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Abstract: Many applications require fast data transfer over high speed and long distance networks. Compound TCP 
(CTCP) is a novel congestion control algorithm for high-speed and long delay networks. This paper develops a discrete 
time dynamic feedback model of a congestion control system with CTCP under random early detection (RED). We find 
that periodic doubling bifurcation occurs when varying the RED control parameters or other system parameters. The fixed 
point of congestion control system and the critical value of parameters are determined by theoretical analysis. Moreover, 
the result of theoretical analysis is proved and bifurcation and chaotic phenomena are numerically studied by using bifur-
cation diagrams and Lyapunov Exponent. 
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1. INTRODUCTION 
 TCP (Transmission Control Protocol) algorithms have 

been widely used in network for congestion control. TCP can 
provide reliable data transmission with embedded congestion 
control algorithm which can effectively adjust the sending 
rate according to the available bandwidth of the network [1]. 

 However, many applications require fast data transfer 
over high speed and long distance networks. The initial TCP 
versions developed for cable networks were not adequate 
any more. Several improved TCP algorithms have been pro-
posed in recent years. One class of approaches is loss-based 
which use packet-loss as the only indication of congestion. 
These algorithms can effectively improve the link utilization 
while unable to reach RTT fairness. Some typical proposals 
such as HSTCP [2], STCP [3] and BIC-TCP [4] are of this 
kind. Another class is delay-based approaches whose con-
gestion decisions are RTT variation based. Some typical 
proposals include FAST TCP [5], Vegas [6] and BIC [7] 
which can improve the throughput in high-speed networks 
may not work well in a mixed environment with both delay-
based and loss-based flows.  

 Compound TCP, as a new congestion control protocol 
for high-speed and long delay networks, is a combination of 
both delay-based and loss-based congestion avoidance ap-
proach, is called CTCP. Specifically, a scalable delay-based 
component is added to the standard TCP Reno congestion 
avoidance algorithm [8]. The delay-based component can  
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efficiently use available bandwidth and react early to conges-
tion by sensing the changes in RTT due to its scalable in-
creasing law [9, 10]. When the congestion occurs, the delay-
based component will gracefully reduce the sending rate and 
meanwhile the loss-based component keeps the throughput 
of CTCP lower bounded by TCP Reno. Therefore, CTCP is a 
promising algorithm to achieve high link utilization while 
maintaining good RTT fairness and TCP fairness [11]. 

 In this article, we mainly focus on stability region of the 
system parameter and nonlinear dynamics of a simple net-
work which has only one bottleneck link with CTCP connec-
tions and a RED gateway. First, a deterministic nonlinear 
dynamical model of this congestion control system is intro-
duced. Then, by theoretical analysis, the fixed point and lin-
ear stability criterion of this system are derived. Moreover, 
adopting different RED parameters as bifurcation parame-
ters, the existence of period doubling bifurcation and chaotic 
behaviors is verified by bifurcation diagram and Lyapunov 
exponent. 

 The main contents of this article include the following 
aspects. Sect.2 presents the nonlinear discrete-time model 
used in the analysis. In Sect.3, the fixed point and period 
doubling bifurcation are analyzed. Sect.4 presents numerical 
examples illustrating the nonlinear dynamics in the model. 
Finally, conclusions are drawn in Sect.5. 

2. DYNAMIC MODEL FOR CTCP UNDER RED 

Consider a simple network where a single bottleneck link 
is shared by multiple connections. Assume that all connec-
tions are long-lived uniform CTCP connections with the 
same round-trip propagation delay, which is denoted by d 
second. The number of these connections is N and their 
packet size is M bit/packer. The capacity of the bottleneck 
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link is denoted by C bit/s. Similar to the description in Ref. 
[12], the congestion control feedback system is defined as 
follows. At period k, the RED controller at the router pro-
vides feedback signal kp (packet drop probability), which is a 
function of the average queue size kq  at period k. Due to the 
feedback delay of round trip time, the packet drop probabil-
ity kp at period k (k ≥ 1) determines the throughput of con-
nections and the queue size 1kq +  at period 1k + . 

 The queue size kq is used to compute the average queue 
size kq according to the exponential averaging rule. Then the 
average queue size kq is used to calculate the packet drop 
probability at period k. These can be expressed as follows: 
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where w is the exponential averaging weight that determines 
how fast the RED mechanism reacts to a time-varying load. 

 The RED control function 1( )kH q +  is given as: 
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where   qmin  and   qmax  are the lower and upper threshold val-

ues, and maxp is the drop probability when maxq q= . It has 
been shown that a CTCP connection provides the following 
stationary throughput [11]: 
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where R is average round trip time: 

qMR d
C

= +   (5) 

 Parameters of α,β and k are tunable to give out desirable 
stability, smoothness and responsiveness. 

 Because the aggregate throughput of connections cannot 
exceed link capacity, the steady-state packet drop probability
uP such that the bandwidth capacity constraint is satisfied as: 
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The following can then be obtained from Eq. (6): 

  

Pu =
NM

2Cd!
1

2"k (1" (1" # )1"k )

1" (1" # )
1"k
2"k

2" k

$

%

&
&
&

'

(

)
)
)

1"k
2"k

*

+

,
,
,
,

-

.

/
/
/
/

2"k

 (7) 

This is the smallest probability that results in a queue size 
of zero at the next period, i.e., 1 0kq + = ,if k up p> .The aver-
age queue size uq , which satisfies 1 0kq + = , if k uq q> ,is giv-
en by: 
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 Thus, if k up p<  , the queue size 1kq +  at period k+1 can 
be obtained from the following equation: 
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 From Eq. (9), it can be derived that:   
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 From Eq. (10), it can be seen that 1kq + is a strictly de-
creasing function of kp . Hence the largest packet drop prob-
ability lp  such that the queue size 1kq +  at period k+1 equals 
the buffer size B is given by: 
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The corresponding average queue size lq is: 

  
ql =

pl (qmax ! qmin )
qmax

   (12) 

 From above analysis, it can be derived that: 
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 From Eqs.(1)–(3) and Eq.(13), one can obtain the non-
linear one-order discrete-time dynamic model of CTCP un-
der RED:  
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3. FIXED POINT AND BIFURCATION 

3.1. Fixed Point of the System 

 To derive the fixed point of Eq. (14), the authors first 
denote 

1 ( , )k kq g q ρ+ =   (15)  

where !  is the system parameter such as exponential aver-
aging weight w. The fixed point of mapping g(*) is an aver-
age queue size *q such that * *( , )q g q ρ= .If the parameters 
are properly configured, the fixed point should remain be-
tween maxq and minq . Solving * *( , )q g q ρ= , one derives that 
the fixed point of the system is given as a solution to the 
following polynomial: 
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 For Eq.(16) is a transcendental equation, we use Matlab 
to calculate its numerical solution. 

3.2. Bifurcation Analysis 

 The linear stability of the fixed point *q can be worked 
out by the associated eigenvalue maxp . 
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Thus, the case is considered in which the linear stability 
criterion is just violated and a bifurcation occurs, which 
leads to oscillatory behavior of the system. To illustrate the 
existence of such bifurcation, one should choose a bifurca-
tion parameter. Several parameters of the system can be cho-
sen as bifurcation parameter, such as the exponential average 
weight w , the number of TCP connections N, the lower and 
upper threshold values minq and maxq , the propagation delay 
d and maxp . 

 First, one chooses the exponential average weightw  as 
bifurcation parameter. From Eq.(18), it is known that the 
eigenvalue is a linearly decreasing function of w , hence the 
critical value of w is a value with its eigenvalue given by 
Eq.(18) is 1− , and one derives that critical value of w is 
given as a solution to the following polynomial: 

  

wce
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 For Eq. (19) is a transcendental equation, we use Matlab 
to calculate its numerical solution. 

 When the exponential average weight is increased and 
exceeds the critical value, the fixed point becomes unstable 
and a period doubling bifurcation occurs. A period doubling 
bifurcation has two types: supercritical and subcritical. A 
supercritical bifurcation leads to a steady oscillatory behav-
ior near the fixed point while a subcritical bifurcation results 
in divergent oscillations. To determine the nature of the bi-
furcation, the second and the third derivatives of (*)g  are 
computed:  

   

!g
2 ( !qk ,")
! !q2

k q*

= # we(k # 3)
(2# k)2 (q* # qmin )

2k#5
2#k

 

(20)  

   

!g
3 ( !qk ,")
! !q3

k q*

= # we(k # 3)(2k #5)
(2# k)3 (q* # qmin )

3k#7
2#k

 

(21)  

the quantity: 
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determines the nature of the period doubling bifurcation [13]. 
A positive s indicates that the bifurcation is supercritical and 
a negative s implies a subcritical bifurcation. For Eq.(15), we 
can get 
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 It is shown that s  may change sign and thus result in a 
subcritical bifurcation if the parameters are not chosen  
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properly. To avoid any unexpected oscillations in router 
queues, this should be carefully noted when designing a sys-
tem. 

4. NUMERICAL EXAMPLES 

 This section presents numerical examples illustrating the 
nonlinear dynamics in the model. The stability of the system 
is numerically studied and the analysis is validated using 
bifurcation diagrams. A bifurcation diagram shows qualita-
tive changes in the nature or the number of fixed points of a 
dynamic system with varied parameters. 

4.1. Exponential Averaging Weight 

 First, the effect of exponential averaging weight w is 
studied. The remaining system parameters are set as follows: 

  qmax = 750 packets  

  qmin = 250 packets  

max 0.1p =  

15 /C Mbit s=  

3750 B packets=  

4000 M bit=  

0.1 d s=  

1N =  

and we choose 0.75k = ,  1 / 8α =  and  1/ 2β = . 

 Second, from theoretical analysis in Sect. 3, it is drawn 

that the fixed point of the system 
*q = 338.3, the critical val-

ue of w  is 0.269cw =  and 0.000245s =  at cw . The  
 

 

bifurcation diagram is plotted in Fig. (1) with w  varying 
from 0.26 to 0.40. From Fig. (1), one can see that for  

cw w< , the system is stable and these plots have a fixed 
point. When cw w> , the system loses its stability and a su-
percritical period doubling bifurcation emerges as 0s > . 
This is the initial indication of oscillatory behavior in the 
system caused by inherent nonlinearity. Increasing w results 
in more complex behavior such as chaotic phenomenon. 
Since a positive Lyapunov exponent indicates the presence 
of chaos [14], the Lyapunov exponent for the bifurcation 
scenario is also plotted in Fig. (2). We can see that in the 
chaos region there exist a large number of periodic orbits. 

4.2. Drop Probability 

 In this subsection, how maxp  affects system stability and 
behavior is studied. We set 0.28w = and change the value of 

maxp  while other parameters are kept same as those in above 
subsection. The fixed points of the system with max p vary-
ing from 0 to 0.18 are illustrated in Fig. (3), from which it 
can be seen that similar nonlinear behavior is exhibited in 
this case as well. However, the plot of fixed point before the 
first period doubling bifurcation is not a straight line as that 
in Fig. (1) because the fixed point is varying with changing 
maxp . 

4.3. Lower and Upper Threshold 

 In this subsection, we change the lower and upper 
threshold and investigate its effect on the system. The lower 
threshold minq  is varied from 150 packet to 450 packet and 

the upper threshold   qmax = qmin +500  packets are varied 
while other parameters are fixed. The bifurcation diagram of  
  

 
Fig. (1). Bifurcation diagram of average queue size with respect to the exponential averaging weight. 
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Fig. (2). Lyapunov exponent for average queue size with respect to the exponential averaging weight. 

 

 

Fig. (3). Bifurcation diagram of average queue size with  pmax . 

 

 
Fig. (4). Bifurcation diagram of average queue size with respect to the lower and upper threshold values. 
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Fig. (5). Bifurcation diagram of average queue size with respect to TCP connections. 

 

 

Fig. (6). Bifurcation diagram of average queue size with respect to propagation delay. 
 

average queue size is illustrated in Fig. (4) from which it can 
be seen that similar nonlinear behavior is exhibited in this 
case as well. Similarly, the plot of fixed point before the first 
period doubling bifurcation is not a straight line. 

4.4. Number of Connections 

 Unlike the parameter studied above, the number of TCP 
connections N and the propagation delay of the networks 
cannot be controlled by a network manager. Knowing the 
effect of the number of TCP connections N and the propaga-
tion delay on system stability and behaviors is important for 
setting the RED control parameters in practice. This subsec-
tion studies cover the effect of the number of CTCP connec-
tions on the system and in next subsection the effect of the 
propagation delay of networks is studied. 

 Here, the number of CTCP connections is varied from 
0.5 to 2. The bifurcation diagram in Fig. (5) shows that the  
 

system stabilizes as the number of connections increases. 
This result agrees with the general result that a larger number 
of users tend to stabilize the system [9, 10]. 

4.5. Propagation Delay 

 Similarly, the bifurcation diagram is plotted in Fig. (6) 
with respect to round trip propagation delay. The propaga-
tion delay d is varied from 0.08s to 0.13s. 

CONCLUSION 

 In this paper, we mainly deal with the nonlinear dynam-
ics of congestion control system in CTCP connections with 
RED gateway. First, a one-order discrete time model is de-
veloped for this system. Then, the fixed point of the system 
is determined and the linear stability criterion is obtained. 
Moreover, some nonlinear behaviors such as chaotic  
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phenomena and periodic doubling bifurcation are illustrated 
by using bifurcation diagrams and Lyapunov exponent. In 
the future, we may try to employ some control strategies 
such as hybrid control method [15] for controlling bifurca-
tion and chaos in this model in order to extend the stable 
parameter range of TCP/RED. 
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