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Abstract: As for the non-linearity and non-stationary characteristics of the vibration signals of urban railway gearbox, an 
efficient method for gearbox fault detection and diagnosis based on EMD (empirical mode decomposition) and Elman 
neural network is proposed. First of all, the original signals are decomposed into a number of IMFs (intrinsic mode func-
tion) by EMD. Secondly, the feature vectors are constructed. Finally, these eigenvectors as fault samples input to the 
Elman neural network. The recognition results show that the EMD and Elman neural network is effective in railway gear-
box fault diagnosis. This approach can be used as a useful tool for the rotating machinery fault diagnosis. 
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1. INTRODUCTION 

Gear is a key component of the rotating machinery, in the 
harsh working conditions of the most vulnerable subjected to 
progressive deterioration [1]. A failure of the gearbox may 
cause breakdown of the urban rail vehicle. Therefore, a prac-
tical fault diagnosis of gearbox is necessary to monitor the 
vehicle. 

EMD is an adaptive signal processing method, and it is 
suitable for dealing with non-stationary and nonlinear signals. 
The decomposed components, which are called IMFs, can be 
determined from the signal characteristics. EMD is able to 
perform decomposition of the raw signal and automatically 
determine the level of decomposition based on the nature of 
that raw signal [2]. The neural network has a strong ability in 
nonlinear mapping and fault tolerance ability. Implementa-
tion of neural network nonlinear robust fault diagnosis is 
very easy. And Elman neural network have many more ad-
vantages than BP neural network, such as: faster conver-
gence speed, less training iteration, stronger robustness and 
no local minimum…etc [3]. So this paper aims to propose an 
effective method for railway gearbox fault diagnosis by us-
ing MD and Elman neural network. 

The arrangement of this paper are as follows. In section 2, 
we introduce the EMD method and the feature vector extrac-
tion algorithm. Section 3 defines the Elman neural network. 
In Section 4, Simulation results are proposed to demonstrate 
the effectiveness of the provided algorithm for faults  
 
 

diagnosis of urban railway gearbox. Finally, the Section 5 is 
the conclusions. 

2. EMD METHOD AND FEATURE VECTORS EX-
TRACTION ALGORITHM 

2.1. EMD Method 

EMD is an adaptive signal decomposition method, it can 
decompose non-linear and non-stationary data sequence into 
an AM/FM components or alike. These independent compo-
nents can be obtained are called intrinsic mode functions, it 
must satisfy the two conditions: (1) In the whole data set, the 
number of extrema and the number of zero-crossings must 
be different at most by one. (2) At any point, by the local 
maxima and local minima defined envelope average to zero 
[4]. 

Specific algorithm refers to reference [5], the initial sig-
nals )(tx  after EMD treatment can be express as: 
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2.2. Feature Vectors Extraction Algorithm 

The steps of time-frequency domain feature extraction 
are as follows: 
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(1) The vibration signals are broken into some IMFs by 
using the EMD method, the first n IMFs

  
c

i
(t) ，

   i = 1,2,3,!,n , which include the most dominant fault energy 
are chosen to extract the feature. 

(2) Calculate the energy-torque of every small time block 
The formula to calculate IMF energy-torque is: 
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For discrete signals, the formula to calculate energy-
torque is: 
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Where  m is the total number of sampling points, k is the 
sampling points, !t  is the sampling period. Calculating the 
energy-torque
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formula (3).  

 (3) Constructing the feature vector T in the elements of 
the energy-torque.  
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When the energy-torque is a larger numerical, normaliz-
ing  T and get the normalized feature vector   T
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The formula to calculate IMF energy-torque is [6]: 
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3. ELMAN NEURAL NETWORK MODEL 

The architecture of the Elman network which includes 
the input layer, the output layer, the hidden layer and the 
context layer is an extension of standard feedforward net-
works. The outputs context units and the external input neu-
rons are input to the hidden layer neurons. Context units are 
also memory units as they store the previous output of hid-
den neurons. Therefore, the nonlinear dynamic system of 
Elman neural network with dynamic memory function con-
tributes to the observed, improve storage stability [7, 8]. We 
express the network as follows: 

  
x(k) = f (w1x

c
(k)+ w2(u(k !1)))  (7) 

  
x

c
(k) = x(k !1)  (8) 

  
y(k) = g(w3x(k))  (9) 

Where   W
1 ,  W

2 ,  W
3 are the weight matrices of context 

units to hidden units, input units to hidden units and  
hidden units to output units respectively. 
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Fig. (1). Topology structure of Elman neural network. 
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Fig. (2). The time domain of normal signal. 

 

 
Fig. (3). The time domain of tooth wear signal. 
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Fig. (4). The time domain of tooth break signal. 

 

 
Fig. (5). Empirical mode decomposition of the normal signal. 
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Fig. (6). Empirical mode decomposition of the tooth wear signal. 

 

 
Fig. (7). Empirical mode decomposition of tooth break signal. 
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Table 1. Sample data of urban railway gearbox operation. 

 Training Sample Fault Status Fault Vector 

1 0.1174  0.5908  0.6973  0.1861  0.3144  0.1282  0.0285  0.0144 normal （1 0 0） 

2 0.1887  0.3189  0.5071  0.4293  0.6259  0.1513  0.0790  0.0164 normal （1 0 0） 

3 0.0113  0.1392  0.8922  0.3329  0.2678  0.0391  0.0193  0.0029 normal （1 0 0） 

4 0.1042  0.5003  0.7423  0.2223  0.3404  0.1456  0.0380  0.0047 tooth wear （0 1 0） 

5 0.1578  0.4230  0.7533  0.1284  0.4255  0.1727  0.0363  0.0042 tooth wear （0 1 0） 

6 0.0152  0.1278  0.8382  0.2471  0.3386  0.3193  0.0550  0.0087 tooth wear （0 1 0） 

7 0.0633  0.2865  0.8946  0.2818  0.1667  0.0788  0.0146  0.0036 tooth break （0 0 1） 

8 0.3968  0.8007  0.4364  0.0768  0.0576  0.0397  0.0128  0.0048 tooth break （0 0 1） 

9 0.0279  0.0689  0.9550  0.2139  0.1646  0.0951  0.0241  0.0049 tooth break （0 0 1） 

 
Table 2. Testing data. 

 Training Sample Fault Status Fault Vector 

1 0.1352  0.1824  0.3077  0.3482  0.8388  0.1670  0.0331  0.0072 normal （1 0 0） 

2 0.1585  0.2461  0.3391  0.6471  0.6130  0.0647  0.0235  0.0105 tooth wear （0 1 0） 

3 0.2359  0.4658  0.5524  0.4139  0.4910  0.0971  0.0128  0.0166 tooth break （0 0 1） 

 
Table 3. Testing results of elman neural network. 

Fault Status Fault Vector Actual Outputs Testing Results 

normal （1 0 0） （0.9326    0.0108    0.0112） normal 

tooth wear （0 1 0） （0.0209    0.9498    0.0279） tooth wear 

tooth break （0 0 1） （0.0176    0.0255    0.9662） tooth break 

 

respectively nonlinear activation function vector of output 
units and hidden units. 

The Elman neural network model is shown in Fig. (1). 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The original time waveforms of vibration signals of nor-
mal are provided in Fig. (2), tooth wear are provided in  
Fig. (3) and tooth break are provided in Fig. (4). The charac-
teristics of the two gearbox running a lot of noise. It is diffi-
cult to directly distinguish them by the time domain signals, 
because the differences among them are very small. Then 6 
IMFs are decomposed in each kind of the gearbox vibration 
signal, and it is shown in Fig. (5-7). After EMD decomposi-
tion, the feature vectors are constructed. The method is vali-
dated on two datasets, the parts of training data is listed in 
Table 1. The testing data is listed in Table 2. 

The network architecture used for fault diagnosis consists 
of 8 inputs, 8 hidden nodes, and 3 outputs corresponding to 3 
respective signals, such as normal signal, tooth wear signal 
and tooth break signal. 

The classifiers based on Elman neural network is trained 
and tested to identify the fault categories of the railway gear-
box. The testing results are shown in Table 3. As shown in 
this table, the classification of Elman neural network are all 
close to the corresponding ideal outputs of the examination 
sample, it is found to be satisfactory and we think that this 
system can be used in fault diagnosis studies in the future 
after it is developed. 

CONCLUSION 

In this paper, a method for gearbox fault diagnosis is 
proposed based on a developed signal processing tool named  
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EMD and Elman neural network. The testing results show 
that the provided method can correctly and effectively diag-
nose railway gearbox faults. Therefore, it can significantly 
improve the railway system safety and reducing maintenance 
costs, which will bring huge economic benefits and social 
benefits. At the same time, the proposed technique provides 
an effective and attractive method for the rotating machinery 
fault diagnosis. 
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