
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Automation and Control Systems Journal, 2015, 7, 2201-2206 2201

 1874-4443//15 2015 Bentham Open

Open Access

Reaserch on the Construction and Realization of Synchronization System
for Wireless Spital Database Based on UUID

Song Liangong
*

North China University of Water Resources and Electric Power, Zhengzhou, 450045, China

Abstract: This paper implements a database synchronization system for the SQLite. For some of the problems encoun-

tered in the design and development of systems, by looking for literature, guessing and analyzing implementation methods

of these similar systems, has solved some key issues and design and implement our own solutions. Mainly UUID replaces

integer data format as data representation; Design table to store synchronization information metadata; Use HTTP proto-

col to transmit data and resolve security authentication and encrypted transmission; Use JSON format as the serial data

format on the network transmission; Use JZEE platform to process system concurrent.

Keywords: EDBMS, open source, SQLite, synchronizing system.

1. INTRODUCTION

After years of embedded systems development, it has
great relationship with people learn, work, lives [1]. Embed-
ded systems have been used in scientific research, engineer-
ing design, military technology, and various types of indus-
trial, commercial and cultural arts, entertainment, and other
aspects of people's daily lives. With the rapid development
of digital information technology and network technology,
computer technology, communications technology, con-
sumer electronics integration trend is increasingly evident
that beckons a huge generation of embedded applications
market. Embedded system technology has become the cur-
rent attention, learning research focus [2-5].

2. FEATURES OF EMBEDDED DATABASE

Implementation and application of methods and enter-
prise-class database embedded database has a big difference.

Embedding is the basic characteristics of an embedded
database [3, 4]. Embedded database can not only be embed-
ded into other software, but also can be embedded in a hard-
ware device.

Real-time and embedded nature are inseparable [6]. Only
a database of embedded, the first time be able to get the sys-
tem resources of the system to respond to requests for the
first time.

Scalability is particularly important in embedded applica-
tions [7]. First of embedded hardware and software plat-
forms occasions are vastly different, the results are basically
the customer needs according to their choice.

Consistency is necessary for the database properties
[8]. Through the transaction, lock functions and data

synchronization, and other technology to ensure consistency
within each table in the database data, also ensure that the
database and other databases in the data synchronization or
mirror consistency.

Security is essential [9-12]. Ensure the physical security
of the information itself, we must also ensure the safety of
users of private information.

3. SPECIFIC REALIZATION OF EACH MODULE

3.1 Data Change and Monitoring Module

For synchronous client, to synchronize data, we must
first know which data is modified. If there is such database
operation that has executed INSERT, UPDATE or DELETE
operation, it is necessary to record, to prepare for synchroni-
zation purposes. In SQLite, there is a SQLite3_update_hook
() interface function. It will be executed every time when the
INSERT, UPDATE, DELETE operation occurs. This system
uses this interface function to achieve the monitoring of data
changes. Code is as follows:

SQLite3_update_hook() (

db, update--hook, (void*)db):

Update_hook is the callback function invoked. However
SQLite3 (version 3.6.10) has a bug, When the delete state-
ment has no where clause, the update_hook of delete fail-
ures, there is no call. But when coupled with where 1 =l,
they can trigger. It is need to pay write attention on it when
writing sql statement.

After the experiment, the interface has the behavior of
the document. But there is a problem is the database used to
record these changes metadata is stored in the same database.
When the update occurs, these records will be updated meta-
data table occurrence will trigger the interface function, lead-
ing to an infinite loop. So it is needed to determine whether
the table is synchronized metadata table in the subroutine.
Taking into account the possible expansion of the system,

RETRACTED ARTICLE

2202 The Open Automation and Control Systems Journal, 2015, Volume 7 Song Liangong

the tables beginning with "sync_ ' are all counted the syn-
chronization system table. If it is synchronizing metadata
table, it do not record. This is a convention of the system,
which the system uses the table beginning with “sync_ ‘to
storage system data. If you use this system, the user defined
database table names cannot begin with "sync_". The follow-
ing code to solve this problem:

char r[]=”sync_”;

char table_prefix[6]:

strncpy (tab1e_prefix, tableName, 5):

table_prefix[5]=’\0’;

if (stremp(r, table_prefix) !=0)

The code above detects whether the five previous chars
of table name is equal “sync_”. If YES, not run the rest of
the code segment. Update_hook function will be called when
database performs INSERT,UPDATE or DELETE opera-
tion. The follow C code is record data and change metadata:

memset(sql, 0, 1024):

if(modifyType==SQLITE_UPDAIE || modi-

fyType==SQLITE—INSERT)

sprintf(sql, “INSERT INTO sync_record (modify_type,

db_pame, table_name, uuid, modlfy_rowid, modify_time)

VA.LUES (%d, '%s’, '%s’, ‘%s’, %d, strftime(‘%%s’,

‘now’))”, modifyType, dbName, tableName, uuid, rowid);

Else if(modifyType == SQLITE_DELETE)

sprintf(sql, ”UPDATE sync _record SET mod-

ify_type=9, modify_time=strffime(‘%%s’, ‘now’) WHERE

modify_rowid=%d”, rowid);

By SQLite3 callback function, information of data
changes can be recorded in the metadata table, as synchroni-
zation server updates basis.

3.2. Metadata Storage Modules

Synchronize information metadata needed for data syn-
chronization is stored in the same database in the form of
table too [13]. At present, there are mainly three tables
(when upgraded version number and format of the table may
change in the future).

Table sync_record: The table mainly records the data
modified information in the user table, used to determine the
user table that data synchronization is required at the time of
transfer to the server.

This part of the realization of C language code as fol-
lows:

Int SQLite3_sync_config(SQLite3* conn){

SQLite3_exee(conn, ”CREATE TABLE IF NOT EX-

ISTS sync_record(modify_rowid INTEGER, uuid TEXT,

modify_type INT, modify_time INTEGER, table_name TEXT,

db_name Text);”, NULL, NULL, NULL);

If there is no record tables, establish information table of

record changed:

As the same way of another two tables:

char** result;

int r, c;

SQLite3_get_table(conn, ”SELECT * FROM

sync_configure”, &result, &r, &c, NULL);

if(r<l)

SQLite3_exec(conn,”INSERT INTO sync_configure

(login_narne, login_pass, sync_url, fite_condition) VALUES

(‘green’,’testPwd’,

‘http://localhost:8080/resources/helloworld’, ‘l=1’);”,

NIJLL, NULL, NIJLL);

SQLite3_free_table(result):

}

SQLite3_sync_configure function initials the synchroni-
zation information metadata, and creates table storing syn-
chronization information.

At center database, synchronization server creates corre-
sponding metadata table. JAVA code as follows: Conn =
ds.getConnection();

Statement stmt = conn.createStatement();

Sql = “CREATE TABLE IF NOT EXISTS sync_record(uuid

TEXT, table_name TEXT, modify_type INTEGER, sync_time

BIGINT)”;

stmt.execute(sql):

Create this table, synchronization metadata of each syn-
chronization client is stored in the sync_record table.

3.3. Connection Center Database Module of Synchroniza-

tion Server

Synchronization server needs to connect with the central
server to the client and synchronized to send and receive data
center servers [14]. The system uses the Tomcat server. Con-
figure Tomcat connection pool is in context.xml file.

<Context>

<Resource name= “jdbc/mysql”

Auth=“Container”

Type=“javax.sql.Datasouree”

driverClassName=”com.mysql.jdbe.Driver”

url=”jdbe:mysql://localhost/ttt”

username=”root”

password=””

maxActive=”100”

maxldle=”10”

maWait=”10000”/>

</Context>

After configuring the data source by the following code
can obtain the connecting to the database, and execute SQL
statements.

InitialContext ctx=new InitialContext();

ds=(Datasoure) cts.lookup(“java:comp/env/jdbc/msql”);

conn=ds.getConnection();

3.4. Definition Transfer Format of Synchronous Data

After comparing XML, JSON, binary format, JSON for-
mat is a more appropriate format, because its less consump-

RETRACTED ARTICLE

Reaserch on the Construction and Realization The Open Automation and Control Systems Journal, 2015, Volume 7 2203

tion of both broadband and analytical resources, but very
easy to read, useful for debugging. For synchronous data
transfer of this system, do a certain format design. JAVA
code used to represent a packet is as follows:

Public class PacketClass{

// Name where the data needs to be synchronized table

public String table_name;

// The type of data synchronization, INSERT, UPDATE,

SELECT

public int modify_type;

// The packet data synchronization field number

public int column_num;

// The == number of data rows of packet contains

public int row_num;

// The name set of the fields

public String[] columns;

// The Set of data sets

public List<string[]> rows:

}

Converted into JSON format, for example, {“ta-

ble_name” : ”table1”, ”modify_type” : 18, ”col-

umn_num”:4, “row_num”:1, “columns”: [“UUID”,

”LASTMODIFY”, ”COLI”, ”COL2”], “rows”:

[[“2d36f4cf-ldb2-4f67-9029-affa6470376b”,

”1240037551”, ”hello everyone!”, ”123”]]}

From this data, we can see JSON meaning it represents.
The table to be synchronized of this data packet is table 1.
The type of data synchronized is UPDATE (18 is
SQLITE_UPDATE constants value SQLITE defined). The
data has four fields, including a line of data to be synchro-
nized, and the latter part is the value of the data. The sending
and receiving ends following this format can pack and un-
pack the data, and finally stored in the database.

3.5. Data Derails and Synchronous

Data from the terminal database to the central database,
experienced three steps: First, remove the data from the da-
tabase and packaged as a data packet; Second, send data
packets to the synchronization server; Third, the synchroni-
zation server unpacked and converted to SQL statements
executed in order to write data to a central database. Similar
process of data from the central database to the terminal da-
tabase. The first two steps of the code below:

Read data from the database:

if(modify_type==SQLITE_INSERT || mod-

ify_type==SQLITE_UPDATE)

sprintf(sql, “SELECT * FROM table1 where rowed in(

select modify_rowid from sync_record where mod-

ify_type=%d)”, modify_type);

else

sprintf(sq1,”SELECT uuid, modify_time from

sync_record where modify_type=%d”, modlfy_type);

Packaged as JSON format:

for(i=0 ;i<columu_num; ++i){

json_object_array_add(column_obj,

json_object_new_string(result[i])):

}

for(i=0: i<row_num; ++i){

row=json_object_new_array();

for(j=0; j<column_num: ++j){

prinif(“%s\t”, re-

sult[i*column_num+column_num+j]);

json_object_array_add(row,

json_object_new_string(re-

sult[i*column_num+column_num

+j]));

}

Json_object_array_add(row_pbj, row);

printf(“\n”);

}

json_object_object_add(full_obj, ”table_name”, ta-

ble_name_obj):

json_object_object_add(full_obj, “modify_type”,

json_object_new_int(modify_type));

json_object_object_add(full_obj, “column_num”,

json_object_new_int(column_num));

json_object_object_add(full_obj, “row_num”,

json_object_new_int(row_num));

json_object_object_add(full_obj, “columns”, column_obj);

json_object_object_add(full_obj, “rows”, row_obj):

After the data is packed as a sequence of characters sent
to the synchronization server via HTTP

curl_easy_setopt(curl, CURLOPT_UPLOAD,1);

res= curl_easy_perform(curl):

After synchronization server receives the data, unpack and

convert SQL execution.

@PUT

@Consumes(“applicatiom/json”)

Public Response Put(String content) throws SQLException{

Gson gson = new Gson():

Gson outjson = newGson();

String sql:

PacketClass packet = gson.from.Json(content, Paeket-

Class. class);

}

Tags @PUT and @Consumes(“application/json”) of the
method mean that the method is the function responding
PUT method of HTTP, the format of the data received in
JSON format. Parameters String content is the content of the
incoming JSON data.

JSON contents of the packet can be converted into JAVA
class instance. Packet class is the content of the data to be
synchronized. By the data for this instance, the combination

RETRACTED ARTICLE

2204 The Open Automation and Control Systems Journal, 2015, Volume 7 Song Liangong

generate a complete SQL statement execution to the central
database.

3.6. Return News Data of Center Database

When the synchronization client sends data to upload,
begin to download data. Synchronization client transmits the
time of complete synchronization of data last time. The
server to determine which data should be sent to the syn-
chronization client based on this time. Here a little confusing
that the data last updated time and last synchronization time.
Here determination is based on the synchronization time
rather than the updating time. Suppose A, B are synchronous
terminal, C is a synchronization server, there is a data D, last
updated date is on the 10

th
, the last synchronization date is

10
th

. That is, the data on the terminal A is modified on the
10

th
, but in the 12

th
 A to C was a process of synchronizing

the changes applied to the central database. if the last update
time of B and C is 9

th
, then two times are greater than the 9

th
.

This data is in the A and C synchronized set, but if the last
update date to the 11

th
, the 10

th
 is less than 11. If you com-

pare the synchronization time and update time, which is not
to be counted as data synchronization data collection. And in
fact, in which data should be synchronized list because data
B is also no change in the data. Comparison should be up-
dated synchronization time instead of the data.

3.7. Security Module

In synchronous systems, only the part database of the
system node can access and upload their data to a central
database. To ensure the security of the system, it is necessary
to authenticate nodes. HTTP protocol defines the part of the
certification. Tomcat implements the HTTP protocol as a
WEB server also has part of the function with the agreement
on certification. In synchronous system, the node having
synchronization function needs through the authentication, in
order to exchange data with a central server. Tomcat and
CURL both flexible support authentications. Secure trans-
mission to achieve the purpose, the client and server are set
to the same authentication configuration, you can achieve
security management based on the HTTP protocol.

On the server side, according to the manual Tomcat,
Tomcat security configuration is as follows:

In conf/server.xml file,

<Realm className=”…class name for this implementation”

…other attributes for this implementation…/>

This label indicates the function of Realm module. Realm
module corresponds to the "data collection" which store user
name and password which can access web content. This
"data collection" may be a relational database; it could be an
xml file or any other format, because you can custom
authentication module. Achieve certification logic modules
are all implemented. org.apache.catalina.Realm interface.
Tomcat has 5 Realm modules:

JDBCRealm,

DataSoureeRealm,

JNDIRealm,

MemoryRealm,

JAASRealm

If a user name and password are stored in a database, you
can use either of the first two. If stored in the Tomcat con-
figuration xml file, using MemoryRealm. If a user name and
password storage areas do not meet the native module, the
module can be customized to achieve.

The system uses JDBCRealin. When there are a large
number of users, the general systems use a database to store
the user name and password. Modify cof / server.xml, add
Realm labels:

<Realm className=”org.apache.eatalina.realm.JBCRealm”

debug=”99”

driverName=”org.git.mm.mysql.Driver”

conneetion-

URL=”jdbe:mysql://loealhost/authority?user=dbuser&

password=dbpass”

userTable=”users” userNameCol=”user_name” user-

CredCol=”user_pass”

userRoleTable=”user_roles” roleNameCol=”rolename”/>

On the client, according to a document Curl parameter
sends the user name and password to be set are:

CURLOP_HTTPAUTH,CURLOPT_USERPWD.

The user name and password of Clients used to authenti-
cate are stored in this synchronization system metadata,
stored in sync_confg table. First read the data in the table,
and then sent through verification by curl. Code is as fol-
lows:

char* sql = malloe(512);

memset(sql, 0, 1024):

sprintf(sql, ”SELECT login_name, login_pass, sync_url,

fiter_condition FROM sync_configure”):

SQLite3_get_table(db, sql, &result, &row, &col, NULL);

// Obtain user name and password from the configuration

table to synchronize access to the server's required

strcpy(usemame, result[4]):

strcpy(password, result[5]):

strcpy(sync_url, result[6]);

sprintf(userpwd, ”%s:%s”, usemame, password):

// Format of the user name and password as defined format

of the http protocol

curl_easy_setopt (curl, CURLOPT_HTTRAUTH, CUR-

LAUTH_BASIC)

curl_easy_setopt (curl, CURI OPT_USERPWD, userpwd):

// Setting options CURL

Sync client and synchronization server according to the
HTTP protocol defined after a good setup and programming,
you can use the HTTP protocol defines the security section
to achieve a synchronization system security definitions.
There are several safe ways HTTP protocol, implemented
here is BASIC way. If necessary, set up at both ends of the
other agreement on it.

Table sync_record: The table mainly records the data
modified information in the user table, used to determine the

RETRACTED ARTICLE

Reaserch on the Construction and Realization The Open Automation and Control Systems Journal, 2015, Volume 7 2205

user table that data synchronization is required at the time of
transfer to the server.

4. SYSTEM PERFORMANCE TESTING

To test the performance of the system, we use SOAPUI
to test interfaces’ performance. Fig. (1) is a diagram of the
load test results WSDL service provided by the server. Fig.
(2) is test data graph.

See throughput (tps), the corresponding time, the data
transfer rate information from the graph. Response time is
the response total time to spend on n requests. Through
testing, found that with the increase in the number of
concurrent threads, the average response time of the system
will be more balanced, but also greatly enhance the speed of

bytes transferred, and tend to be stable. Therefore, the
server-side data synchronization interface WebService deve-
loped to meet the system requirements, data synchronization.

While the system handles concurrent requests using a
multi-threaded distributed and dynamic multi-granularity
locking mechanism for handling, made system performance
testing. Fig. (3) is a multi-granularity locking and
performance testing multi-threaded post. It can be found that
the use of this strategy for dealing with the distribution
request, can make data transmission efficiency in
equilibrium, can quickly handle multiple concurrent requests
terminal, transmission efficiency has been greatly improved.
But the error rate will be increased as the number of
concurrent requests thread, also increased.

Fig. (1). The load test results.

Fig. (2). The load test curve.

RETRACTED ARTICLE

2206 The Open Automation and Control Systems Journal, 2015, Volume 7 Song Liangong

CONCLUSION

This paper implements a database synchronization sys-
tem for the SQLite. For some of the problems encountered in
the design and development of systems, by looking for litera-
ture, guessing and analyzing implementation methods of
these similar systems, has solved some key issues and design
and implement our own solutions. Mainly UUID replaces
integer data format as data representation; Design table to
store synchronization information metadata; Use HTTP pro-
tocol to transmit data and resolve security authentication and
encrypted transmission; Use JSON format as the serial data
format on the network transmission; Use JZEE platform to
process system concurrent.

This system has the basic functions for synchronizing

SQLite, could be regarded as a database synchronization

system prototype. Applicable synchronization topology is

the scenarios of a center for multiple endpoints. This system

is just a prototype. To become a commercial-grade system, it

needs a visual management system and a good caching sys-

tem and caching algorithms developed based on system

characteristics.

CONFLICT OF INTEREST

The author confirms that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] D. Chen, X.D. Han, and W. Wang, “Use of SQLite on embedded
system”, In: Proceedings of 2010 International Conference on In-
telligent Computing and Cognitive Informatics (ICICCI2010),
2010, pp. 210-213.

[2] H. Zheng, and B. Zeng, “Design and Implementation of ARM-
based mobile hand held terminal for community medical”, Applied
Mechanics and Materials, vol. 263-266, pp. 1623-1628, 2012.

[3] S. Agarwal, D. Starobinski, and A. Trachtenberg, “Fast PDA Syn-
chronization Using Characteristic Polynomial Interpolation”, Bos-
ton University, IEEE, 2002.

[4] S.Y. Lee, “Synchronizing techniques for mobile DBMSs”, Data-
base Research, vol. 17, no. 3, pp. 29-41, 2001.

[5] S.W. Kim, “Synchronicity nation in an Ivmbcddcd DBMS Envi-
ronment”, In: IJCSNS International Journal of Computer Science
and Network Security, 2006.

[6] Oracle Corporation, Oracle Database Lite: Synchronizing Data
Between Device and Oracle Database.2007APaehe Activemq,
http://activemq.apache.org.2011.

[7] A. KuPsys, and R. Ekwall, “Aiehiteetural issues of JMS compliant
group communication”, 4th IEEE International Symposium on Net-
work Computing and Application, 2005, pp. 139-148.

[8] P. Wang, “Research on the embedded system teaching”, In: Inter-
national Workshop on Education Technology and Training, 2008.

[9] W. Xia, “A distributed database management system for college
teaching”, Computer Engineering and Design, vol. 30, no. 23, pp.
5325-5328, 2009..

[10] G. Cheng, and M. Z. Li, “The application of database technology in
network ma-nagement system”, Applied Mechanics and Materials,
vols. 644-650, pp. 2850-2853, 2014.

[11] P. Marwedel, “Embedded System Design,” Springer, New York,
2011, pp. 20-30.

[12] D. Luo, “Optimization in Cognitive Radio Network”, Wireless
Communication Technology, vol. 22, no. 2, pp. 17-21, 2013.

[13] P. Zhang, Q. He, Z.Y. Feng, and Q.X. Zhang, “Reconfiguration
decision making in cognitive wireless network”, Chinese Science
Bulletin, no. 28, pp. 29-31, 2012.

[14] N. Zhao, S. Li, and Z. Wu, “Cognitive radio engine design based on
ant colon optimization”, Wireless Personal Communications, no. 1,
pp. 44-48, 2012.

Received: June 10, 2015 Revised: July 29, 2015 Accepted: August 15, 2015

© Song Liangong; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-

commercial use, distribution and reproduction in any medium, provided the work is properly cited.

Fig. (3). Multi-granularity locking and multi-threaded performance test.

RETRACTED ARTICLE

