cycle from the FM perspective, we notice 
that the five spheres in Fig. (5) include two flowthings: raw 
materials and products (manufactured materials). Fig. (6) 
shows the flow stream of these two things and reflects the 
following components: 

Raw materials are produced (created) in a raw material 
extraction sphere (see circle 1), released (2), and transferred 
(3) to the Manufacturing/Production sphere. Note that raw 
materials may stay in the released state (e.g., waiting to be 
shipped) until being transported. Note also that since the raw 
material extraction sphere has only one flowsystem, we need 
only one box to represent the sphere and its flowsystem, not 
two separate ones. 

The Manufacturing/Production sphere has two flowsys-
tems: one for raw materials and the other for products; thus 
received raw materials are processed, triggering (4) the crea-
tion of products that move to the Transportation sphere (5). 
Products then flow to the Utilization/Reuse sphere (6), where 
they are processed/used (7) and then at the end flow to the 
Disposal /Recycling sphere (8). 

The Disposal/Recycling sphere has two flowsystems: one 
for product and the other for raw materials. Used products 
are processed (circle 9) either to flow back to the utiliza-
tion/reuse sphere (10), or to trigger (11) the creation of raw 
materials (12) that flow to the raw material extraction sphere 
(13), to be released (14) back to the Manufactur-
ing/Production sphere. 

Example 2: Bock [32] gives an example (adapted from 
[33]) that shows the dependencies among some subfunctions 
of an automobile (see partial view in Fig. 7). The first step in 
the activity is to TURN KEY TO ON. 

 

Fig. (4). Flow system. 

 

Fig. (5). Lifecycle of products (from [26]). 
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Brake pressure information is passed from Driving to 
Braking (see the figure). The information is sent concurrent-
ly to Braking and to Monitoring Traction.  

When brake pressure is greater than zero, it outputs an 
enabling control value to monitor traction, otherwiseMoni-
toring Traction emits Modulation frequencies to Braking as 
necessary to maintain traction and disable control value. 
Traction is monitored only when pressure is applied to the 
brake. 

Fig. (8) shows an FM representation of this example. 
Since the purpose of the example is to illustate the nature of 
the diagramming methodology, we ignore several issues in 
the original activity diagram such as constraints. Numbered 
circles are used to explain the FM diagram.  

 Fig. (8) shows four spheres: Key, Driving, Braking, and 
Anti-lock braking system (ABC) – circles 1, 2, 3, and 4, re-
spectively. ABC includes the monitoring system and is pre-
sent in the original example given by SysML Partners [33] 
and adapted by Bock [32]. 

Note that creation in FM denotes a new flowthing that 
emerges (flows) or comes into existence from non-existence. 
Accordingly, states (in the engineering sense) are flowthings 
that can be created. In this sense creation is a flow. In gen-
eral, states can also flow fron the creation stage to the pro-
cessing stage, etc. 

In the Key sphere, in the State flowsystem, the created 
state ON (circle 5) triggers (6 and 7, respectively) the crea-
tion of ON states in Driving and Braking spheres (2 and 3, 
respectively). 

The state ON means putting Driving and Braking into the 
execution (activated) condition. This triggers (8) the genera-
tion of Brake pressure (9) which flows to the Braking sphere 
(10) and the ABS sphere (11). 

In the ABS, and according to our understanding, the ABS 
is triggered (12) to the ON state when Brake pressure arrives 
and it is > 0. Of course the FM description can be changed if 
this understanding is incorrect. Accordingly, the Monitoring 
module is triggered (13) to activate, go to the ON state, (14) 

 

Fig. (6). FM description of a “product lifecycle”. 

 

 

Fig. (7). Example (partial view, from Bock [32]). 
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and be ready when the physical brake (15) sends (16) Modu-
lation frequencies. Modulation frequencies flow (17) to the 
Braking sphere to be processed (18). 

Note the contrast between Figs. (7 and 8). Fig. (7) is a 
mix of heterogeneous notions: the arrows may mean control 
or data flow and the boxes may denote a process, e.g., Driv-
ing, or a decision, e.g., Pressure > 0. 

Activities as modeled in Fig. (7), e.g., turn, enable, brake, 
… seem, in principle, to embrace any and all English verbs, 
thus include unlimited “types” of vertices selected from Eng-
lish verbs by the designer. This gives an imprecise connota-
tion of a mixture of meanings for different implementations 
of the same system. It would be like defining a graph in 
graph theory by selecting an infinite number of node types 
according to personal preference. 

In FM, the diagram produces a systematic representation 
in which streams of flow trigger each other and processes are 
built on repeated application of the five stages. This idea will 
be demonstrated further by applying FM to a production 
control system. 

6. APPLYING FM 

Returning to the factory production system discussed in 
section 3, we claim that the FM representation provides a 
conceptual foundation for the modeling of such a system. 
Fig. (9) shows FM with a production site, Source Station, 
where goods arrive to be loaded on shuttles, and a Target 
Station, where goods can be stored. Each shuttle executes a 
defined working task: to transport goods from the Source 
Station to storage. Initially, all the shuttles wait (inactive and 
not loaded) in a garage. 

When a shuttle is assigned a new task by a Start com-
mand (circle 1), a shuttle is released from the queue and 
Shuttle State is switched to Active. According to the task 
assignment parameters, a shuttle will be transferred to a 
specified Source Station (2), where a product is waiting to be 
loaded. When a shuttle “arrives” at the Source Station, some 
checking procedure is followed to “accept” the shuttle, for 

example, ensuring the shuttle is not loaded and is in the right 
position to be loaded.  

If the shuttle is “accepted” (3), it triggers the product to 
be “released” and loaded onto the shuttle (4). The shuttle is 
now loaded with the product and ready for transfer to the 
Target Station (5). 

When the shuttle “arrives” at the Target Station, some 
checking procedure is again followed to “accept” the shuttle 
by ensuring the shuttle is loaded and in the right position to 
be unloaded. If the shuttle is “accepted” (6), a product is 
released from the shuttle and transferred to the store (7). Af-
ter the shuttle is unloaded, it is ready to be transferred back 
to the “garage” (8). When the shuttle arrives at the garage, 
checking procedures will again be followed to “accept” the 
shuttle, such as making sure the shuttle is not loaded and has 
delivered the product. If the shuttle is “accepted”, it enters a 
queue where it waits for another task assignment (9) to start 
the process again with the same cycle. 

At any time the shuttle can be halted with the Emergency 
Stop signal and switched to an Inactive state, then reactivat-
ed with the Activate signal and switched to the Active state 
(10,11,12). 

FM can also be used as a foundation at a more detailed 
level along a flow, or at a higher level with an abstract de-
scription to form a conceptual representation of flow be-
tween spheres. Fig. (10) shows an abstract-level FM for a 
factory production system derived from Fig. (9). From the 
FM shown in Fig. (9), we can derive a language to represent 
the flow model for a factory production system, as shown 
partially in Fig. (11). 

7. APPLYING FM IN PROGRAMMABLE LOGIC 
CONTROLLERS 

In many production lines, manufacturing operations are 
generally controlled by Programmable Logic Controllers 
(PLCs) [34]. A PLC is a specialized computer that, with in-
put from sensors, controls functions at different levels of 
complexity. Before PLC, control logic was represented by an  

  

Fig. (8). FM representation of automobile subfunctions. 
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Fig. (9). FM of factory production system. 

 

Fig. (10). An abstract-level FM for a factory production system corresponds to Fig. (9). 

 

electrical circuit diagram; since then, PLC has replaced the 
hard-wired logic circuit with a software-like control box 
[17]. 

PLC is widely employed in industrial systems for process 
control [17, 34-36]. Data are continuously gathered by sen-
sors in scanning cycles and trigger output operations accord-
ing to logic specified in the PLC. Diagrammatic representa-

tions such as ladder diagrams [37, 38] are used in logic spec-
ification. 

According to [35], steps to develop an industrial produc-
tion control system include the following: 

1. Define the process to be controlled 

2. Make a sketch of the process operation 
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3. Create a written sequence of the process 

4. On the sketch, add the sensors needed to carry out the 

control sequence 

5. Add the manual controls needed for the process setup 
or for operation checks 

6. Consider the safety of the operating personnel and 
make additions and adjustments as needed 

7. Add the master stop switches required for a safe shut-
down 

8. Create a ladder logic diagram that will be used as a ba-
sis for the PLC program 

9. Consider the possible points where the process se-
quence might go astray. 

Park et al. [17] have introduced a modeling methodology 
using multidiagram techniqes to generate PLC code. This 
methodology provides an opportunity to contrast their ap-
proach with FM in the context of PLC. According to Park et 
al. [17], in the early design phase of a manufacturing system, 
the control aspect is not intensely considered. Consequently, 
verifying and modifying this aspect of the system is costly. 
PLC simulation methods can be utilized for PLC verification 
[39-41]. As discussed by Park et al. [17], the problem is that 
such an approach is not realistic enough to be applied to de-
tail design. “It is necessary to create a much more detailed 
simulation model that can forecast not only the production 
capability of the system but also the physical validity and 

efficiency of co-working machines and control programs” 
[42]. 

In this context, Park et al. [17] point out three require-
ments: 

The first is defining states for each device, which is trig-
gered by PLC output signal. The second is giving operations 
(state) sequence in each process unit. In the last, the model-
ing methodology has to be possible to define the hierarchical 
position of a device bearing whole factory aspect. 

Accordingly, they propose a modeling methodology 
comprising the following main steps: 

1. Define the hierarchical structure of all devices in the 
factory  

2. For each device, define States to be controlled by PLC. 

3. Generate PLC symbols and I/O model 

4. In each station defined in Step 1, give the process se-
quence by selecting the device state defined in Step 2. 

Park et al. [17] apply the proposed modeling methodolo-
gy to the case of a manufacturing cell shown in Fig. (12), 
which is part of a car body assembly line.  

Suppose that the line name is ‘BODY’, the process name 
is ‘WELD’, and example cell is consisting of welding ro-
bot(RBT1), handling robot(RBT2), incoming shuttle(SHTL1) 
and jigs(JIG) on the shuttle. The process sequence is as fol-
lows. 

a) shuttle comes into the WELD station (station start). 

b) jigs clamp to grasp the body part for welding. 

c) welding robot starts to weld. 

d) jigs unclamp to be unloaded by the handling robot. 

e) handling robot unloads the finished part. [17]. 

Next, this modeling methodology is briefly described, not 
with the aim of complete understanding, but to use as an 
example of a depiction that is conceptually extensive and 
diagrammatically involved. This motivates introducing FM 
as a comprehensive representation to form an underlying 
framework for diagrammatic process modeling. 

As a first step in Park et al.’s [17] approach, a hierar-
chical structure is introduced for a portion of the car body 
assembly line, as shown in Fig. (13). The WELD station is 

 

Fig. (11). Partial possible language specification that corresponds 

to Fig. (9). 

 

Fig. (12). Welding station of car manufacture (redrawn from a fig-

ure in [17]). 
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part of the BODY line, with four devices belonging to the 
WELD station. 

The states of each device in the WELD station are then 
defined. For example, RBT1 is in the READY state before 
the station process begins. RBT1 begins to weld when the 
SHTL comes into the station and the JIG is clamped. There-
fore, the states of RBT1 are defined as READY and WELD, 
as shown in Fig. (14). The states of the other devices are 
defined in the same way. 

From Figs. (13 and 14), the related symbols for RBT1 
can be generated to produce an I/O model. One of the possi-
ble states is WELD, in which there can be one pair of PLC 
symbols: the triggering PLC output signal to begin welding, 

and an input signal that reports whether the Robot has com-
pleted that welding.  

From Figs. (13 and 14), the related symbols for RBT1 

can be generated to produce an I/O model. One of the possi-

ble states is WELD, in which there can be one pair of PLC 

symbols: the triggering PLC output signal to begin welding, 

and an input signal that reports whether the Robot has com-

pleted that welding.  

From this modeling process, the device I/O model and 

PLC symbols are generated. Accordingly, the process se-

quence incorporating all devices and their predefined states 

is represented in Fig. (15). 

 

Fig. (13). Modeling the “device hierarchy” (redrawn from [17]). 

 

Fig. (14). Defined states of RBT1 (redrawn from [17]). 

 

Fig. (15). Process sequence in Step 3 (redrawn from [17]). 
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 This extensive utilization of multiple diagrams raises the 
issue of the need for a conceptual framework for an overall 
representation of the system. In their depiction, Park et al. 
[17] start with a narrative description, then expand on it in 
successive waves of diagrams in an attempt to model the 
system by pulling it apart and inserting diagrammatic gadg-
ets (e.g., state relationships) to represent its dynamics. The 
result is loss of a higher-level perspective or systemic under-
standing that would enable seeing the overall “forest” to 
improve modeling of the intricate web of conceptual connec-
tions between subprocesses. Models are utilized to demon-
strate the design of physical products with the aim of in-
creasing understanding of real-world objects while disre-
garding insignificant details. They are blueprints that allow 
us to gain the big picture, comprehend how parts fit together, 
develop vocabulary necessary for conducting discussions, 
and bring structure to the development process. These aims 
seem not to be achieved in the approach under consideration. 

FM presents such qualities in modeling of physical sys-
tems. The FM structure consists of assembled blocks 
(spheres) that are superimposed flowsystems, the same way 
an architectural structure incorporates blocks of flow sys-
tems, such as an electrical system, a communication system, 
and a water system. The conceptual flow in FM provides a 
view of simultaneous processes acting on the same physical 
object, as shown in Fig. (16). 

Notice that one physical flow is occurring in this picture: 
movement of the shuttle, carrying the part into the station. 
When it arrives at its position in the station to be processed, 
the part (not the shuttle) conceptually flows into the spheres 

of Robot 1 and Robot 2. The robots can process the part 
simultaneously in a synchronized way. 

8. FM REPRESENTATION OF WELDING SYSTEM 

According to the description given by Park et al. [17], 
processing proceeds as follows:  

1. “(a) Shuttle comes into the WELD station” [17]. This 
is the first stream in FM, in which the shuttle flows into the 
sphere of the WELD station. An implicit understanding of 
the given phrase indicates that the shuttle carries a (shuttled) 
car part to be welded. Conceptually, the Shuttle and the Part 
are subspheres of one item we call Shuttling. Thus, we have 
the conceptual picture of spheres shown in Fig. (17). 

This process of “implicit understanding” is analogous to 
saying a car entered the garage to mean a driver drove a car 
into the garage. FM forces us to explicitly distinguish be-
tween the Shuttle and the Part, because what is welded is the 
Part, not the Shuttle, and this is made even clearer with fur-
ther development of the diagram.  

2. “(b) Jigs clamp to grasp the body part for welding” 
[17], indicating that the flow of Shuttle Body triggers the 
process of “clamping”. “Clamping”, according to our under-
standing, involves the placing of jigs in certain physical places 
on the Part. Conceptually, clamping is performed in the 
sphere of Shuttling. Suppose that, by error, the Shuttle arrives 
with no Part mounted on it. The jigs are still placed in the des-
ignated places in the space of the missing part, regardless. 
Thus, we have the conceptual picture shown in Fig. (18). 

 

Fig. (16). Three spheres receive a part simultaneously when a shuttle arrives at the station. 

 

Fig. (17). Conceptual representation of the shuttle entering WELD station. 

 

Fig. (18). Triggering a process of “clamping”. 
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3. “(c) Welding robot starts to weld” [17]. Information is 
missing at this step of the description, which is: who places 
the jigs for welding? Does this step have its own control 
mechanism? According to our understanding, Robot 2 per-
forms such action because Park et al. [17] mention that this 
robot removes the jigs. Of course, if such an understanding is 
not correct, the FM description can be changed. According-
ly, Jigging and Part (which will be removed by Robot 2) are 
also in the sphere of Robot 2, as shown in Fig. (19). Also, 
“placing the jigs” triggers turning ON Robot 1 to Weld the 
Part. Accordingly, we get the representation shown in Fig. 
(20). 

Fig. (21) shows the complete FM representation of the 
welding system. It starts at circle 1 in the figure, where the 
Shuttle, coming from a previous station (station 2), enters the 
welding station. Its acceptance for processing triggers (2) 
clamping, which triggers (3) turning ON Robot 1 (3). Robot 
1 triggers the welding process (4). At the end of this weld-
ing, two processes are activated: 

a) Turning OFF Robot 1 to be in Ready state (5)  

b) Triggering Robot 2 (6) to unclamp the jigs (7) 

As a result, Unclamping triggers unloading the Part at the 
outside welding station (8). Transferring the Part (9) to the 
next station (station 3) will trigger turning OFF Robot 2, 
putting it in READY state again. This triggers releasing the 
shuttle (10) to go back to the previous station (station 2). 

Fig. (21) presents a schema of the portion of the car body 
assembly line discussed in this section. It is built upon a sys-
tematic methodology that uniformly applies an FM of 
spheres, flowsystems, stages, flows, and triggering. The re-
sult is a picture of the conceptual space in which each sphere 
handles its internal processes, separately, in a synchronized 
scenario. The description serves as an initial blueprint base 
for any further details in the design. 

According to Chuang et al. [35], steps to develop an in-
dustrial production system controller include the following: 

1. Define the process to be controlled 

2. Make a sketch of the process operation 

3. Create a written sequence of the process 

4. On the sketch, add the sensors needed to carry out the-
control sequence 

 

Fig. (19). Jigs and Part in Robot 2 sphere. 

 

 

Fig. (20). Jigs and Part sharing both Robots’ spheres. 
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- Sensors can easily be added to an FM schema since 
they can be modeled as spheres with flows of their own. 

5. Add the manual controls needed for the process setup 
or for operation checks 

- The process setup and any type of checks and con-
strants can be added to the FM schema to control the flow by 
using additional notations such as those for synchronization 
or for logic operatons (AND, OR, …). FM provides the un-
derlying draft upon which other cababilites and notations can 
be superimposed, including the next step: safety considera-
tions. 

6. Consider the safety of operating personnel and make 
additions and adjustments as needed 

7. Add the master stop switches required for a safe shut-
down- Similarly, switches can be modeled in FM and inte-
grated into the FM depiction. 

8. Create a ladder logic diagram that will be used as a ba-
sis for the PLC program. 

FM can provide a more precise description of the total 
system, to be used in such diagramming methods as the lad-
der logic diagram. The process of converting FM schemata 
into such a diagram is beyond the scope of this paper and 
will be investigated as a future research objective. 

9. CONCLUSION 

Several diagrammatic techniques, e.g., SDL, statecharts, 
and UML, have been utilized to represent the static and  
 

dynamic aspects of control systems. This paper addresses the 
issue by providing schemata to be used in the conceptual 
modeling of production control systems. A flow-based speci-
fication, denoted FM, that has been utilized in software en-
gineering is proposed as a good vehicle in this area.  

The methodology is demonstrated by recasting two spe-
cific research projects involving actual diagrammatic repre-
sentations in the field. In the first project, UML diagrams are 
used as a visual programming language to describe a model-
ing approach to autonomous production agents used in pro-
duction control systems. The second project introduces a 
modeling methodology that uses multidiagram techniques to 
generate PLC code, providing an additional opportunity to 
compare a methodology with FM in the context of program-
mable logic controllers. 

The resultant conceptual specification demonstrates that 

the methodology is capable of modeling various types of 

processes. It can be applied uniformly at different levels of 

detail to provide a central description analogous to complex 

engineering diagrams, e.g., electrical and mechanical sche-

mata. Additionally, it supports the flow-down of require-

ments from initial planning to a user’s view of finished au-

tomated systems, assuming an underpinning framework that 

is applied at each level down the left-hand side of a known 

V-lifecycle, from the whole system to its subsystems. 

Contrasting the resulting FM description with the dia-
grammatic specification in these two projects shows that FM 
achieves uniformity with a single flow system used to repre-
sent all production system elements. At this level of  
 

 

Fig. (21). FM representation of the welding system. 

  Robot‐2 Sphere 

Shuttling Sphere  

Create

 Robot‐1 Sphere 

1 

3 

4 

5

6 

7 

10

Clamping 

  
UnclampClamp

  end

Process

 

State      

State  

Part

  Release

 Transfer

Process:  

Weld 

  

 

Arrive

Accept Process

 

Release

Transfer

2

8

Shuttle body

h l l

JIGS

ON 

Ready  end

ON 

Ready9

Next Station (Station 3) 

Previous Station 

(Station 2) 

11



Control Software Modeling in Production Systems The Open Automation and Control Systems Journal, 2015, Volume 7    197 

specification, the FM representation seems to provide conti-
nuity in the description of an episodic sequence of events, 
linking these events by flows and triggering. The movement 
of flowthings in FM flowsystems is analogous to the flow of 
water in a river, running from its origin and across bounda-
ries without any “dry” sections along its stream. 

Other representations such as UML fail to furnish a nu-
cleus around which the various phases of a development 
process can evolve. In contrast to a UML-based approach of 
multifaceted textual and graphical descriptions, the conten-
tion of this paper is that the very nature of modeling de-
mands a “master representation” around which global fea-
tures can be identified and designed, analogous to the role of 
a graphical description (blueprint) in the construction of a 
high-rise building, where the drawing is the core around 
which functional features such as the structure itself, an elec-
trical system, a water system, and interior furnishings are 
built by their various specialists, in addition to representation 
of global features such as aesthetics and themes, cost, and 
security. 

Any methodology of representation has its own ad-
vantages and weaknesses, especially in regard to the features 
of understandability and simplicity. The FM representation is 
based on the notion of flow and characterized by uniform 
application of the basic structure of a flow system. One pos-
sible weakness of FM is the potential size and scope of the 
resulting picture, which may be too much to follow and con-
trol if all flows are shown along with diverse types of trig-
gering; however, this drawback seems insignificant in light 
of large schemata of high-rise buildings and multifaceted 
specifications of airplanes and similar huge technical pro-
jects. Only further experimentation with FM would uncover 
potential advantages and difficulties. Another weakness of 
FM is that it is still in the exploratory phase of development 
compared with a modeling methodology such as UML which 
has a well-established body of research and investment. Nev-
ertheless, FM seems to present a promising direction and to 
make a viable contribution to the area of system specification. 

Further research is needed to apply the FM methodology 
directly to production control systems. Also, additional in-
vestigation is needed to develop tools and supporting appa-
ratus in this direction. Specifically, additional synchroniza-
tion, constraints, and logical notation need to be superim-
posed on the base FM description. These can be imported 
from other schematics such as Petri net diagrams. 

CONFLICT OF INTEREST 

The author confirms that this article content has no con-
flict of interest. 

ACKNOWLEDGEMENTS 

Declared none. 

REFERENCES 

[1] Object Management Group, OMG Unified Modeling Language 
Specification, Version 1.5, March 2003. http://www.omg.org/-
spec/UML/1.5/ 

[2] Object Management Group, OMG Unified Modeling Language 
Specification, Version 2.4.1, August 2011. 
http://www.omg.org/spec/UML/2.4.1/ 

[3] S. Lu and J. Parsons, “Enforcing ontological rules in UML-based 
conceptual modeling: Principles and implementation,” Proc. of 
10th Workshop on Evaluating Modeling Methods for Systems Anal-
ysis and Design (EMMSAD'05), pp. 451–462. Porto, Portugal: 
FEUP, 2005. 

[4] U. Nickel, J. Niere, W. Schäfer, and A. Zündorf, “Combining 
statecharts and collaboration diagrams for the development of pro-
duction control systems,” Proc. of Object-Oriented Modelling of 
Embedded Real-time Systems (OMER) Workshop, Technical Re-
port 1999-01, University of Armed Force München, May 1999. 

[5] J. Gausemeier, H.-J. Buxbaum, S. Förste, and G. Gehnen, “Decen-
tral control architecture for modular flow systems,” Proc. 
CAD/CAM Robotics and Factories of the Future, London, 14–16 
August 1996. 

[6] International Telecommunication Union (ITU), Z.100 - Specifica-
tion and Description Language - Overview of SDL-2010, 2012. 
http://www.itu.int/rec/T-REC-Z.100-201112-I 

[7] International Telecommunication Union (ITU), Z.101 - Specifica-
tion and Description Language, Basic SDL-2010, 2012. 
http://www.itu.int/rec/T-REC-Z.101-201112-I 

[8] H. Köhler, U. Nickel, J. Niere, and A. Zündorf, “Integrating UML 
diagrams for production control systems,” Proc. of the 22nd Inter-
national Conf. Software Engineering (ICSE), Limerick, Ireland, pp. 
241-251. ACM Press, 2000. 

[9] H. J. Köhler, U. Nickel, J. Niere, and A. Zündorf, “Using UML as a 
visual programming language,” Technical Report tr-ri-99-205. 
University of Paderborn, 1999. 

[10] J. Niere and A. Zündorf, “Using Fujaba for the development of 
production control systems,” Proc. of Int. Workshop and Symposi-
um on Applications of Graph Transformations with Industrial Rel-
evance (AGTIVE), Kerkrade, Netherlands, LNCS. Springer Verlag, 
1999. 

[11] F. Chi Kit, “Design and analysis of agent-based FMS control sys-
tems,” PhD thesis, Department of Industrial and Manufacturing 
Systems Engineering, University of Hong Kong, 2005. 

[12] J. Zhu and A. Mostafavi, “Towards a new paradigm for manage-
ment of complex engineering projects: a system-of-systems frame-
work,” 8th Annual IEEE Systems Conference (SysCon), March 31-
April 3, 2014. 

[13] G. Finance, SysML modelling language explained. 
http://www.omgsysml.org/SysML_Modelling_Language_explaine
d-finance.pdf 

[14] Y. Xu, G. Zhang, and F. Wang, “The flow simulation in the fluidic 
amplifier,” The Open Automation and Control Systems Journal, 
vol. 3, pp. 8-12, 2011. 

[15] J. Zhi-yang, L. Zhong-xing, J. Hong, S. Li-qin, and X. Wen, “The 
software design of natural rubber plantation temperature and hu-
midity monitoring system based on ZigBee,” The Open Automation 
and Control Systems Journal, vol. 6, pp. 9-16, 2014. 

[16] F. O. Hansen, SysML – a modeling language for systems engineer-
ing. 2010. [slides] http://staff.iha.dk/foh/Foredrag/SysML-
SystemEngineering-DSFD-15-03-2010.pdf 

[17] H. Park, J. Kwak, G. Wang, and S. Park, “A modeling methodolo-
gy for process control in the automated manufacturing system,” 
Summer Computer Simulation Conf., 2010, pp. 439-445. 

[18] M. Fowler, UML Distilled: Brief Guide to the Standard, 3rd ed. 
Addison-Wesley, USA, 2003. 

[19] D. Harel and E. Gery, “Executable object modeling with 
statecharts,” Proc. 18th Int. Conf. Software Engineering (ICSE 
’18), Berlin, pp. 246-257, 1996. 

[20] D. Balasubramanian, C. S. Pa sa reanu, M. W. Whalen, G. 
Karsai, and M. R. Lowry, “Polyglot: Modeling and analysis for 
multiple statechart formalisms,” ISSTA, pp. 45–55, 2011. 

[21] ILogix, The Rhapsody Case Tool Reference Manual; Version 1.2.1. 
http://www.ilogix.com/ 

[22] The Rational-Rose Realtime Case-Tool, http://www.rational.com 
[23] S. Al-Fedaghi, “A conceptual foundation for data loss prevention,” 

International Journal of Digital Content Technology and its Appli-
cations, vol. 5, no. 3, pp. 293-303, 2011. 

[24] S. Al-Fedaghi, “States and conceptual modeling of software sys-
tems,” International Review on Computers and Software (IRE-
COS), vol. 4, no. 6, pp. 718-727, 2009. 



198     The Open Automation and Control Systems Journal, 2015, Volume 7 Al-Fedaghi and Al-Shahin 

[25] S. Al-Fedaghi, “System-based approach to software vulnerability,” 
IEEE Symposium on Privacy and Security Applications (PSA-10), 
Minneapolis, USA, 2010. ftp://ftp.computer.org/press/outgoing-
/proceedings/SocialCom%202010/data/4211b072.pdf 

[26] S. Al-Fedaghi, “Pure conceptualization of computer programming 
instructions,” International Journal of Advancements in Computing 
Technology (IJACT), [Accepted] 

[27] S. Al-Fedaghi and F. Al-Shahin, “How to diagram a production 
control system”, The 2012 12th Int. Conf. Control, Automation, and 
Systems (ICCAS 2012), Jeju Island, Korea. 2012, pp. 1065-1070.  

[28] S. Al-Fedaghi and F. Faihan, “A conceptual visualization of indus-
trial control systems: Electrical power system,” International Re-
view of Automatic Control (IREACO), [Accepted]. 

[29] S. Al-Fedaghi and A. Abdullah, “A new approach to component-
based development of software architecture,” International Review 
on Computers and Software (IRECOS), vol. 8, no. 1, pp. 1-10, 
2013. 

[30] S. Al-Fedaghi, “Alternative representation of aspects,” 10th IEEE 
Int. Conf. Information Technology: New Generations, IEEE ITNG 
2013, 15-17 April, Las Vegas, Nevada, USA. 

[31] K. Roebock, Product Lifecycle Management (PLM): High-impact 
Strategies - What You Need to Know, Lightning Source Incorpo-
rated, 2011. 

[32] C. Bock, “Systems engineering in the product lifecycle,” Interna-
tional Journal of Product Development, vol. 2, no. pp. 1-2, 2005. 

[33] SysML Partners, Systems Modeling Language: SysML, 2004. 
http://www.omg.org/syseng/SysML-Presentation-SEDSIG-
040427.pdf 

[34] J. Jang, P. H. Koo, and S. Y. Nof, “Application of design and con-
trol tools in a multirobot cell.” Computers and Industrial Engineer-
ing Journal, vol. 32, no.1, pp. 89-100, 2010. 

[35] C. P. Chuang, X. Lan, and J. C. Chen, “A systematic procedure for 
designing state combination circuits in PLCs,” Journal of Industri-
al Technology, vol. 15, no. 3, pp. 2-5, 1999. 

[36] M. Koa, S. Parka, J.-Ju Choib, and M. Chang, “New modeling 
formalism for control programs of flexible manufacturing sys-
tems,” International Journal of Production Research, vol. 51, no. 
6, pp. 1668-1679, 2013. 

[37] IEC, International Standard IEC 61131-3: Programmable Control-
lers, second ed. International Electrotechnical Commission, 2003. 

[38] E. A. da Silva Oliveira, L. D. da Silva, K. Gorgonio, A. Perkusich, 
and A. F Martins, “Obtaining formal models from ladder dia-
grams,” 9th IEEE Int. Conf. Industrial Informatics (INDIN), pp. 
796–801, 2011.  

[39] C. M. Park, S.M. Bajimaya, S. C. Park, G. N. Wang, J. G. Kwak, 
K. H. Han, and M. Chang, “Development of virtual simulator for 
visual validation of PLC program,” Int. Conf. Intelligent Agent Web 
Technologies & Internet Commerce, Australia, 2006. 

[40] H. T. Park, J. G. Kwak, G. N. Wang, and S. C. Park, “Plant model 
generation for PLC simulation”, International Journal of Produc-
tion Research, vol. 48, no. 5, pp. 1517-1529, 2010. 

[41] A. Anglani, A. Grieco, M. Pacella, and T. Tolio, “Object-oriented 
modeling and simulation of flexible manufacturing system: A rule-
based procedure,” Simulation Modeling Practice and Theory, vol. 
10, no. 3-4, pp. 209-234, 2002. 

[42] S. Park and J. S. Jang, “Virtual plant for control program verifica-
tion,” Int. Conf. Circuits, System and Simulation (IPCSIT), vol. 7, 
2011. 

 

Received: August 02, 2014 Revised: December 06, 2014 Accepted: December 29, 2014 

© Al-Fedaghi and Al-Shahin; Licensee Bentham Open. 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the 

work is properly cited. 

 


