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Abstract: The Parameter model analysis algorithms include autoregressive (AR) model, moving average (MA) and auto-
regressive moving average (ARMA) model The existing TFAR model is improved, the new fractional low order time-
frequency autoregressive(FLO-TFAR) model and the concept of generalized TF-Yule-Walker equation are proposed, 
fractional low-order covariance is instead of autocorrelation in the model, The parameter estimation of the model is de-
rived, spectrum estimation algorithm based on the FLO-TFAR model is presented, and the steps of the algorithm are 
summarized. The detailed comparison of the FLO-TFAR SSα model based on fractional low order moment(FLOM) and 
the Gaussian TFAR model based on autocorrelation. Simulation show that the proposed FLO-TFAR algorithm can carry 
out high-resolution spectrum estimation, provided better performance than the TFAR algorithm, and is robust. 
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1. INTRODUCTION 

 AR model parameter estimation is the most simple, and 
the MA and ARMA model can be represented by an infinite 
order AR model, hence, the AR model has been widely used 
in stationary random signal modeling, such as radar and 
communication, etc. A lot of random signals is non-
stationary process in signal processing, therefore, non-
stationary process TF-ARMA model concept is proposed in 
[1, 2], Michael put forward the time-frequency AR(TFAR) 
non-stationary process model in the literature [3], and the 
parameter estimation method based on the TF - Yule - Walk-
er equation is given, the TFAR model can accomplish the 
signal’s high resolution time-frequency spectrum estimation 
without the cross terms. The improved TFAR model meth-
ods have been proposed, such as the LS-TFAR TFAR model 
parameter estimation algorithm and ML-TFAR model algo-
rithm [4], vector time-frequency AR model algorithm 
(VTFAR) [5], in some special occasions, such as biomedical 
signal, meteorological data, stock price etc, random signal or 
noise process often have strong pulse characteristics, the 
variance of the process is no finite, they can be described by 
α  stable distribution [6-8]. 

 The larger error is produced if the AR model based on 
Gaussian is used in α  stable distribution environment, 
therefore, the AR SSα  parameter estimation is proposed 
based on the fractional lower order moment (FLOM) in the 
literature [9, 10], and the corresponding α  spectrum estima-
tion which can realize the frequency spectrum estimation 
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under α  stable distribution environment is proposed. The 
new improved AR model and ARMA model are put forward 
using the fractional lower order covariance (FLOC) replace 
FLOM in [11, 12], realize the frequency spectrum estimation 
of the higher precision and resolution.  
 The α  spectrum estimation only can realize the frequen-
cy estimation of the stationary SSα  process, and in view of 
the time-varying non-stationary process, TFAR non-
stationary Gaussian excitation linear AR model method in 
literature [9-12] will no longer be applicable, hence, tradi-
tional Cohen class time-frequency distribution is improved 
based on the fractional lower order moment, a fractional 
lower order Cohen class time-frequency distribution is got 
[13, 14], use fractional low-order covariance to replace cor-
relation in the model, and put forward the non-stationary 
process fractional lower order time-frequency autoregressive 
(FLO-TFAR) model, the generalized TF-Yule-Walker equa-
tion is defined to compute the parameter estimation of the 
FLO-TFAR model. The FLO-TFAR model time-frequency 
spectrum estimation is defined, it can realize model time-
frequency distribution of the observation signals. Computer 
simulation shows that the proposed FLO-TFAR model can 
realize linear approximation of non-stationary SSα  pro-
cess, and can realize high-resolution frequency estimation, it 
has better performance than the existing TFAR model algo-
rithm and fractional lower order Cohen class time-frequency 
distribution and has a certain toughness. 

2. STABLE DISTRIBUTION 

A. α  Stable Distribution 

 α  stable distribution is a kind of generalized Gaussian 
distribution, the process is not limited in variance and their 
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probability density function has a serious tail, its characteris-
tic function can be described as [6-8]. 

  
!(t) = exp jµt "# t

$
[1+ j%sign(t)& (' ,$ )]{ }           (1) 

 The time-domain waveform of SSα  stable distribution 
are shown in (Fig. 1), its robability density function(PDF) 
are shown in (Fig. 2). 

 
α = 0.5 

Fig. (1). Time-domain waveform of  S!S  stable distribution under 
α = 0.5, 1.0, 1.5 and 2.0 

 (Fig. 3) is variance waveforms of  S!S  stable distribu-
tion with successively increase of sample numbers with α = 
0.5, 1.0, 1.5 and 2.0. The result show that variance is not 
limited when the values of α  belong to  0 <! < 2 , vari-
ance is convergent when ! = 2 (Gaussian distribution), 
where  ! = 2" 2 =2（ ! = 1）. 

 
Fig. (2). PDF of SSα  stable distribution in different alpha (α ) 

 
Fig. (3). Variance of SSα  stable distribution with successively 
increase of sample numbers in different alpha(α ). 

B. Factional Lower Order Covariation 

 The covariance of SSα  distribution is not exist because 
its variance is not limited. Hence, Covariation concept is put 
forward by Miller in 1978, it is similar to the covariance of 
Gaussian random process. Covariation of two SSα  distri-
bution random variables X  and Y  is defined as 

  
[X ,Y ]! = xy<!"1>

s
# µ(ds)  ,  1<! " 2           (2) 

Where S denotes the unit circle, < >g  denotes the operation 

  z
<!> = z

!
sign(z) , the covariation coefficient of X  and 

Y is defined as  

  
!XY =

[X ,Y ]"
[Y ,Y ]"

             (3) 

 If the dispersion coefficient of Y  is yγ , the covariation 
and covariation coefficient can be written as  

  

[X ,Y ]! = E( XY <p"1> )

E( Y
p
)

# y
 ,   1! p <" ! 2            (4) 

  

!XY = E( XY <p"1> )

E( Y
p
)

 ,   1! p <" ! 2            (5) 

 According to the definition of covariation coefficient, the 
covariation coefficient of a real observation sequence ( )X n
( 0,1, )n N= K  can be defined as: 

1( ( ) ( ) )( )
( ( ) )

p

p
E X n X n mm
E X n m

λ
< − >+=

+  , 1 2p α≤ < ≤           (6) 
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!̂(m) =
X (n) X (n+ m)

p"1
sign[X (n+ m)]

m=1

N

#

X (n+ m)
p

m=1

N

#
,  1! p <" ! 2   (7) 

Where, ˆ( )mλ  is the approximate estimation of ( )mλ . 
Compared with (6), a more simplified fractional lower order 
moments method is used in array signal processing, it can be 
expressed as: 

  !FLOM (m) = E( X (n)X (n+ m)<p"1> )  ,   1! p <" ! 2       (8) 
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Where,   L1 = max(0,!m) ,   L2 = min(N ! m, N ) . 

C. Fractioanl Lower Order Covariace 

 Because the fractional lower order covariation and frac-
tional lower order moments provide α  for 1 2α< ≤  and 
the range from 0 to 1 is not defined, hence, the fractional 
lower order covariace (FLOC) is given it can provide α  for 
0 2α< ≤ . The fractional lower order auto-
covariace(FLOAC) of N pairs of observations ( )X n  

( 0,1, )n N= K  based on the definition of FLOC can be 
defined as: 

{ }( ) ( ) ( )a b
dR m E X n X n m< > < >= + , for 0 / 2a α≤ < , 

0 / 2b α≤ <             (10) 

Where 0 2α< ≤ , if   X (n)  is real, the FLOAC is estimat-

ed by the sample FLOAC   R̂d (m) . 

2
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  (11) 

 And if ( )X n  is complex, the FLOAC is estimated by the 

sample FLOAC   R̂d (m)  

2
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    (12) 

Where, 1 max(0, )L m= − , 2 min( , )L N m N= − , ∗  denotes 
the conjugate operation. 

3. THE FLO-TFAR TIME-FREQUENCY ESTIMA-
TION METHOD 

A. The Non-stationary S Sα  Process TFAR Model 

 A stationary AR process x[n] can be defined by 

)(])[(][][][
11

nenxaneinxanx i
M

i
i

M

i
i +Ψ−=+−−= ∑∑

==         (13) 

Where ia  is the AR model parameters, M is the AR model 

order, )(ne  is stationary independent identically distribut-

ed(I.I.D)Gaussian process ][])[( inxnxi −=Ψ ，for exam-

ple ]1[])[( 1 −=Ψ nxnx . Because a lot of signals are non-
stationary in real-world signal processing, the type (13) is 
improved and a non-stationary AR process x[n] is defined by  

  
x[n] = ! ai

i=1

M

" [n]x[n! i]+ e[n] = ! ai
i=1

M

" [n](# ix)[n]+ e(n)        (14) 

 A new non-stationary TFAR process x[n] is defined by 
[4, 5]  
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Where
  
ai[n] = ai,l

l=!L

L

" e
j 2#

N
nl ,  (!

l x)[n] = e
j
2"
N

nl
x[n] , lia ,  is the TFAR 

model extension parameters, M and L  is the model order, 
among M  is the order in time domain and L  is the order in 
frequency domain. When 0=L , the TFAR model will de-
generate into the AR model. Because ( )e n  is a non-
stationary process and it’s variance is time-varying, it can be 
defined as 

nl
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 According to the type (14),(15) method, we also defines a 
time-frequency non-stationary SSα  process TFAR model as 
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Where )(nU  is stationary SSα  distribution process, accord-
ing to the type (16), we define the dispersion coefficient of 
stationary SSα  process as 
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           (18) 

 The generalized TF-Yule-Walker equations and parame-
ter estimation 

 When the traditional Yule - Walker equations is solved, 
the TFAR model coefficient is got, we can also compute the 
generalized TF-Yule-Walker equations to get TFAR model 
parameters lia ,  for non-stationary SSα  process, We multi-

ply (17) by ][1 inX P ′−>−<  and take expectation, This yields 

],[],[],[ ,

2

1
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Where p
pE >=<>−<

21
1

21 ,}{ ηηηη （ 21 ≤<< αp ） is p  

order covariance of  !1,!2
 [6]， *1 ηηη ⋅= −>< pP , 

{ } { }][][][][][],[ 21 inXinXnXEinXnXEinC PP
X −−=−= ∗−Δ

>−<
Δ

 is the auto-covariance function of the ][nX ,
{ } { }][][][][][],[ 21

, inXinXnUEinXnUEinC PP
XU −⋅−=−= ∗−Δ

>−<
Δ  is 

the cross- covariance function of the ][nX  and ][nU . * 
indicate conjugate,   !

"<P> = (!*)<P> = (!<P> )* , 

 Because the   X[n]  and   U[n]  is independent each other, 
type (19) can be simplified as 
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 We assume the observed value ][nX  is ]1,0[ −N , both 
sides of type (20) yields is taken the length-N discrete Fouri-
er transform(DFT) 
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 We call (21) equations for the generalized TF - Yule - 
Walker equations, when 2=p , it degenerate into the TF - 
Yule - Walker equations of the non-stationary Gaussian pro-
cess. (21) include   (2L+1)M  separated equations and the 

solved parameters lia ′′,  are   (2L+1)M , so, the model coeffi-

cient lia ′′,  can be got by solving the equations (21). 

 ],[ liXλ  is similar to the Cohen- class ambiguity func-
tion (AF) of the second order correlation function in the 
time-frequency distribution in type (22-23), where the auto-
correlation is replaced by the auto-covariance, we can name 
it for discrete fractional lower order ambiguity func-
tion(FLO-AF), and ],[ liXλ  is called fractional lower order 
expected ambiguity function(FLO - EAF), it indicate the 
statistical auto-covariance of the time shift i  and frequency 
shift l  in the time-frequency domain. In order to solve the 
model coefficients lia ′′,  of (21), we define according to the 
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and we get 

  !!" = #a  or    ! = " !#"1a                (26) 

Where λ~  is MLML )12()12( +×+  dimensional Toeplitz 
matrix, the length of θ  and a  is ML )12( + ，the coeffi-

cients lia ,  of the non-stationary SSα  process   X[n]  of 
FLO-TFAR model is got by solving (25) equations. Since 

22σγ = , when 0=i , let ][]0,[, nnC XU γ= , (19) can be 
written as 
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 The FLO-TFAR time-frequency spectrum estimation 

 The FLO-TFAR time-frequency spectrum estimation of a 
time-varying SSα  process ][nX  is defined as 
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Where if   X[n]  and the pumping signal   U[n]  are non-
stationary Gaussian distribution,  ! = 2" 2， 2=α , (28) will 
degenerate as  
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 This expression is the TFAR model time-frequency spec-
trum estimation [4], and (28) can be known as a generalized 
TFAR model time-frequency spectrum estimation. When 

][nX  and ][nU  are stationary SSα  process, (28) can be 
written as  

α
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π
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2
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 This expression is the AR α  spectrum of the stationary 
SSα  process in [11]. 

4. SIMULATION RESULTS 

A. Parameters Estimation Comparison 

 We defined a stationary whiten SSα  process )(nU  of 
length 256=N , A FLO-TFAR model is thought to gener-
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ate the non-stationary signal ][nx  by passing normalized 
stationary )(nU  through a time-varying IIR filter, we let 

3=M , 2=L ( 3,2,1=i ， 2,1,0,1,2 −−=l ), the filter 

parameters liA ,  is defined as  

T
1,2 2,2 3,2

1,1 2,1 3,1

1,0 2,0 3,0,

1, 1 2, 1 3, 1

1, 2 2, 2 3, 2

i l

a a a
a a a
a a aA
a a a
a a a

− − −

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦          (31) 

 

Fig. (4). The Observation signal [ ]x n  in time domain. 

 The ][nx  is a non-stationary process, it’s time-domain 
waveform diagram of the Real part and imaginary part are 
shown in (Fig. 4), it’s evolutionary time-frequency spectrum 
which is computed from the given TF parameters liA ,  is 
shown in (Fig. 5). 

 
Fig. (5). The evolutionary time-frequency spectrum of [ ]x n . 

 

 

 We assume that parameters estimation of TFAR model 
algorithm is lia ,ˆ  and FLO - TFAR model parameter estima-

tion is lia ,ˆ′ . We have done the following comparison in order 
to compare parameter estimation of two methods. Let 

3.1=α , 256=N , we estimate the model parameter by 
performing the TFAR model algorithm and FLO-TFAR 
model algorithm, After independent 20 times estimates is 
runned , the averaged parameters are shown in (Table 1). 

Table 1. The parameter estimation of TFAR model and FLO-
TFAR model. 

The Actual Parameters 
The Estimated 

Parameters Based 
on TFAR Model 

The Estimated 
Parameters Based 

on FLO-TFAR 
Model 

2,1a  0.2774 + 0.1809i 0.2399+ 0.1452i 0.2699 + 0.1779i 

1,1a  0.1762 + 0.1503i 0.1865+ 0.2122i 0.1508 + 0.1713i 

0,1a  -0.2140- 0.1005i -0.2558 - 0.0701i -0.2324 - 0.0839i 

1,1 −a  0.0744 + 0.1909i 0.0869 + 0.2195i 0.0693 + 0.2206i 

2,1 −a  0.1601 + 0.1545i 0.2263 + 0.1847i 0.1490 + 0.1438i 

2,2a  -0.0145+0.0404i -0.0441+ 0.1057i -0.0356 + 0.0534i 

1,2a  0.0565- 0.0074i 0.1344 - 0.0532i 0.0877 + 0.0149i 

0,2a  0.2221+ 0.1832i 0.2821 + 0.2277i 0.1868 + 0.2081i 

1,2 −a  0.0529 + 0.1038i 0.1480 + 0.1358i 0.0881 + 0.1169i 

2,2 −a  -0.0889- 0.0562i -0.1345 - 0.0560i -0.1071 - 0.0427i 

2,3a  0.0541 + 0.0448i 0.1069 + 0.0281i 0.0461 - 0.0421i 

1,3a  0.0807 - 0.0163i 0.0672 + 0.0224i 0.0337 - 0.0592i 

0,3a  -0.1783- 0.0609i -0.2319 - 0.0145i -0.2020 - 0.0526i 

1,3 −a  0.1087 - 0.0698i 0.1103 - 0.0191i 0.0603 - 0.0707i 

2,3 −a  -0.0116+0.0304i 0.0107 + 0.0506i -0.0105 + 0.0236i 

 
 (Table 1) shows that the parameter estimate of FLO - 
TFAR model algorithm is closer to the actual value, and 
TFAR model algorithm have greater deviation. In order to 
further compare the performance of the two algorithms under 
different characteristic index α , we measured them by the 
mean square error estimation precision, the parameter esti-
mation mean square error (MSE) of TFAR and FLO-TFAR 
model is defined respectively as MSE  and EMS ′  

∑∑
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 The mean square error curve is shown in (Fig. 6) when 
the characteristics of the process index α  (Alpha) change 
from 1.0 to 2.0. The simulation show that the TFAR model 
parameters error change from 1 db - 11 db, and the FLO-
TFAR model parameter estimation error maintain around -12 
db. 

 
Fig. (6). The MSE comparison of the TFAR model and FLO-TFAR 
model. 

B. Time-frequency Spectrum Estimation Comparison 

 We respectively use the parameter estimation algorithm 
based on TFAR model and FLO - TFAR model parameter 
estimation algorithm to estimate the time-frequency spec-
trum, simulation spectrum diagram is shown in (Fig. 7, Fig. 
8). 

TFAR模 型 估 计 时 频 谱

0 63 127 191 255

127

63

0

-64

-128

 

TFAR model estimation

 
Fig. (7). The TFAR model time-frequency spectrum. 

 The result show that the estimated spectrum based on 
TFAR model (Fig. 7) is different from the actual spectrum 
(Fig. 5), and the proposed FLO - TFAR model spectrum es-
timation is very close to the actual time-frequency distribu-
tion (Fig. 5). 
 
 

FLO-TFAR模 型 估 计 时 频 谱
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Fig. (8). The FLO-TFAR model time-frequency spectrum. 

CONCLUSION 

 We propose a FLO-TFAR model spectrum method 
which can work in SSα  stable distribution environment by 
combining the stationary process α  spectrum with the ex-
isting AR model time-frequency algorithm and using frac-
tional low-order covariance instead of the second order 
autocorrelation matrix. The dimension of the method is 
extended to 3-D(time, frequency, amplitude). Simulations 
show that the proposed algorithm has good performance in 
parameter estimation and spectrum estimation, FLO - 
TFAR model algorithm has more advantages when α  is 
smaller. Hence, the proposed FLO - TFAR model algo-
rithm has better toughness in this paper and wider applica-
bility. In order that the FLO - TFAR model can be applied 
to more field, the next step, we will extended it to the frac-
tional lower order autoregressive moving average (FLO-
TFARMA) model, and realize the parameter estimation and 
spectrum estimation. 
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