
Send Orders for Reprints to reprints@benthamscience.ae

2176 The Open Automation and Control Systems Journal, 2015, 7, 2176-2183

 1874-4443/15 2015 Bentham Open

Open Access
IL Optimization: Detecting and Eliminating Redundant Eflags by Flag
Relevant Chain

Xue Lei1,*, Wenqing Fan2, Wei Huang2, Yixian Yang1 and Zhongxian Li3

1Information Security Center, Beijing University of Posts and Telecommunications National Engineering Laboratory for
Disaster Backup and Recovery, Beijing, China
2Communication University of China, Beijing, China
3National Cybernet Security Ltd, Beijing, China

Abstract: In this paper, we proposed a systematic approach for automatically detecting and elimination redundant Eflags
to optimize intermediate language (IL). We analyzed a broad spectrum of different IL and found that a number of IL ex-
pose all side effects explicitly by default and that not all the Eflags are relevant with subsequent analysis. Therefore, we
proposed a unified approach, invertible analysis, to reduce the volume of IL. Our approach does not rely on any concrete
IL, and thus can identify redundant Eflags in the IL. Moreover, we devised a method using flag relevant chain dependency
analysis to remove redundant Eflags and shrink the IL. We developed a prototype, and conducted extensive experiments
using representative samples from various categories. We demonstrated that our approach could diminish the volume of
Vine IL obviously, and provide accurate representation about the assembly code.

Keywords: Intermediate language, Redundant Eflags, Invertible analysis, IL optimization.

1. INTRODUCTION

Intermediate representation (IR) of the program has long
been an important task in program analysis research and
practice. IR is a key issue both for compilers as well as for
reverse engineering tools to enable efficient analyses. Inter-
mediate language (IL) is designed to describe the intermedi-
ate representation of the program. From an analyst’s perspec-
tive, an appropriate IL can achieve a multiplier effect. In the
field of program analysis technology, the importance of a
suitable IL has long been recognized. The design of an IL is
a key factor for the efficiency of analyses for code optimiza-
tion and has been extensively studied. With IL program
analyses can be written in an architecture independent fash-
ion and do not need to directly deal with the complexity of
an instruction set such as x86 [1]. This design also provides
extensibility, so users can easily write their own analysis on
the IL by building on top of the core utilities provided
through some program analysis platforms. Every platform
such as CodeSurfer/x86 [2], McVeto [3], Phoenix [4], and
Jakstab [5], BAP [6] defines its IL and then performs analy-
sis at the IL level. For example, Vine that is the static analy-
sis component of BitBlaze [7] disassembles binary code into
assembly instructions, lifts the instructions to an IL and ena-
bles all subsequent analyses to be written in a syntax-
directed fashion.

*Address correspondence to this author at the Beijing University of Posts
and Telecommunications, Beijing, 100876, China;
E-mail: leixue@bupt.edu.cn

Machine language and assembly language have side ef-
fects such as that EFLAGS set by x86 instructions is implicit.
Those side effects are the keys to determine which branches
will be taken. In order to explain the side effects, consider
the two-line assembly program below. The arithmetic opera-
tion (shr) sets up to six status flags, and control flow in as-
sembly depends upon the values of those flags.

1 shr ebx, cl # ebx=ebx>>cl(sets OF, SF, ZF, AF, PF, CF)

2 jc target # jump to target if carry flag is set

Therefore, a couple of IL are designed to address the
problem by explicitly exposing all side effects. The result is
that subsequent analyses and verification could rely upon the
IL syntax alone. In the field of compiler optimization and
program analysis, the most common IL belongs to static sin-
gle assignment (SSA) form. Informally, the IL is said to be
in SSA form if it meets two criteria [8, 9]: 1) each name has
exactly one definition point, and 2) each use refers to exactly
one name. Comparing the IL and assembly instruction, the
advantages of IL are three-fold: 1) each instruction repre-
sents only one operation, 2) instruction set does not consist
of control flow information, and 3) the number of registers
defined in IL is unlimited by the number of registers defined
in the operating system. However, the volume and amount of
IL has to be considered when the target application is large
and complex.

Applications are getting larger and more complex due to
increasing functionality, a more sophisticated software stack,
and new abstractions and concepts that simplify develop-
ment. When some complex application is translated to IL,

IL Optimization: Detecting and Eliminating Redundant Eflags The Open Automation and Control Systems Journal, 2015, Volume 7 2177

the volume and amount of IL is inevitably infinite. For in-
stance, dynamic symbolic analysis will only run one path at
a time while the complex application always has countless
paths. If every result of dynamic symbolic analysis is lifted
to IL, the volume of these IL files is unimaginable. So infi-
nite number of IL files leads to tremendous need for storage
space, and if so, it is a challenge to the stable and reliable
performance of the computer. Moreover, it is hard for subse-
quent analyses to deal with these IL files in high efficiency.
In this paper, we propose the first systematic approach to
address this research problem.

The motivation of our approach is that the first step of
program analysis is to represent the program by IL, and the
volume and number of IL files is enormous, of which im-
pacts eventually affects the performance of the program
analysis system and the whole computer. The motivation of
our approach is to optimize the volume and complexity of IL
and facilitate later analysis. As assembly language is a low-
level programming language for a computer, or other pro-
grammable device, in which there is a very strong (generally
one-to-one) correspondence between the language and the
architecture's machine code instructions. In order to describe
our algorithm, we use assembly language as the source code
and Vine IL [7] as the intermediate language. The semantics
of Vine IL are designed to be faithful to assembly languages.
Although some assembly instruction affects a couple of flags,
maybe there is only one (or a few) flag/flags is relevant with
the next instruction in practice. If we can eliminate those
irrelevant flags, the efficiency of later analysis maybe multi-
plied several times. To verify this idea, we present the novel
approach. We primarily disassemble binary code to assembly
code, then inversely analyze the assembly code to construct
the flag relevant chain (FRC) for every instruction. Accord-
ing to FRC, when assembly codes are lifted to Vine IL, it
omits those irrelevant flags. Finally, we evaluate the feasibil-
ity of the algorithm with six programs. In the experiment,
our approach could diminish the volume of Vine IL obvious-
ly. The efficiency and effectiveness of the approach makes it
possible to automatically eliminate the redundancy of IL
from the large application.

In summary, this paper makes the following contribu-
tions:

1. we introduce a new approach to optimize IL, the FRC
which represents the relationship between flags and instruc-
tions by inverse analyses of assembly code;

2. we give algorithms for building the FRC given only a
stripped binary program and optimizing of IL based on FRC;

3. We have conducted extensive experiments with large
program from various categories, and demonstrated that the
approach could instantly optimize IL, and provide accurate
representation about the assembly code.

The paper is structured as follows. The next section gives
an overview of our approach. Section 3 describes details on
the design and implementation of the approach. Section 4
presents the experimental results. Section 5 provides some
additional limitation of our approach. Section 6 surveys re-
lated work and Section 7 concludes the paper.

2. PROBLEM STATEMENT AND OUR APPROACH

In this section, we formalize the problem of IL analysis
and optimization, and give a brief overview of our approach.

2.1. Problem Statement

Background: intermediate language. To eliminate side
effects of machine language or assembly language, interme-
diate language is designed to describe the intermediate repre-
sentation of the program. The semantics of the IL must be
well-defined and it must exactly describe the constructs of
the modeled programming languages which are necessary for
an exact analysis. Likewise, the IL should be linear in size to
the length of the source code. This property is particularly
important for global analyses of large programs. In addition,
the IL should allow efficient control and data flow analysis.
Finally, to handle large systems in a reasonable time, IL
should be constructed efficiently.

The challenge of intermediate language with redun-
dancy. Although analyzers are trying to design syntax of IL
clearly and explicitly, in the face of large applications, some
parts of IL are obviously redundant. In this paper, we use the
term “instruction” to refer to an assembly-level instruction,
and the term “statement” to refer to instructions within Vine
IL. In order to explain the redundancy of statement, consider
the three line assembly program in Fig. (1a) below. The
statement of the first instruction add on line1 that computes
the sum of eax and integer 0x1 and affects the flags includ-
ing OF, SF, ZF, AF, PF, and CF. Then the second instruc-
tion cmp on line2 affects the flags as well as the first instruc-
tion. The third instruction je on line3 does not affect any flag,
but it is based on the result of a cmp instruction on line2 that
is to compare al with cl and updates those flags according to
the result. We find that except zero flag from line2, all the
other flags are irrelevant with the line3. That is to say, there
is no need to state flags of both line1 and line2 except ZF of
line2. Translated a single typical instruction has all side ef-
fects explicitly exposed as statement. Because of the limita-
tion of length, we choose line2 in Fig. (1a) to be translated as
a sequence of statement, as illustrated in Fig. (1b).

Fig. (1b) only shows parts of the statement of the instruc-
tion cmp and it is obvious that the size of statement is worth
our attention. We can find that whether the instruction je
jumps to the address 0x7fa3028 based on the result of in-
struction cmp. If al is equal to cl, the flag ZF is set to one.
Therefore, the instruction je only relies on the flag ZF of cmp.
When an analyst is faced with a large application with mil-
lions of lines of instructions, the first step is to translate these
instructions into statement. With so large amount of state-
ment, it is a headache. If there were only a few instructions,
perhaps the complexity would not be too onerous. For in-
stance, if the target program has millions of lines of instruc-
tions and N instructions affect flags, the statement are at least
6*N lines more than the original. In dynamic analysis, if the
target program has M branches, it will generate M IL files.
Due to large quantities of statement, the processor needs
more time to create them, which is a key to efficiency of the
program analysis tool. Furthermore, if a large application has
thousands (even millions) of branches, it needs more space

2178 The Open Automation and Control Systems Journal, 2015, Volume 7 Lei et al.

to store these IL files. If we reduce the redundancy of state-
ment, maybe it increases the efficiency of the successor
analysis. To verify the hypothesis, we propose our novel
approach.

2.2. Our Approach

In this section, we give an overview of our approach that
is an invertible analysis based on instruction to create FRC to
guide statement optimization during statement generation.
We first discuss the intuition behind it, outline the steps in-
volved, and then explain how it applies to optimize statement.
Fig. (2) shows the overall flow of our approach.

Intuition. The insight behind our approach is that it is
possible to avoid the problem caused by statement redundan-
cy, via constructing FRC and using it to guide statement op-
timization. For instance in the Fig. (1a), some flags are re-
dundancy. Our approach can verify that flags of first instruc-
tion are not necessary to be translated, so is the second in-
struction except the zero flag. For a binary-only program, we
disassemble it and invertibly analyze instructions from end
to beginning to create FRC which is guiding to omit redun-

dant flags. We hope our work will spur discussions on the
implications and applications of IL optimization.

Inversed analysis. In outline, our approach proceeds as
follows. As a first phase, our approach disassemble the bina-
ry file by off-the-shelf disassemblers such as IDA Pro [10], a
commercial disassembler and a research disassembler from
Kruegel et al. [11] that can disassemble x86 obfuscated code.
Then in the second phase, our approach proposes inversely
linear-sweep instructions of code segment, constructing FRC
by context. According to x86 instruction set, we summarize
the instructions that depend upon flags into an instruction
dependency table. As in Fig. (1a), we inversely analyze the
three line assembly program and construct FRC. We first
check line3 and find that it is a conditional transfer instruc-
tion only relying on the zero flag of line2. Thus, we mark
line3 with zero flag, and then we check line2 and mark it
with 0 because it is not dependent on any flag. We decide the
dependent flags of the instruction by comparing it with the
white-list into which we categorize flag dependent instruc-
tions. We detail our construction of FRC approach in Section
3.3.

(a) (b)

Fig. (1). A simplified example of a three line assembly program is shown on the left (a). The right (b) illustrates the statement of the second
instruction cmp.

Fig. (2). IL optimization design.

IL Optimization: Detecting and Eliminating Redundant Eflags The Open Automation and Control Systems Journal, 2015, Volume 7 2179

Optimization IL. The goal of our approach is to deduce
redundancy of IL and optimize it. During the invertible anal-
ysis, we record into FRC the details about which flags are
relevant with subsequent instructions in the program. There-
fore, from the FRC corresponding to the invertible analysis,
we can perform IL optimization according to the FRC. In
view of those instructions that do not operate on data in the
Eflags register are translated to statement normally. On the
contrary, to these instructions affecting flags we identify
weather if there are any relevant flags by looking up the FRC,
and if so, we translate the relevant flags of the instruction
recorded in FRC while omit those irrelevant flags and vice
versa. We detail our optimization IL approach based on FRC
in Section 3.4. We further discuss the availability of FRC in
Section 5.

3. SYSTEM DESIGN AND IMPLEMENTION

In this section, we describe our approach to optimize IL:
first some infrastructure details (Section 3.1), then tech-
niques for categorizing instructions based on dependent flags
into a white-list (Section 3.2), inversely analyzing instruc-
tions to constructing FRC (Section 3.3), and optimizing IL
according to FRC (Section 3.4).

3.1. Infrastructure

To describe our algorithm, we use assembly language as
the source code and Vine IL as the intermediate language. To
construct a FRC via static analysis, we take an invertible
analysis, which lets us easily identify relevant flags of in-
structions in context and evaluate them with concrete exam-
ples.

We implement our approach on top of Vine [12], which
is the static analysis component of BitBlaze project [13].
Vine supports translating x86 [14] and ARMv4 [15] to the
Vine IL. It not only interfaces with disassemblers such as
IDA [10], and also uses a set of third-party libraries to parse
different binary formats and produce assembly. The assem-
bly is then translated into the Vine IL in a syntax-directed
manner.

Our modular prototype interfaces with disassembler IDA
(for disassembly binary files). It includes a white-list that
lists all the flag dependent instructions, FRC that consists of
flags that each instruction relies on, and an optimization
module that omits irrelevant flags based on FRC.

3.2. Assembly Instruction Dependency

One approach primarily disassembles binary code into a
sequence of assembly instructions, and then constructs FRC
to guide IL optimization. The performance of program anal-
ysis on assembly is naive because each analysis would have
to individually understand the semantics of the assembly,
which is difficult. Since Vine IL interface with disassembler-
IDA Pro, we use it to translate a binary file to assemble in-
structions.

In our implementation, we categorize the architecture
x86 instruction set which has well over 300 instructions
(which are documented in over 11 lbs of manuals [14]). Our
goal is to summarize flag dependency instructions

(e.g.,cmovz, je, rep, etc.) by a hash table. The instruction
name is key value k, and with the hash function f the index of
the instruction is f (k, array_size).

In our research, flag dependency instructions can be di-
vided into three main groups that are: 1) conditional data
transfer instructions, 2) conditional control transfer instruc-
tions, 3) conditional loop operation instructions, 4) repeated
prefixes of string instructions, and 5) byte set on condition
instructions. These instructions do not affect flags but rely on
the state of selected status flags in the Eflags register. Condi-
tional data transfer instructions in the form of CMOVcc
move data between memory and the general-purpose and
segment registers according to some flags. Conditional con-
trol transfer instructions provide conditional jump in the
form of Jcc and loop in the form of LOOPcc to control pro-
gram flow. The repeated prefixes of string instructions in the
formation of REPcc operate on strings of bytes, allowing
them to be moved to and from memory. A REPZ prefix es-
sentially turns an instruction into a single instruction loop
under the condition that zero flag is set. Byte set on condi-
tion instructions in the form of SETcc set the value of a byte
operand to indicate the status of flags in the EFLAGS regis-
ter.

3.3. Invertible Analysis

The most important technique for reducing the redundan-
cy of statement must be the construction of FRC to guide
optimization of IL by eliminating irrelevant flags.

FRC is a single list structure that stored information from
the results of invertible analysis. Whenever a flag dependen-
cy instruction is verified, information about the instruction is
written into a special defined data structure as a new node of
FRC. During our research, we discovered that flag depend-
ency instructions could generally be divided into two catego-
ries: direct and indirect, as illustrated in Fig. (3).

The direct is defined that the flag dependency instruction
depends upon flags of its previous instruction, as implied by
dotted arrow in Fig. (3). For instance, the instruction jle on

Fig. (3). An example of invertible analysis of some part of instruc-
tions from a binary file.

2180 The Open Automation and Control Systems Journal, 2015, Volume 7 Lei et al.

line3 tests to see if the expression ((SF xor OF) or ZF) is
equal to one, and if so, jump to the address of module
loc_427. Our goal is to find which instruction decides the
three flags SF, OF and ZF. In the same module divided by
the control flow graph, the precious instruction cmp on line2
computes the difference between eax and integer 5 and up-
dates the OF, SF, ZF, AF, PF, and CF flags according to the
result. We can conclude that the instruction jle directly relies
on its previous instruction cmp and describe it as the follow-
ing formula:

!n : I fdi (n) Dd" #" I fri (n+1) (1)

Formula (1). The formula of direct dependency.1)Ifdi: the
flag dependency instruction, 2)Ifri: the flag relevant instruc-
tion, 3)Dd:direct dependency.

The indirect is defined that the flag dependency instruc-
tion relies on flags of the instruction in other module and
generally both instructions are separated by several instruc-
tions, as implied by solid arrow in Fig. (3). In this example,
the instruction jge on line10 tests to see if the expression (SF
xor OF) is equal to zero, and if so, jump to the address of
module loc_430. The instruction jge is the first instruction of
this module indicating that it may rely on some flag relevant
instruction somewhere in other module. That is to say, we
must find the place where the module loc_430 is referenced.
Throughout invertible linear-sweep, the entry of loc_430 is
the target address of the instruction jle on line3. The chal-
lenge is converted to search for the flag relevant instruction
of jle and the result is obvious. In conclusion, the instruction
jge indirectly rely on the instruction cmp with m intervals,
illustrated as the following formula:

!n,m : I fdi (n) Did" #" I fri (n+ m) (2)

Formula (2). The formula of indirect dependen-
cy.1)Did:indirect dependency, 2)m: the number of intervals
between Ifdi and Ifri.

In order to construct FRC, our approach performs two
major steps. First, the instructions produced by the disas-
sembler are invertible linear-sweep by the scanner from the
last instruction, in order to determine the relationship be-
tween the flag dependency instruction Ifdi and the flag rele-
vant instruction Ifri. When scanner detects an instruction, it
looks up the hash table Thash of all the flag dependency in-
structions to verify if it is a Ifdi, and if so, records its relevant
flags Fins and its address Ari, and then the scanner goes up to
the precious instruction and verify the dependent manner
(direct Dd and indirect Did dependency) detailed in the first
two paragraphs. Further, we create a new node to record re-
lated information and check if there has been a node about
Ifri in FRC already, and if not, we insert the node to the FRC.
On the contrary, as the example shown in Fig. (2), the in-
struction jge and jle have the same relevant flags instruction
Ifri, when we detect there has been already a node about cmp
in FRC, we take intersection of the two Fins and update the
node information. Until the number of instruction INo refers
to the last one which means the invertible analysis is com-
plete, loop is over. A pseudocode description of this algo-
rithm showing how the inverse analysis is performed to gen-
erate FRC is in algorithm1.

3.4. IL Optimization

To omit redundant flags from IL, we reference FRC ob-
tained by the precious invertible analysis. Comparing with
FRC may seem strange since there are more checks to per-
form at each instruction during lifting. However, the shrink-
ing of the statement-imposed by the FRC outweighs subse-
quent analyses overhead for the IL. The advantages of IL
optimization are best demonstrated via example. Consider
the program shown in Fig. (1). Firstly, suppose that the in-
struction add on line1 is not relevant with any flag depend-
ency instruction. In other words, although the instruction add
affects flags including OF, SF, ZF, AF, PF, and CF, no sub-
sequent instructions rely on them. Thus, there is no infor-
mation about the instruction add in FRC, we can omit the
flags of the instruction add. Secondly, by checking the FRC
in the instruction cmp on line2 it is only relevant with ZF of
the instruction je on line3, meaning that we can only express
the zero flag. Fig. (4) depicts the optimization of the instruc-
tion cmp visually.

In summary, the optimization based on FRC goes
through the following analysis steps. Those instructions that
do not operate on data in the Eflags register are translated
into statement normally. In contrast, to those instructions
affecting flags (Ifri) we identify weather if there are any rele-
vant flags (Fins) by looking up the FRC, and if not, we set
Fins null and do not translate the flags of this instruction to
statement. Otherwise, in order to optimize statement, we
translate the relevant flags of this instruction recorded in
FRC and omit those irrelevant flags. Algorithm 2 shows how
the FRC guides to optimize statement.

4. EVALUATION

In this section, we present details on the experimental re-
sults of our approach, by shrinking the statements of com-
mon applications. We first describe the environment in
which we conducted our experiments. Then, we show the
effectiveness of our approach to construct FRC by summa-

IL Optimization: Detecting and Eliminating Redundant Eflags The Open Automation and Control Systems Journal, 2015, Volume 7 2181

rizing the information of flag dependent instructions and flag
relevant instructions. Last, we evaluate the proportion of
eliminating redundant Eflags by our approach.

4.1. Overview

Our approach is written in a mixture of C and Python and
consists of 3 major components: assembly instruction de-
pendency, invertible analysis, and IL optimization. We chose
Vine IL as our intermediate language, and added about 3000
lines of code to implement our algorithms and heuristics as
well as to add in support for other IL. We used STP for con-
straint solving and chose IDA pro 5.2 as our disassembler
from which we took code segment of each sample to analyze.

We evaluated our algorithms on a 4GHz Intel(R) Core 5
Duo Linux workstation with 4GB of RAM running Ubuntu
10.04.We measure the effectiveness of our approach on
statement optimization with SPECint 2006[16]. Our sample

set presented in the paper are consisted of six samples, which
are unmodified applications that people use and can be
downloaded from the Internet. The results of the evaluation
are summarized in Table 1 and described in more detail in
the remainder of the section.

4.2. Detailed Analysis

In the experiment, our approach has successfully opti-
mized statement for all the samples. We summarize the re-
sults in Table 1. In the second column of Table 1, we list the
line number of assembly instructions from IDA pro for each
sample excluding the comment and blank lines. The line
number of assembly instructions varies from 1068 to 272425
and almost includes the four groups of flag dependency in-
structions as illustrated in Section 3.2.

The third column gives the number of flag relevant in-
structions for each sample. We found that flag relevant in-

Fig. (4). A simplified example of the optimization of the statement of cmp.

Table 1. Summary of the Experimental Results. The first column of the table lists the samples and the second column shows the size
of the samples in assembly instructions. The third and fourth columns give the number of flag dependency instructions and
flag relevant instructions respectively. The fifth column shows the original statement for each sample. The last column
shows the results of statement after optimization.

Sample

Assembly
Instruction

Flag Relevant
Instructions

Flag Dependency
Instructions

Original Statement Statement after Optimization

Line Line Line Size Line Size Line

Gcov 3846 731 349 2.8MB 94255 1.6MB 52838

Gcc 15218 2957 1732 11.3MB 382888 5.9MB 217595

Bzip2 18584 4364 1532 16.2MB 532957 7.6MB 281841

Bzip2recover 1068 187 75 759.3KB 24095 431KB 15627

Nhmmer 272425 57416 22207 230.9MB 7586043 115.6MB 4296532

Hmmemit 212880 45511 17653 181.6MB 5966370 90.5MB 3359281

2182 The Open Automation and Control Systems Journal, 2015, Volume 7 Lei et al.

structions can be divided into two categories according to
whether it is related to any flag dependency instruction. That
is to say, redundant Eflags have two sources: the Ifri not re-
lated to any Ifdi (all the Eflags are irrelevant with subsequent
instructions), the Ifri related to some Ifdi but only a few Eflags
are used by the Ifdi. In particular, the line number difference
between Ifri and Ifdi，to a large extent, determines the effi-
ciency of optimization. That the two programs have roughly
the same number of assembly instructions, the more the Ifri is
not related to any Ifdi, the more obvious optimization is. As is
shown in the Table 1, the program gcc and bzip2, the differ-
ence between Ifri and Ifdi of the later is more than the former,
thus the optimization proportion of the later is 53.1% more
than the former i.e. 47.8%.

The fourth column shows the number of flag dependency
instructions for each sample. In our implementation, we first
construct a hash table to categorize the flag dependency in-
structions and record Eflags that are referenced, which is the
basis for FRC that consists of flags that each instruction re-
lies on. We use the instruction name as key value k, and with
the hash function f the index of the instruction is f(k, ar-
ray_size). Each flag dependency instruction corresponds to a
node in FRC and the node consists of concrete information
about Eflags including its number and its belonging to which
flag relevant instruction.

The fifth column lists the fundamental information about
each sample after translating to IL. It consists of two sub-
columns: the size and the line number of the statement from
Vine. As we can see, the maximum line number in the table
is 7586043 while its line number of assembly instruction is
272425, which shows the volume of the statement is so
enormous and a large number of IL files will challenge the
storage performance. Therefore, statement optimization
seems particularly important.

The last column gives the size and the number of the
statement optimized by our approach. The size of statement
after eliminating redundant Eflags varies from 1.2 MB to
91.1MB, depending on the FRC size, the number of flag
relevant instructions and other factors. In total, our approach
decreases by 43% line on a sample during the evaluation,
which is significant compared to original statement that has
millions of lines.

5. LIMITATION AND FUTURE WORK

The first, and the most obvious, limitation is the complete
support of the Vine IL to assembly instruction. In our exper-
iment, not all the assembly instruction can be translated into
the Vine IL, when we lifted the assembly instructions of the
program nhmmer to Vine IL, it failed to handle floating
point and privileged instruction. Though we attempted to use
a newer version of VEX library that is responsible for this
problem, yet the problem persisted. We thus had to manually
locate these instructions. It is not possible to prove the cor-
rectness of statement if the semantics of the x86 ISA are not
formally defined.

The second limitation of our approach is the efficiency of
construction of FRC. Currently, our implementation of in-
vertible analysis follows linear-sweep by the scanner from
the last instruction. A major challenge of analyzing real-

world applications is that we need to process a huge amount
of assembly instruction. To very large and complex applica-
tions, the number of flag dependent instruction is also enor-
mous and thus we need more time to deduce the relationship
between flag dependent instructions and corresponding flag
relevant instructions. Our paper is a step forward in optimiz-
ing IL to enhance the efficiency of subsequent analysis, but
obviously, much more work remains to be done.

The third limitation of our approach is from Vine itself.
Through trial and error, we found that Vine failed to trans-
late enormous assembly instructions into statement due to an
out-of-memory error. With this problem, we were unable to
use large and complex applications generally with millions
of assembly instructions as samples. To address this problem,
we need to modify the source code of Vine, and reason about
the procedure of IL translation. In the future, we are going to
develop a more robust and secure IL

6. RELATED WORK
Intermediate language is designed to describe the inter-

mediate representation of the program. Several program
analysis platforms have their intermediate languages. Vine is
the static analysis component of BitBlaze Binary Analysis
Platform and has its intermediate language Vine IL that is
the base of subsequent analysis [12]. Vine IL is independent
of the platform and the semantics of the IL are designed to
be faithful to assembly languages. Vine used VEX which is
part of the Valgrind dynamic instrumentation tool [17] and
similar to a RISC-based language to provide a rough IL for
each instruction and augments it to expose all otherwise-
implicit side effects. Vine IL makes all side effects explicit
by default, many of which may not matter for a particular
analysis. However, the optimization removes code that does
not affect the program results or unreachable code that can
never be executed.

Since Vine IL lacked a formal semantics for the IL itself,
and did not handle bi-endian architectures such as ARM cor-
rectly. BAP is a complete redesign of Vine that encompasses
lessons learned from previous work on binary analysis and
also a binary analysis platform developed by Carnegie
Mellon University[18].The core of BAP is the BAP interme-
diate language, called BIL[6]. BIL only has a few language
constructs, which makes it easy to analyze. In addition, BIL
also explicitly represents side effects such as flag computa-
tions. To address the issue of redundant flags, BAP uses
dead code elimination to remove irrelevant OF, SF, ZF, AF
and PF. Nevertheless, the optimization is only applicable to
BIL and does not work on other intermediate languages.

Phoenix is a program analysis environment developed by
Microsoft as part of their next generation compiler [4]. One
of the Phoenix tools allows code to be raised up to a register
transfer language (RTL). A RTL is a low-level IR that re-
sembles an architecture-neutral assembly. Phoenix lifts as-
sembly to a low-level IR that does not expose the semantics
of complicated instructions, e.g., register status flags, as part
of the IR [19]. Phoenix optimizes RTL based on the logic of
the program, thus is not suitable for our research purposes.

In comparison, our approach captures the intrinsic char-
acteristics of IL redundancy: not all the Eflags are relevant

IL Optimization: Detecting and Eliminating Redundant Eflags The Open Automation and Control Systems Journal, 2015, Volume 7 2183

with a particular analysis. Therefore, we can abstract a gen-
eral approach for various IL that makes all side effects ex-
plicit to eliminate redundant flags. Moreover, it also provides
insights about the IL optimization.

CONCLUSION

In this paper, we presented a novel invertible analysis
approach, eliminating redundant Eflags based on the FRC, to
optimize IL. Through analyses with a broad spectrum of dif-
ferent IL, we found that a couple of IL represent all side ef-
fects explicit by default and not all the Eflags are relevant
with subsequent analysis. Thus, we give algorithms for
building the FRC given only a stripped binary program and
remove redundant Eflags based on the FRC to shrink the IL.
The experimental results demonstrated that our approach
could diminish the volume of Vine IL obviously, and pro-
vide accurate representation of the assembly code.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flicts of interest.

ACKNOWLEDGEMENTS

We thank Quanchen Zou and Yu Han for suggestions and
help related to the experiments and previous papers. This
work is supported by National Natural Science Foundation
of China (No. 61121061), National Key Technology R&D
Program (2012BAH37B05) and National Key Technology
R&D Program (2012BAH06B02). Any opinions, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect
the views of the National Natural Science Foundation of
China or other supporters.

REFERENCES
[1] K. Anshumali, T. Chappell, and W. Gomes, “Intel Corporation.

Intel 64 and IA-32 Architectures Software Developer’s Manual,

Volumes1-5 (April 2008),” Intel Technology Journal, vol. 14, pp.
104–127, 2010.

[2] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum,
“CodeSurfer/x86—a platform for analyzing x86 executables,” in
Compiler Construction, pp. 250-254, 2005.

[3] A. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T.
Andersen, and T. Reps, “Directed proof generation for machine
code,” in Computer Aided Verification, pp. 288-305, 2010.

[4] “Microsoft. Phoenix framework. [Online]. Availa-
ble:http://research.microsoft.com/phoenix/. URL checked
4/21/2011.

[5] J. Kinder and H. Veith, “Jakstab: A static analysis platform for
binaries,” in Computer Aided Verification, pp. 423-427, 2008.

[6] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A
binary analysis platform,” in Computer Aided Verification, pp. 463-
469, 2011.

[7] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z.
Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A
new approach to computer security via binary analysis,” in Infor-
mation systems security, Springer, pp. 1-25, 2008.

[8] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson, “Practi-
cal improvements to the construction and destruction of static sin-
gle assignment form,” Software-Practice and experience, vol. 28,
no. 8, pp. 859-882, 1998.

[9] A. W. Appel, “SSA is functional programming,” SIGPLAN notices,
vol. 33, no. 4, pp. 17–20, 1998.

[10] “DataRescue. IDA Pro.(Page checked 7/31/2008).” [Online].
Available: http://www.datarescue.com.

[11] “Static Disassembly of Obfuscated Binaries.” [Online]. Available:
http://static.usenix.org/event/sec04/tech/full_papers/kruegel/kruege
l_html/disassemble.html.

[12] “Vine: The BitBlaze Static Analysis Component.” [Online]. Avail-
able: http://bitblaze.cs.berkeley.edu/vine.html.

[13] Dawn Song, David Brumley, Heng Yin, "BitBlaze: A New Ap-
proach to Computer Security via Binary Analysis," Proc. 4th Inter-
national Conference, ICISS 2008, Hyderabad, India, pp. 1-25,
2008.

[14] B. Team, “Vine installation and user manual,” August 26th, 2009..
[15] ARM. ARM Architecture Reference Manual (2005) Doc. No. DDI-

0100I. .
[16] “Standard Performance Evaluation Corporation, ‘SPEC

CPU2006.’”[Online]. Available: http://www.spec.org/cpu2006/
CINT2006/.

[17] N. Nethercote, “Dynamic binary analysis and instrumentation,”
PhD thesis, University of Cambridge, 2004.

[18] “The Binary Analysis Platform from Carnegie Mellon University.”
[Online]. Available: http://bap.ece.cmu.edu/.

[19] “Microsoft. Phoenix project architect posting (Page checked
7/31/2008) (July 2008),” [Online]. Available: http://forums.msdn.
microsoft.com/en-US/phoenix/thread/ 90f5212c-05a-4aea-9a8f-
a5840a6d101d.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Lei et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-commercial
use, distribution and reproduction in any medium, provided the work is properly cited.

