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Abstract: The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, as well 
as robotic and biological visions. The designs for CNN templates are one of the important issues for the practical applica-
tions of CNNs. This paper first describes and proves the local rules of the binary Point Extract (PE) CNN introduced by 
Roska et al., then extends the PE CNN to a gray similar neighborhood pixel remover (SNPR) CNN. The robust design 
theorem of the SNPR CNN has been established, using a PE CNN and a SNPR processes several images. The results 
agree with theoretical predictions. In particular, combining the SNPR CNN with median filtering approach is able to re-
move the salt & pepper noise in images.  
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1. INTRODUCTION 

The CNN was first introduced by Chua & Yang [1, 2] in 
1988. Its original intention was to find out a structure of neu-
ral network that is easier to implement than the Hopfield 
neural networks [3], which requires to be fully-connected 
and grows exponentially with the size of the array. Now 
CNN plays important roles in many fields such as image and 
video signal processing, robotics and biological visions, and 
data prediction [3-8]. 

In an analog cellular neural network, the parameter levers 
usually have 5% ∼ 10% of perturbation [9]. So, the robust-
ness designs for CNN template parameters are important for 
the practical applications of CNN. Chua and Dogaru [3, 5] 
have studied the robust designs of a large kind of CNN-
uncoupled Boolean CNNs, which provide optimal design 
schemes for CNNs with prescribed tasks. Since then, some 
robust designs for uncoupled and coupled CNNs have been 
studied [10-20], which have been used in image processing 
and pattern recognition. 

The rest of this paper has been organized as follows, Sec-
tion 2.1 describes and proves the Local Rules of the Point 
Extraction (PE) CNN introduced by Roska et al. [21]. Sec-
tion 2.2 extends the PE CNN to similar neighborhood pixels 
remover (SNPR) CNN, and proves a robust theorem for the 
SNPR. Section 3 gives examples of the application of the 
CNN. Conclusions have been drawn in Section 4. 
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2. ROBUSTNESS DESIGN OF CNN 

2.1. Introduction of CNN 

The standard CNN is composed of a two-dimensional 
M and N  array of cells. Each cell is denoted by ( , )C i j  
where 1,2, , ; 1,2, ,i M j N= =L L . The dynamics of each 
cell is given by the equation [3]: 
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For the Point Extraction (PE) CNN, the standard template 
has the following form [3]: 
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The performances of the PE CNN are described via its 
Global Task and Local rules: 

Global Tasks 

Given: A static binary  P  
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Input: 
  
U (t) = P   

Initial State: 
  
X (0) = P   

Output: 
  
Y (t) = Y (!) =Binary image representing all iso-

lated black pixels in P   
For processing binary Images, local rules of CNN can be 

summarized as follows: 

Local Rules 
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White independent of neighbors. 

Black if all pixels in the neighbors of the center pixel  

  
u

i, j
 are white. 

White if there is at least one black pixel in the 3 3×  
neighbors of the center pixel ,i ju . 

Now the following hypothesis has been suggested: 
Theorem 1: Assume that the template of the CNN is de-

fined by (2). Then the CNN can implement the Local Rules 
given above. 

Proof. In this case, Equation (1) becomes  
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From Fig. (1), it follows that: 
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Case 1. If 
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From Equation (3), it can be concluded the Local Rule 1 
can be satisfied. 

Case 2. If , 1i ju =  and all pixels in the 3 3×  neighbors of 

the center pixel 
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From Equation (3), it can be concluded the Local Rule 2 
can be satisfied. 

Case 3. If 
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= 1  and there is at least one black pixel in 

the 3 3×  neighbors of the center pixel 
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From Equation (3), it can be concluded the Local Rule 3 
can be satisfied. 

In summary, when all Local Rules 1-3 can be satisfied, 
this completes the proof. 

The PE CNN can extract the all isolated black pixels, and 
remove the black pixels with adjacent black pixels. An im-
age processing example of PE CNN is shown in the Fig. (2). 

2.2. SNPR CNN and Robustness Design Theorem 

Let  P  be a gray scale image with M ! N , pixels. As-
sume u  and 

  
u

1
 are two adjacent pixels of the image P . g  is 

a given threshold value of similarity degree between two 
pixels, 1u  is said to be similar to u , if 

  
| u

1
! u |" g , otherwise 

1u  is called dissimilar to u . For the SNPR CNN, it can re-
move the pixels with at least n  similar nearest neighbors. 

 
Fig. (1). Dynamic routes of the CNN where a=1. 
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Assume the template of the SNPR CNN has the following 
form: 
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We will design SNPR CNN such that it satisfies the fol-
lowing Global Tasks and Local Rules: 

Global Tasks 

1. Given: A static binary  P  
2. Input: 

  
U (t) = P   

3. Initial State:  
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1. Output: 
  
Y (t) = Y (!) = Binary image where the gray 

pixel with at least n  similar adjacent pixels (the differ-
ences of gray less than

 
g ) becomes white, or else be-

comes black. 

Local Rules 
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In the Initial State, the sign function will be redefined as 
follows: 
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Theorem 2: Assume  a >1 , Let the elements of CNN 
template be described by (4). Then the CNN can perform the 
Local Rules, if the following parameter inequalities hold: 
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Proof. When 1a > , From Fig. (3), it follows that:  
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Let 1p  and gp  denote, respectively, the total number of 
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This completes the Local Rule 1. 

 
Fig. (2). An image processing example of PE CNN. (a) The input image, and (b) the output image. 
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Case 2.  

When 
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Then from Equation (7), it follows that the Local Rule 2 is to 
hold, if the following inequality hold: 
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Hence if inequalities (6) hold, then Local Rule 1 and Lo-
cal Rule 2 both hold. This completes the proof. 

3. EXPERIMENTAL SIMULATIONS  

Firstly, let us use the SNPR CNN with parameters: 
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Z = 0,n = 1,g = 0.1  to process a gray image shown in Fig. 
(4a). The processed image is described as follows: the gray  
 

level of the image’s background is 0.25, the gray level of the 
independent pixels are 0.75, the other pixels’ gray difference 
with their neighbors’ less than 0.1. Observe that the pro-
cessed result in Fig. (4b) of the image is a binary image such 
that all the isolated gray pixels whose gray scale difference 
between it and its nearest neighbors is larger than g, have 
been changed to black ones. 

 Generally speaking, each pixel of a gray scale image has 
some similar nearest pixels. While there is no such common-
ly held property for the pixels which are salt & pepper noise. 
So, the SNPR CNN is able to extract the salt & pepper noise 
in an image. Then, we can use the median filtering approach 
to filter them off. The process of removing salt & pepper 
noise is described by the following: 

1. Extracting the noise: in order to sufficiently extract the 
noise from an image P , the threshold g  should not be too 
big, and n  should not be too small. We choose 

  
g = 0.1  and

  n = 2 . Use the SNPR CNN to extract the salt & pepper 
noise. The extracting result is a binary image denoted by  P1 . 

 

 

 

Fig. (3). Dynamic routes of the CNN where 1a > .  

 

 
Fig. (4). An example of the standard SNPR CNN. (a) The input image, and (b) the output image. 
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2. Filtering the noise: find all the positions of the white 
pixels in the image  P1 . Using median filtering approach to 
filter the pixels in the image  P  in the corresponding posi-
tion. Then, obtain an image without the salt & pepper noise, 
denoted by  P2 . 

Now we give examples. The images in the top row of 
Fig. (5) are the Lena portraits with different noise intensities. 
Fig. (5)(a) is the Lena portrait with 0.01 noise intensities. 
Fig. (5)(b) is the Lena portrait with 0.02 noise intensities. 
Fig. (5)(c) is the Lena portrait with 0.05 noise intensities. 
The processed Lina images by median filtering approach in 
matlab are shown in the middle row of Fig. (5). The pro-
cessed Lina images via the SNPR CNN with median filtering 
approach are shown in the bottom row of Fig. (5). 

Then we use the criterion Peak Signal to Noise Ratio 
(PSNR) Mean Square Error (MSE) and Mean absolute Error 
(MAE) to compare median filtering approach with our meth-
od. Assume  P  is an original image,  I  is the processed im-

age, the size of  P  is m! n . PSNR, MSE and MAE are de-
fined in Equation (8). 
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It is well-known that the larger the PSNR value, the bet-
ter the efficacy of reducing noise; the smaller the MSE and 
MAE values, the better the efficacy of reducing noise. Ta-
bles 1-3 listed the comparison data of the median filtering 
approach and the SNPR CNN with median filtering ap-
proach. 

 

 
Fig. (5). Comparison of median filtering and our method. The images shown in the top row are the Lena portraits with different noise intensi-
ties. The ones in the middle row are processed images by median filtering approach. The ones in the bottom row are processed images via the 
SNPR CNN with median filtering approach. 

 

Table 1. Result for Lena with 0.01 noise intensity. 

Methods\criterion PSNR MSE MAE 

Median Filtering 41.7285 4.3675 0.8041 

Our Method 55.2463 0.1943 0.0295 
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It has been observed that the PSNR value of the SNPR 
CNN with median filtering approach is larger than the one of 
median filtering approach; the MSE and MAE values of the 
SNPR CNN with median filtering approach are smaller than 
the ones of median filtering approach. 

CONCLUSION 

The PE CNN is first proposed by Roska et al. in [21] 
with the aim to extract the isolated black pixels in the binary 
image. This paper sets up theorem 1 to illustrate what Local 
Rules of the PE CNN should be satisfied, and proves them. 
An image processing example illustrates the efficacy of theo-
retical results in computer simulations. 

Then we extend the PE CNN to SNPR CNN via design-
ing its specific initial state defined Equation (5). This tech-
nique makes the SNPR CNN to be able to process gray scale 
image. Robustness Theorem 2 for the SNPR CNN is pre-
sented.  

Median filtering approach is an effective tool to filter out 
the salt & pepper noise in images. This paper combines the 
SNPR CNN with median filtering approach to process the 
images with different intensities of salt & pepper noises. 
Comparing our approach with the median filtering approach 
shows that our approach is promising. 
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