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Abstract: This paper addresses the cable tension distributions of a cable-driven parallel robot with non-negligible cable 
mass for large dimension mechanisms. A well-known model which describes the profile of a cable under the action of its 
own weight allows us to take the cable sags into account. In addition, an approach to computing the cable tensions is pre-
sented, in which there are two major steps to obtain the cable tensions. In more detail, the first one is an iterative process 
for obtaining the iterative cable tensions, while the other one is the optimization of the cable tensions obtained by the first 
step. Finally, a large scale cable-driven manipulator currently under development is analyzed. The results show that cable 
sags have a significant effect on the cable tensions of such manipulators. 
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1. INTRODUCTION 

Cable-driven parallel robots, possessing several promis-
ing advantages over their rigid-link counterparts, are a spe-
cial class of parallel manipulators in which the moving plat-
form is driven by cables instead of rigid links [1-3]. Based 
on the number of cables (m) and the number of degrees of 
freedom of the platform (n), cable-driven parallel robots are 
classified into three categories, i.e. the incompletely re-
strained positioning mechanisms (m<n+1), the completely 
restrained positioning mechanisms (m=n+1) and the redun-
dantly restrained positioning mechanisms (m>n+1) [2, 4]. In 
most studies of cable-driven parallel robots, the cables are 
considered to be straight lines, as long as cables are massless 
and its tensions remain positive. Thereby, studies become 
much easier and, in most cases, the model obtained is quite 
close to reality [5, 6]. But, in some particular cases, more 
complex cable behaviors must be taken into account to fit 
well with the real manipulator. Another aspect that has to be 
taken into account is sags of the long-span cables. Cables 
with significant mass will tend to sag under their own weight 
[1, 3, 7-13].  

Determining the optimal cable tension distribution is es-
sential for the efficient control and operation of the cable-
driven parallel robots. A few researchers have worked on the 
determination of the cable tensions for the cable-driven par-
allel robots. Generally, the cables of a parallel cable-driven 
robot are considered to be massless. Fang et al. [14] devel-
oped an analytical method to optimize cable tension distribu-
tions in cable-driven parallel robots based on minimizing the  
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sum of cable tensions at every pose. Their method, however, 
is not applicable to cable-driven parallel robots with more 
than one redundant cable. Gosselin et al. [15] presented a 
non-iterative algorithm of cable tension determination and 
proposed four optimal objective functions for the algorithm, 
and the algorithm of cable tensions is just applicable to the 
completely restrained cable-driven parallel robots. Liu et al. 
[16] investigated optimal cable tension distributions for the 
cable-based parallel robots, in which the minimum cable 
tension distributions in the workspace are discussed. These 
method and algorithm above, indeed, are rationale for the 
cable-driven parallel robots in which the cables can be mod-
eled as the massless inextensible straight lines rather than 
cable catenary model. However, this assumption, for the 
cable-driven parallel robots with long-span cables, is not 
rational owning to the sags caused by the non-negligible 
self-mass. In addition, the effects of the cable sags on both 
the kinematics and the cable tensions must be taken into ac-
count for large-span cables [8-11]. Riehl et al. [1, 3] pro-
posed a method to determine both the kinematics and the 
cable tensions of minimally constrained cable-driven manip-
ulators. But the proposed method cannot be applied to other 
cable-driven parallel robots in which the number of cables m 
exceeds the number of degrees of freedom of the platform n. 
Indeed, all of the above literatures, to the best of our 
knowledge, do not deal with the cable tension distributions 
for the redundantly restrained cable-driven parallel robots 
with non-negligible cable mass.  

This paper mainly focuses on the aspect of the cable sags. 
Based on a well-known model of a cable with non-negligible 
mass, described in section 2, the numerical computations of 
the cable tensions for the redundantly restrained cable-driven 
parallel robots are presented in section 3, in which an itera-
tive optimization algorithm to solve the cable tensions, for a 
given pose, is proposed. This paper studies the effects of the  
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cable sags on the cable tensions. And furthermore, the dif-
ferences between the massless and the sags models regarding 
the determination of the cable tensions are discussed in sec-
tion 4. Finally, section 5 concludes this paper. 

2. CABLE MODEL AND OPTIMAL CABLE TEN-
SIONS  

In order to make the cable-driven parallel robots move 
stably and reliably, a uniform motion of the end-effector is a 
requirement. Indeed, in many situations, an inextensible ca-
tenary of non-negligible mass is likely to be an appropriate 
modeling of the cables of the robots with long-span cables 
[13]. As the result, the cables are modeled as inextensible 
catenary, while the inertias of the cables and platform can be 
ignored. It is well known that the profile of the cable catena-
ry and the cable tensions are coupled. Contrary to the case of 
massless cable modeling, the cable tensions depend on the 
external forces acting on the cables but also on their own 
mass of the cables [1, 3]. Cable structures have also complex 
mechanics behaviors because of their nonlinearity in a geo-
metric sense. Thus, complete modeling for the cable-driven 
parallel robots with the catenary cables must be done.  

 

2.1. Cable Catenary Model 

The first challenge for analyzing a cable-driven robot 
with sagging cables is to mathematically describe the shape 
of the cables under the influence of gravity. One end of the 
homogeneous cable, in our model introduced here, is con-
nected to the motor while the other end is connected to the 
end-effector. As shown in Fig. (1), a local cable frame, noted 
{oi

cxi
czi

c}, is attached to Bi in Fig. (2), in which the zc axis of 
the cable frame points in the same direction with the global z 
axis. The non-elastic cables with significant mass will tend 
to sag under their own weights. Therefore, the inextensible 
catenary equation can be applied for describing the profile of 
the cables under their sags [7, 9]. As a consequence, the pro-
file of the cable i is the catenary within the ocxczc plane, 
which can be expressed as follows [9]:  

2cosh cosh , 1,2, ,
c

c i i i
i i i

i

H xz i m
g l

βα α
ρ

⎡ ⎤⎛ ⎞
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where xi
c and zi

c are x and z-direction coordinates in 
{oi

cxi
czi

c}; ρ is linear density of the inextensible cable; 
g=9.8m/s2 is the gravitational acceleration with the direction  
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Fig. (1). Catenary cable in its vertical plane. 
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Fig. (2). Schematic of a cable-driven parallel robot. 
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along the negative direction of the z axis; 
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；Hi and Vi are the horizontal 

and vertical components of each cable tension at the cable 
end Bi; li and ci are the horizontal and vertical spans of each 
cable respectively. 

It must be noted from Eq. (1) that this kinematics model 
with inextensible catenary cables differs from the traditional 
kinematics with the straight line cables for the cable-driven 
robots. As we can see from the number of the unknowns, we 
must take into account both the cable tensions and the cable 
lengths simultaneously because, in this case, we cannot sepa-
rate both the aspects, the cable lengths depending directly on 
the cable tensions according to the cable sagging model de-
scribed in Eq. (1). Furthermore, the slope of catenary at the 
last node Bi can be obtained from Eq. (1) as follows:  
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where γi is the angle between the tangent and the horizontal 
plane at the last node of the catenary.  

It is noted from Eq. (2) that the slope of a catenary is rel-
evant to the parameter βi being a function of the horizontal 
component Hi of each cable tension. Thus the profiles of the 
cable catenaries, as mentioned before, are completely cou-
pled to the forces applied to the cables, and therefore, these 
variables (cable lengths and cable tensions) have to be de-
termined at the same time. 

2.2. Kinetostatic Model of a Cable-Driven Parallel Robot 

In order to make a cable-driven parallel robot completely 
controllable, it must be actuated redundantly due to the uni-
lateral constraints nature of cables. The cable-driven parallel 
robot, as shown in Fig. (2), consists mainly of a moving plat-
form connected to the fixed pulleys by the cables and the 
fixed base. Each pulley can be attached to the ceiling of a 
mast. As a result, the moving platform moves freely in every 
direction because the cables can be shortened and lengthened 
controlled by servo motors mounted to the fixed base.  

When the cable sags are non-negligible, the cable tension 
distributions of cable-driven parallel robot become quite 
different from the ones with straight lines. The cable tension 
distributions must be solved as a problem solving the statics 
and the kinematics simultaneously rather than as a pure stat-
ics problem. In this section, the cable tension distributions 
for a cable-driven parallel robot are posed, and a solution 
method is presented. The cable tension distributions can be 
regarded as an iterative optimization problem. With regard to 
the completely restrained cable-driven parallel robots, the 
equations for this type of system consist of a set of statics 
equations and a set of kinematic-static equations. The posi-
tion and orientation of the end-effector are specified, and 
therefore, the unknown variables are the cable lengths and 
the cable tensions. Thus, for a manipulator with m cables, 
there will be a total of 2m unknowns which are cable length  
 

and cable tension for each cable. And furthermore, there are 
m kinematic-static equations which come directly from Eq. 
(1), while there are n equations for static equilibrium, and 
they can be written as:  
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(3) 

where Ri is the rotation matrix that maps the force vector Ti 
from the cable frame to the fixed/manipulator frame; bi is the 
position vector of the end point of the ith cable attached to 
the platform, and expressed in the frame attached to the cen-
ter of gravity of the platform; and g is the acceleration of 
gravity.  

Combining with the Eqs. (1) and (2), Eq. (3) can be writ-
ten in the following matrix form:  

JH=W  (4) 

where J is the structure matrix associated the driving cable; 
H=[H1, H2, ···, Hm]T is the vector describing horizontal com-
ponents of all the cable tensions at their last node; W=fg+We, 
fg=[0 0 mg 0 0 0]T∈R6×1 in which m is the mass of the mov-
ing platform, and We=[Fe Me]T∈R6×1 is the external wrench.  

It should be noted that the structure matrix J is relevant 
to the vector H through its dependency in tanγi being a func-
tion of the horizontal component Hi of each cable tension. 
Thus, Eq. (4), formally, seems to be a linear equation but it is 
not substantially, since the relationship between the coeffi-
cient matrix J and the vector H is not straightforward. Actu-
ally, Eq. (4) is a non-linear equation in terms of the vector H 
describing horizontal components of all the cable tensions 
because the structure matrix J is relevant to the vector H, in 
general, which is solved using an iterative algorithm employ-
ing the cable tensions and lengths obtained by massless 
straight line model as the initial iterative values here. And in 
more detail, the iterative algorithm can be shown as follows: 
Firstly, giving the end-effector platform position Xk in the 
workspace (the kth platform position is denoted by the sub-
script k), the initial cable tensions, H(0), can be obtained with 
the massless straight line model, while the slope of catenary 
at the first node, tanγi(0), can be also obtained using Eq. (2). 
Secondly, substituting tanγi(0)

 into the structure matrix J of 
the equation (4), the new vector H(1) can be calculated using 
the equation (4). Then, substituting the new vector H(1) into 
Eq. (2), the associated slope of cable catenary, tanγi(1), can be 
obtained. And moreover, substituting tanγi(1)

 into the equa-
tion (4), the new vector H(2) can be calculated using the 
equation (4). Repeating the process until the vector H(j) satis-
fies the convergence condition ( ( )1( ) jj α−− ≤H H , α is the 

iterative stop threshold). The vector H(j) is considered to be 
the solution to the horizontal components of the cable ten-
sions.  

There may be a group of the vectors satisfying the above 
convergence condition because the number of cables exceeds  
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the degree of freedom of the platform for a completely re-
strained cable-driven parallel robot. Thus, an optimization 
algorithm is required to obtain a unique solution to the vector 
H which can confirm that the cable-driven parallel robot 
operation as stable as possible.  

3. OPTIMAL MODEL OF THE CABLE TENSION 
DISTRIBUTION 

3.1. Cable Tension Equation 

Because the cable-driven parallel robots are redundant 
systems having more actuators than the task dimensions, 
infinitely many solutions for the distribution of cable ten-
sions can be obtained for a given external load. One of the 
issues in the operation of the cable-driven parallel robots is 
resolving the actuation redundancy and determining the op-
timum cable forces distribution. Therefore, Eq. (4) from 
which the vector H can be obtained may have infinite solu-
tions. In addition, the vector H(j) satisfying the convergence 
condition is obtained with the iterative algorithm above, and 
furthermore, the structure matrix J is constant values substi-
tuting the vector H(j) into the equation (4). And therefore, 
with the introduction of Moore-Penrose generalized inverse 
matrix (J(H(j)))+ of the structure matrix J(H(j)), the vector H 
can be expressed as follows [2, 9]:  

H=Hs+Hh  (5) 

where Hs=(J(H(j)))+W is the special solution to the vector H; 
Hh =N(J(H(j))λ is the homogeneous solution to the vector H; 
H(j) is the solution to the horizontal components of the cable 
tensions using the iterative algorithm;λ is an arbitrary scalar.  

The cable tension of cable i at the cable node Bi is ob-
tained from the following equation:  

( )21 tan 1,2,i i iT H i mγ= + = L   (6) 

In order to ensure the normal work of the cable-driven 
parallel robot, the tension vector T must satisfy the following 
condition:  

Ts,min≤T≤Ts,max  (7) 

where T=[T1, T2, ···, Tm]T∈ is the vector consisting of all ca-
ble tensions; the lower bound of the cable tension 
Ts,min=[T1,min, T2,min, ···, Tm,min ]T

 is required to keep cables 
taut; while upper bound of the cable tension Ts,max=[T1,max, 
T2,max, ···, Tm,max]T

 is limited by the output torques of the servo 
motors and the maximum tension the cable can withstand 
without breaking.  

3.2. Optimal Model of the Cable Tension Distribution 

It can be shown from Eq. (5) that the homogeneous solu-
tion Hh is infinite due to the arbitrariness of λ. Therefore, in 
order to obtain a unique solution, the minimum variance hav-
ing the least differences among all cable tensions and the 
arithmetic mean value of them is used to optimize while us-
ing Eq. (5) and (7) as the constraint conditions. Mathemati-
cally, the determination of the vector H can be formulated as 
follows:  
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where E(H)=(H1+H2+···+Hm)/m is the arithmetic mean value 
of the vector H.  

As mentioned above, particular importance will be at-
tached to the fact that Eq. (4) is a highly non-linear equation. 
In order to solve the nonlinear equation, we present an itera-
tive optimization algorithm to solve the vector H, as men-
tioned previously, which employs the cable tensions and 
lengths obtained by massless straight line model as the initial 
iterative values. Here, the iterative optimization algorithm 
can be summarized as follows:  

1. Input the end-effector platform position Xk in the 
workspace and the cable density ρ, and obtain li, ci 
and θi (θi is the angle between xc axis of ocxczc and X 
axis of OXYZ; the ith cable is denoted by the subscript 
i); k=1 (the kth end-effector platform position is de-
noted by the subscript k).  

2. Calculate the initial value tanγi(0) =ci/li , and obtain the 
initial value J(0)=[J(0)

1, J(0)
2 ,···, J(0)

m]T; and then, calcu-
late the initial value of the vector H using Eq. (4), 
H(0)=(J(0))+W; j=1 (the jth iterative step vector H is 
denoted by the superscript j).  

3. Obtain the associated slope of cable catenary tanγi(j) 
by substituting the vector H(j-1) into Eq. (2).  

4. Substitute tanγi(j) into the equation (4) and update the 
new structure matrix J(j) , and then calculate the new 
vector H(j) using the equation (4), H(j)=(J(j))+W.  

5. Judge that the predetermined condition 

   
H ( j+1) ! H j( ) " #  (α is the iterative stop threshold) is 

satisfied or not. If it is, stop the iterative process and 
record the vector H(j) satisfying the nonlinear equation 
(4). If not, go to the 4th step, and repeat the process 
from the steps (3)-(5), j=j+1.  

6. Substitute the vector H(j) satisfying the nonlinear 
equation (4) into the right of Eq. (5), obtain 
(J(H(j)))+W+N(J(H(j))λ, and then, calculate the opti-
mized vector Ho,k (the optimized vector is denoted by 
the subscript o) according to the optimal model Eq. 
(8).  

7. Calculate the cable tension of the ith cable Ti substi-
tuting the optimal vector Ho,k

 into Eq. (6).  
8. Judge whether the camera platform position Xk is the 

last position. If it does not, go to step (1) and solve 
the cable tensions of the next position, k=k+1; If it 
does, record and output the optimized vector of H and 
the cable tension Ti of the ith cable, stop the calcula-
tion.  

It is noted that, observing the iterative optimization algo-
rithm above, the steps (1)-(5) are employed to obtain the  
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solution of the cable tensions using an iterative method, in 
which the steps (1)-(2) are used to calculate the initial values 
for the iteration process. And moreover, the structure matrix 
J in Eq. (4) is determined by substituting the solution of the 
cable tensions using the iterative method into the left of Eq. 
(3), and therefore, Eq. (4) can be considered as a linear equa-
tion. The vector H, in this case, can be optimized because 
Eq. (4) is an indeterminate equation having infinitely many 
solutions. While the steps (6)-(7) are used to obtain the op-
timized solution to the vector H at the present end-effector 
platform position. From above, it can be seen that there are 
two major steps to obtain the horizontal components of the 
cable tensions here. The first one is the step being used to 
solve the nonlinear equation (4) with an iterative algorithm 
employing the cable tensions and lengths obtained by mass-
less straight line model as the initial iterative values, and 
therefore, the solution of the equation (4) can be obtained. 
And the other one is the optimization of the cable tension 
solutions obtained by the first step, and furthermore, the op-
timized solution of the cable tensions can be received. Gen-
erally speaking, the horizontal components of the cable ten-
sions, H, can be obtained with the iterative algorithm in the 
first step without the optimization of it. However, the opti-
mization procedure with which the optimized vector H can 
be obtained, in our manuscript, is required to confirm that 
the cable-driven parallel robot operations as stable as possi-
ble. It should be pointed that the optimized vector Ho,k, in 
general, can satisfy the predetermined condition  

(
   

Ho,k ! H j( ) " # , δ is a very small quantity), particularly in 

instances where the cable-driven parallel robot locates at the 
symmetric geometric position, and therefore satisfy the non-
linear equation (4).  

In the context of the design of large workspace cable-
driven parallel robots, besides the cable tension distributions, 
one of the main aspects to take into account is the cable ca-
pabilities. Actually, the cables have to be able to support the 
maximal cable tension all over the desired workspace. The 
maximal tension is also involved in the proper determination 
of the cable. The cables employed here can be chosen direct-
ly from the maximal tension. In fact, for most cables, the 
maximal supported tension has to satisfy the equation (7). 
When the cable model with non-negligible cable mass is 
used, the determination of the appropriate cable can be done 
by determining the maximal tension that can occur in the 
cable over the whole workspace.  

As far as I am concerned, when cable mass is taken into 
account, the cable sags appear. Indeed, contrary to straight 
cables, the cable tensions with non-negligible masses are not 
constant along the profile. Kozak [7] has shown that the ca-
ble sags have effects on the positioning of the platform. But, 
the cable tensions are also significantly affected by the mass 
of the cables [1]. Actually, the actuators and the cables have 
to support a part of the platform mass, but also the mass (or a 
part of it) of the hanging cable. Thus, while taking cable 
mass into account, the maximal tension Timax will be higher 
than with the simple model of cable, because:  

 

( )22
imax i i iT H V gLρ= + −   (9) 

It is noted that Vi , in the paper, is consider to be negative 
as shown in Fig. (1). The problem here is that the cable ten-
sions in the cables are directly dependent on the cable mass-
es and meanwhile have to satisfy the equation (7). Therefore, 
when obtaining the cable tensions with the presented itera-
tive optimization algorithm, the maximal tension Timax is re-
quired to satisfy the equation (7), and furthermore, the ob-
tained cable tensions, in the case, are rational.  

4. SIMULATION EXAMPLES  

4.1. Description of the Cable-Driven Parallel Robot Stud-
ied 

The cable-driven parallel robot considered in the study is 
a point mass one, that is to say, a 4 cables / 3 DOF spatial 
robot which is used to realize the aerial panoramic photo-
graphing [9]. In more detail, the 3 DOF are the three transla-
tions along the x, y and z axes. The cable-driven parallel ro-
bot considered here is called camera robot. The 4 cable exit 
points are located at the 4 extremities of a rectangle. And the 
density of the cable used here is 0.188Kg/m. The end effec-
tor mass has been chosen to be 50Kg. The boundary condi-
tions of the cable tensions are presented as follows: 
Ts,max=[10000 10000 10000 10000]T N, Ts,min=[10 10 10 
10]T N. The dimensions of the structure have been chosen to 
allow us to see the effect of cable mass deliberately. Thus, 
the positions of the exit points of each cable, expressed in the 
fixed frame, are given in Table 1. The dimensions of the 
structure have been chosen to allow us to see the effect of 
cable mass deliberately.  

A spatial sloping straight line is selected to depict the 
significant effects of the cable sags on the tensions in the 
cables. It should be pointed that the starting position of the 
trajectory is (25, 25, 5)T m; while the ending position of the 
trajectory is (65, 53, 18)T m. It takes ten seconds from the 
starting position to the ending position of the trajectory 
above.  

In order to better illustrate and understand the significant 
effects of cable sags on the cable tensions, the relative differ-
ences denoted by ε between the cable tensions with the cate-
nary model and the ones with the massless straight line mod-
el can be used to assess the divergences of the cable tensions, 
and it can be expressed as follows:  

100% 1,2,3,4
c s

i i
s
i

T -Tε=    i =
T

×   (10) 

where Tc
i is the tension in the cable i at cable end Bi obtained 

by the catenary model and Ts
i the tension in the cable i ob-

tained by the massless straight line model.  
And furthermore, the relative differences of the cable 

tensions denoted by ω between the first node and the last 
node with the catenary model can be used to evaluate the 
divergences of the cable tensions at the two nodes of the 
cable catenary, and it can be expressed as follows:  
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Table 1. Exit point positions. 

 x (m) y (m) z (m) 

Position of 1# pulley 0 0 23 

Position of 2# pulley 100 0 23 

Position of 3# pulley 100 90 23 

Position of 4# pulley  0 90 23 
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(a) Tensions with the straight line model 
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(b) Tensions with the catenary model 
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Fig. (3). Cable tensions along the sloping straight line with the two models and their Relative differences ε. 
 

100% 1,2,3,4imax i

i

T -T=    i =
T

ω ×   (11) 

where Timax is the tension in the cable i at the last node (the 4 
cable exit points) obtained by the catenary model and Ti the 
tension in the cable i at the last node Bi obtained by the cate-
nary model.  
 

4.2. Results and Discussion 

As shown in Fig. (3), the cable tensions of the four cables 
along the spatial sloping straight line with the catenary and 
straight line models are shown to demonstrate the significant 
effects of cable sags on the cable tensions. As it is clearly 
seen in this figure, the cable tensions computed by the two 
models, indeed, are quite different. It should be pointed in  
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the Fig. (3a) and (3b) that the cable tensions obtained by the 
catenary model are about 2 times larger than the ones by the 
straight line model, and this is because the non-negligible 
cable mass has an important effect on the cable tensions. 
Particular emphasis was placed on the cable tensions at the 
starting and the ending position, and it is perfectly clear that 
the cable tension at the ending position is bigger than the one 
at the starting position this is because the elevation at the 
ending position is higher than the one at the starting position. 
Indeed, increasing the elevation leads to an increase in the 
angles between the tensions Ti and their vertical components 
Vi, so the cable tensions must increase to withstand the 
weights of the cables and the platform. Consequently, the 
tensions of the four cables at the ending point are larger than 
the ones at the starting point. In addition, the cable tensions, 
without exception, tend to increase with increasing height 
along z-direction using the two models. 

Further enhancing the attraction to the relative difference, 
it is clearly seen from Fig. (3c) that the maximal relative 
difference is up to 186%. It can be seen that the relative dif-
ferences of the cable tensions from the point A (x=48.96, 
y=41.772, z=12.787) to point B (x=58.96, y=48.772, 
z=16.037) are same in the four cables, and this is because 
these platform positions locate at the geometric symmetrical 
position of the workspace, and therefore, there is a same ef-
fect of the cable sags on the cable tensions. Note that pre-
sented Fig. (3c) the relative differences of cable tensions in 
cable 1 and cable 3 at the ending position are less than the  
 

 

one at the starting position, while are more in cable 2 and 
cable 4, this is because the starting position of the sloping 
straight line is away from the first and third towers, and 
therefore, there is an obvious effect of the cable sags on the 
cable tensions. 

Referring in Fig. (4), the maximal cable tensions and the 
relative differences ω along the spatial sloping straight line 
with the catenary model are shown to demonstrate the differ-
ence of cable tensions along the profile of the cable catenary. 
It can be seen that the maximal cable tensions along the pro-
file of the cable catenary are more than the ones shown in 
Fig. (3b). And furthermore, it is clear from Fig. (4b) that the 
maximal relative difference ω is about 26%. Thus, taking the 
maximal cable tensions of the cable catenary model into 
consider it is required to confirm that the cables do not ex-
ceed the restriction of the cable tensions.  

From the results it can be concluded that the tension solu-
tions obtained from the proposed algorithm are continuous 
and smooth. According to these results, cable tensions seem 
to be the parameter that is mostly affected by the non-
negligible cable mass model. It can be noticed that the mean 
difference between the tensions in the two models is about 
155% more for the model including cable mass. Using this 
model turns out to be essential to an appropriate design of 
the robot, i.e. to the choice of the motors able to supply 
enough torques, but also to the dimensioning of the structure 
to prevent from deformations, or breakdown.  
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(a) Maximal tensions with the catenary model 
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Fig. (4). Cable tensions along the sloping straight line with the two models. 
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CONCLUSION 

This paper addresses a main issue related to the cable-
driven parallel robots: the computation of the optimal cable 
tensions for a cable-driven parallel robot due to the sags in 
its cables. The process for solving the problem begins from 
the basic analysis of a single cable, which, in turn, is based 
on the static displacement of that cable. A cable-driven par-
allel robot has infinite tension solutions for a particular pose 
due to actuation redundancy. In this paper, a tension optimi-
zation algorithm, using an iterative optimization method, is 
proposed to obtain the optimal cable tensions. This research 
can readily be applied to other manipulators for which cable 
sag is significant to better analyze those manipulators. Fur-
thermore, this research can potentially be extended to ad-
dress other important issues, such as kinematics problem to 
account for cable sags and incorporating cable-sags predic-
tions into the manipulator design process. 
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