
Send Orders for Reprints to reprints@benthamscience.ae

646 The Open Automation and Control Systems Journal, 2015, 7, 646-654

 1874-4443/15 2015 Bentham Open

Open Access
Software Reconfiguration Patterns for Instrumentation Architectures

Dengpan Zhang and Hongli Zhu*

Henan Polytechnic University, Jiaozuo, China

Abstract: Dynamic reconfiguration in all kinds of applications is absorbing more and more research focus for its demand
in automatic measurement system for low-cost products and short time to market. This study proposes a software recon-
figuration instrumentation architecture, which is built on component and software data bus models. In the architecture, the
measurement system software is viewed as an integration of a set of reusable components, which are modeled with rout-
ing workflow for measurement, data process logic for execution of behavioral specifications and a series of communica-
tion ports for data exchange with others. The behaviors of the instrumentation system software can be viewed as an inte-
gration of components and their interactions and specified in application specification, which is based on routing work-
flow and independent of component implementation. When the measurement system needs to be reconfigured to adapt to
the changing application requirements, the software using the architecture can be easily reconfigured by changing reusable
components and their interactions in application specification and reconfiguration can be achieved at the executable code
level after the software is implemented. Finally, a reconfigurable measurement platform based on above software architec-
ture for testing engineering signal has been developed and the goal of higher reconfiguration, lower development and
maintenance costs are achieved with the proposed architecture.

Keywords: Reconfigurable software, Measurement system, Software bus, Component model, Workflow.

1. INTRODUCTION

Software Reconfigurable instrumentation patterns have
been presented to adapt to the change of market conditions
and requirements of customers. Flexibility, reuse and recon-
figuration are the main characters that are defined as the abil-
ity to repeatedly change and rearrange the components of a
system in a cost-effective way [1, 2].

Instrumentation that serves as the important part of in-
dustrial applications tends to be updated and changed many
times during its lifetime. Object-oriented model has been
addressed to describe, analyze, and design the measurement
system and the object model of measurement domain are
presented to support the reuse of component, but the object
model tends to be simple without considering the evolution
of component and the coupling interactions of components
[3].

With the rapid development of computer and electronic
technologies, virtual instruments were brought forth at the
beginning of the 1990s and now are widely used in the
measurement fields of industrial products. Several commer-
cially available integrated development platforms, such as
LABVIEW and VEE, provide users with a graphically pro-
gramming way to quickly build all kinds of measurement
systems. In these platforms, function components are pre-
implemented, but reusability and reconfiguration can only be
achieved in the design time [4, 5].

Component-based model, design and integration have
been the main focus of software engineering for many years

*Address correspondence to this author at the Henan Polytechnic Universi-
ty, Jiaozuo, China; E-mail: albert_12@126.com

and recently are widely used in industrial measurement and
automation application to support reusability and reconfigu-
ration [6, 7]. Some architecture such as common object re-
quest broker architecture (CORBA), component object mod-
el (COM) and Enterprise Java Beans (EJB) have been pre-
sented to support implementations of reuse and reconfigura-
tion, but these models depend on middleware servers and are
not suitable for measurement systems due to their high sys-
tem overhead [8-10] .

Actor model based software architecture explicitly speci-
fies the interaction of components and consists of a set of
actors that can be pre-implemented to glue components in
the design of real-time system [11, 12]. However, the behav-
iors of the implemented actors are not reconfigurable. A sim-
ilar actor concept by adding hierarchy and behaviors are used
to make the actors more suitable for applications [13]. All
these models are presented mainly for reusing specification
in the design phase and without an explicit consideration of
reconfiguration after implementation.

Reconfigurable software architecture for measurement
system presents a control plan language to describe the re-
configurable behaviors of components and their integration
and reconfiguration can be achieved to meet the change of
application requirements, but components communicate with
others through a routing table inside themselves with a direct
way, which makes the reconfiguration of interactions of
components become complex [14, 15].

The goal of this paper is to enable the reuse of imple-
mented components in industrial measurement applications.
In the architecture, the interactions of components are im-
plemented by workflow model which consists of event-based

Software Reconfiguration Patterns for Instrumentation Architectures The Open Automation and Control Systems Journal, 2015, Volume 7 647

external interfaces, components can be structurally integrated
into the system and communicate with others with the rout-
ing table in the software bus.

The main valuable contribution of this paper lies in sepa-
rating application specifications, including component con-
figurations and interactions of components by workflow
from the routing models, so that different applications can be
reconfigured independently when the system is in run-time.

The rest of this paper is organized as follows: Section 2
describes the architecture for building the reconfigurable
instrumentation system, including hierarchy software data
bus structure, component model and application specifica-
tion with dynamic interpreter mechanism. Section 3 de-
scribes the behaviors of reconfiguration and the implementa-
tion with the example. Section 4 draws some conclusions
and presents the future work.

2. THE ARCHITECTURE OF THE INSTRUMENTA-
TION SYSTEM

2.1. The Reconfiguration Management Framework

The reconfiguration of the instrumentation allows the
measurement platform to be changed while the measurement
process is in execution, which can be looked as data stream
processing system. The reconfiguration can be abstractly
viewed as change to components properties and data flow
sequences. The former describes the functionality of compo-
nents and the latter defines the interactions of components.
Reconfigurable instrumentation is a component-based sys-
tem developed in C/C++, where data driven applications are
assembled from components communicating via workflow
events. The workflow of the events is considered as applica-
tion specification, which are addressed in our previous re-
search [15].

The instrumentation system consists of pre-built meas-
urement component library, dynamic script interpreter and
software data bus, as shown in Fig. (1). In the architecture,
application specification is customized with script that pro-
vides control over the measurement process.

The script describes measurement sequences at a high-
level abstraction and supervises execution by sending control
events to components, which processes or visualizes the da-
ta. Script can be dynamically interpreted and components are
assembled into the platform. RMS (Reconfigurable Meas-
urement System) is expressed as a composition of communi-
cating components and the interactions of components,
which are implemented by software bus.

Software data bus provides a communication architecture
where data-driven components communicate via events and
offer dynamic linking of component upon loading and serve
as the mediator in inter-component communication.

The component library consists of a set of general pur-
pose components and is supplemented by application domain
specific components, which group measurement components
and other modules and are unique to various specific appli-
cation and hardware. Components have been developed for
data acquiring, data analyzing and data displaying.

Such a software framework breaks the dependency be-
tween the application behaviors and RMS platform. High-
level reconfiguration can be achieved and the framework
supports the same application specification running on dif-
ferent RMS platform and different application specifications
running on the same platform which needs to be reconfig-
ured only when the component library changes and the ap-
plication specification needs to be altered when the require-
ment of measurement process changes.

2.2. Component Model

A Component is a unit of composition with provided and
required interfaces. Similar to an object, a component may
encapsulate state and provides interfaces, define services the
component offers to others. Components are distinguished
from objects in that they are configuration independent,
which is defined by explicitly required interface, interaction
independence and conforming to a binary standard. Compo-
nents are pre-implemented software modules and are used as
building blocks to construct the measurement software. A
component defines the functionality of a device or subsys-
tem, which can be as simple as a device like a data

Component Properties Data Routing Configurations

Dynamic Interpreter

Software Data Bus

Component
Library

Component ComponentComponent

Application Specification

⋯⋯

Fig. (1). Reconfiguration architecture of the instrumentation.

648 The Open Automation and Control Systems Journal, 2015, Volume 7 Zhang and Zhu

acquisition board and a signal process algorithm like Fast
Fourier Transform Algorithm (FFT) or as complex as com-
posed subsystem like oscillograph.

A component interacts with others to obtain the desired
services by routing tables in a dynamic configured measure-
ment system. The services that each component provides are
specified as acceptable external events and other components
can invoke the desired functions based on component work-
flows. Such interactions are constructed during design time
and can be changed only at some predefined safe state like
configuration state during running time. The structure of a
measurement software component includes a set of external
interfaces with configuration manager and routing tables,
communication interfaces with receive and send ports , in-
ternal event interfaces with own proprieties management
mechanisms and data processing logic of the workflow, as
shown in Fig. (2).

This model makes the component different from com-
monly used model such as CORBA, DCOM and EJB, which
are usually based on remote procedure calls and heavily de-
pend on predefined middleware services such as naming and
look up services.

External interfaces are designed to provide component
functions to other components, which define operations that
can be invoked from outside and are presented as a set of
acceptable events in the workflow model. And they enable
operations to be configured and allow components to be in-
tergraded into the measurement system at run-time. A cus-
tomizable event routing mechanism is devised and added in
each component to achieve the relationship with software
bus. Such a routing mechanism separates the implementation
of component with its interfaces and the routing table can be
customized without knowing interactions with other compo-
nents. A configuration management mechanism is also added

to perform run-time monitoring of the type of received
events, only those events invoked by authorized and ac-
ceptable events will be executed to add or delete the routing
relationship with other components. These customizations
can be predefined in the application specifications, loaded
and modified in run-time.

Communication ports are used to connect components for
integration, which serve as physical interfaces of a compo-
nent. Each communication port has a set of attributes associ-
ated with it which define the type of communication port
(sending or receiving), data exchange methods (shared
memory, event-driven), the way of communication (syn-
chronous or asynchronous), as is shown in Fig. (3).

Workflow logic module is the best important part of a
component. It receives the data and invokes process func-
tionality immediately and then the result will be packed and
transformed to the communication port.

Internal interfaces define channels to access the internal
properties of a component and separate internal properties
from functionality and support components reconfiguration
at executable level. Internal interfaces can be used for users
to modify the parameters at run-time. In the architecture,
internal interfaces can be divided into displaying and func-
tional interfaces, the former are used to access geometry and
colorful parameters and the later are designed to modify
function parameters such as data acquired frequency and
data acquired channel.

When the system begins to run, each component receives
events from its communication ports, external and internal
interfaces. The acceptable events are then translated and sent
to workflow logic. The workflow logic will perform one or a
sequence of function calls and generate result, and then the
result will be packed and sent to the corresponding compo-
nents.

Routing Table

Properties

Configuration
Manager

Workflow
Logic

Communication Port

Fig. (2). Reconfigurable component model.

Component
A

Component
B

Component
K

Component
O

Component
P

Component
P

Data

Fig. (3). Data exchange patterns.

Software Reconfiguration Patterns for Instrumentation Architectures The Open Automation and Control Systems Journal, 2015, Volume 7 649

2.3. Software Bus Model

Software data bus serves as the component connector in
dynamic reconfiguration application and provides a virtual
address routing mechanism for components to communicate
with each other. Software bus separates the interaction speci-
fications from component implementation and reconfigura-
tion of interactions of components can be easily achieved at
run-time. This makes our connection model different from
commonly used model. The structure of software bus in-
cludes software bus controller with an interaction routing
table, external event interfaces and assembling port.

In a reconfigurable instrumentation, each component
needs to configure the interested interactions with the soft-
ware bus and components are more interested in the types of
events. Software data bus controller or management module
is designed to manage all response interactions of compo-
nents in the routing table and it avoids direct connection of
components and keeps flexible interactions and facilitates
the reconfiguration of instrumentation system.

Assembling port is designed to provide a channel for
software data bus controller to load the interaction configura-
tion in routing table (see Fig. 4). When the analysis of appli-
cation specification by dynamic interpreter in the design time
is finished, the interaction can be dynamically reconfigured
with the change of application specification.

External event interfaces are added for the components
that are plugged into the software data bus to dynamically
change their communication relations with others. The ex-
ternal events consist of the request for adding, modifying and
deleting.

In order to configure the instrumentation system flexibly,
the data bus is very important. It takes the role of linking
components, transferring measurement data and controlling

the execution of the program. To implement the data ex-
change, two extensions are done for the data bus. First, data
bus can connect to the components in the current tasks; se-
cond, the output data can be sent to all the components
which are connected to the data bus, as is shown in Fig. (4).

The instrumentation components are designed with spe-
cial interfaces to connect to the data bus (see Fig. 5). Attrib-
utes are used to define work parameters of the component.
Interfaces are used to connect to data bus. In this way, the
components can receive data or send data only by interface
APIs which is different from the traditional designing pat-
terns.

2.4. Dynamic Interpreter Model

Dynamic interpreter is used to extract the information of
component properties and interactions relationship step by
step from the application specification script. Software re-
configuration platform loads components information ac-
cording to the globally unique identifier. The components
will be uploaded, fixed and registered according to the uni-
form resource locator included in the script if the identifier
information is not found in the operation system. After the
loading of components is implemented, the interpreter con-
tinues to explain the application specification and compo-
nents are plugged into the software bus. Fig. (6) introduces
the dynamic interpreter model of reconfiguration instrumen-
tation platform.

2.5. Data Stream Based Control Model

The reconfiguration instrumentation platform includes a
series of software instrumentation components, such as data
acquiring components, digital filtering components and spec-
trum components. Each component implements a type of

Data Bus
Controller< >

Configuring
Table

Information Exchange Bus Data Exchange Bus

D

E
F

Fig. (4). Software data bus model.

Attributes Interfaces

Fig. (5). The reconfiguration instrumentation component model.

650 The Open Automation and Control Systems Journal, 2015, Volume 7 Zhang and Zhu

function, such as data processing, data editing and data dis-
playing. These components connect with each other accord-
ing to the data processing sequences. When the data stream
flows through connected components, the data are processed
step by step until the end of the components (see Fig. 7). All
the components exchange data based on the control infor-
mation from the platform and the information is exchanged
through control data bus, as is shown in Fig. (7).

3. DYNAMIC RECONFIGURATION AND IMPLE-
MENTATION

3.1. Dynamic Reconfiguration

When the measurement cases are reconfigured, the plat-
form can produce the text based XML(Extensible Markup
Language), which store all the information of instrumenta-
tion cases. All the components included in the cases can be
classified into four categories, such as indicator components
used to display analysis results, control components used to
receive user’s input, Driver components such as DAQ used
to control hardware to get measurement data and Data pro-
cessing or Algorithm components used to process measure-
ment data.

3.1.1. Interface Description of Control Components

The Knob component is used to receive user’s operation
information which only writes data to data bus. The language
of the component includes attributes that are used to define
its size, position, color and interface that are used to send
user’s operation data. According to Fig. (8), the center of the
knob is (60,60), the radius of the knob is 30, the background
color of the component is green, and the pin color is red. The
range of user’s input is (0 5). And user can send the opera-
tion value to the line ID 3.

When the related measurement objects need to be meas-
ured, users can send control instructions by uniform proto-
cols to the measurement component, and then the configura-
tion manager interprets the protocols and configures the
working patterns. At the same, the manager constructs a new
working process to carry out the measurement tasks.

3.1.2. Interface Description of Indicator Components

The indicator component is used to display analysis re-
sult. It only receives data from data bus. Its XML tag in-
cludes attributes that are used to define its size, position and
color, and terminals that are used to receive measurement
data. For example, Fig. (9) is a XML tag of meter. The script

Sucecess?

Load

Interpret Component

Plug Into Soft Bus

Interpreter Embedded In
Components

N

Y

Component Properties

Component A

Component B

⋯⋯

Interactions

Component Z

Start Flag

End Flag
Upload and Configure

Fig. (6). Dynamic interpreter model.

Component Component Component

n

a
b
c

Control data

data stream

Fig. (7). The data stream among the measurement components.

Software Reconfiguration Patterns for Instrumentation Architectures The Open Automation and Control Systems Journal, 2015, Volume 7 651

assembles a meter in the front panel of the platform. The left,
top, right and bottom of the meter are 10,10,110 and 75. The
background color of the meter is light yellow. The text color
and pin color of the meter are black. The meter receives
measurement data from the pipeline 10.

3.2. The Process of Dynamic Reconfiguration

Reconfiguration of instrumentation system consists of
structural changes, including addition, removal and replace-
ment of components, as well as system reorganization.

Fig. (10) is the block diagram of a bearing diagnosis sys-
tem. The system is divided into the data acquisition compo-
nent, band-pass filter component, envelop-processing com-
ponent, power spectrum component and display component.
The vibration signal of the bearing are acquired, processed
and transmitted along components according to the meas-
urement workflow.

Components additions and removals are necessary when
new devices and signal process arithmetic are integrated into
the systems. Such reconfiguration can be done by adding or
removing the corresponding components. For component
additions, the modification of exist system is minimized if
the new added components can communicate with existing
components. The event routing and register mechanism of
new added components may need to be realized to satisfy
their interactions with other components. On the other hand,
removal of a component requires updating the routing table
of acceptable events, which are used to communicate with
the removed components.

Components may need to be replaced when an existing
device or signal process subsystem in the platform is re-
placed. Replacement can be achieved with a component re-
moval followed by a component addition and easily realized
if the added component has the same configuration as the
removed one, otherwise, the new component and the

<Knob>
<Center value=”60 60”/>
<Radius value=”30”/>
<BgColor value=”Green”/>
<FgColor value=”Red”/>
<MinMax value=”0 5”/>
<OutLine value=”3”>

</Knob>

Fig. (8). Knob component and its reconfiguration tag.

<Rectangle Meter>
<Keyword value=”meter”/>
<Position value=”10 10 110 75”/>
<Bg value=”light yellow”/>
<FgColor value=”black”/>
<InLine value=”3”>

</ RectangleMeter >

Fig. (9). Rectangle meter component and its reconfiguration tag.

Software Bus
Controller

A
B
C
D
E

Bearing

DAQ

Filtering Envelop Spectrum Display

Fig. (10). The Reconfigurable measurement and diagnosis system.

652 The Open Automation and Control Systems Journal, 2015, Volume 7 Zhang and Zhu

components it communicates with, as well as the event rout-
ing and register information, need to be reconfigured.

System reorganization requires changes of interactions of
components. It usually occurs when the relationships bet-
ween components change or when platform changes. With the
software data bus and component model in our framework,
reorganization of component relationships can be achieved
by modifying the corresponding routing address of software
bus and reorganization of platform configurations can be
achieved by customizing the application specifications.

3.3. The Implementation of Dynamic Reconfiguration

The instrumentation platform has been developed for all
kinds of experiences of engineering signal processing and is
composed of instrument hardware, I/O interface, instrument
driven program and software development environment, as
shown in Fig. (10).

In the platform, the traditional development process has
been replaced by a new one, which uses a component-based
technology. Using this technology, systems are assembled
from a set of components without traditional programming
effort, as shown in Fig. (11). The selected components adapt
to their roles by setting their properties.

A series of measurement programs have been constructed
using the platform. The cases consist of hardware-objected
components, data processing components, data visualization
components and data archival components.

When the requirements of users are changed, the recon-
figuration can be easily achieved by modifying application
specification. A measurement system for vibration meas-
urement is easily achieved by defining a new application
specification, as is shown in Fig. (11).

3.4. Application Example
The platform using software reconfiguration patterns in

instrumentation design is developed for industrial application.
To better highlight the obtainable improvements with the
proposed methods for instrumentation application, the im-
plementation of the application is described.

In this section, the reconfiguration case of vibration
measurement and analysis for fault diagnosis is shown. In
this case, the components include one DAQ(Data Acquisi-
tion), two signal processing units, four wave information
showing units, and two data listing units, etc., (see Fig. 12).

Instrument Hardware

Vibration
Velocity
Test-Bed

Acceleration
Test-Bed

Signal
Condition

A/D

DAQ interface

Instrument Driven

Instrumentation
Cases

 I/O Interface

 Instrument Driven Program

Reconfigurable
 Instrumentation System Platform

⋯⋯

Measurement Objects

Fig. (11). Reconfiguration architecture of instrumentation system.

 Vibration Measurement and Analysis for Fault Diagnosis
Vibration Acceleration Analysis Vibration Velocity Analysis

First peak
value

Second peak
value

Third peak
value

Fourth peak
value

Fifth peak
value First peak

value
Second peak

value
Third peak

value
Fourth peak

value
Fifth peak

value

Amplitude

Frequency

Amplitude

Frequency

Fig. (12). Instrumentation cases of reconfiguration patterns.

Software Reconfiguration Patterns for Instrumentation Architectures The Open Automation and Control Systems Journal, 2015, Volume 7 653

At first, according to the measurement requirements, the
required components in the component library are selected
and initialized. Based on the data flow of the measurement
process, all the components are linked and the logical linking
information is managed by the platform.

In case of the instrumentation application, all the meas-
urement components are configured to work in the auto
mode, so at its running stage, all the components can be
driven by the measurement data flow automatically. If the

data arrives, the data bus managing module of the platform
informs the relative components to receive data and process
it. As the variety of the input variables is defined, so the in-
terfaces between the linked components are same in the data
style. Fig. (13) and Fig. (14) present the reconfiguration pro-
cess of the measurement instrumentation.

During the reconfiguration process, the software compo-
nents required are selected and the attributes of selected
components are configured. All the components have input

<?xml version="1.0" encoding="UTF-8"?>
<XVICL>
<Controls/>
<ControlButton1 ControlID="70001" X="1023" Y="766" Width="113" Height="43" DataLine="1" ArrayDataLine="0" DataLineOut="0" maxValue="-1" Text="text"/>
<ControlWaveform1 ControlID="70002" X="91" Y="192" Width="500" Height="200" DataLine="-1" ArrayDataLine="5" DataLineOut="0" maxValue="-5000" Text="Amplitude/G"/>
<ControlWaveform2 ControlID="70003" X="92" Y="424" Width="500" Height="200" DataLine="-1" ArrayDataLine="11" DataLineOut="0" maxValue="-1" Text="text"/>
<ControlWaveform1 ControlID="70004" X="624" Y="195" Width="500" Height="200" DataLine="-1" ArrayDataLine="6" DataLineOut="0" maxValue="-5000" Text="Amplitude/G"/>
<ControlWaveform2 ControlID="70005" X="641" Y="427" Width="500" Height="200" DataLine="-1" ArrayDataLine="21" DataLineOut="0" maxValue="-1" Text="text"/>
<ControlList ControlID="70006" X="92" Y="651" Width="500" Height="100" DataLine="-1" ArrayDataLine="12" DataLineOut="0" maxValue="-1" Text="text"/>
<ControlList ControlID="70007" X="648" Y="645" Width="500" Height="100" DataLine="-1" ArrayDataLine="22" DataLineOut="0" maxValue="-1" Text="text"/>
<CControlDAQ ControlID="70008" X="719" Y="773" Width="44" Height="42" DataLine="1" ArrayDataLine="5" ArrayDataLineII="6"DataLineOut="2" maxValue="-1" Text="text"/>
<ControlPeakVal ControlID="70009" X="550" Y="771" Width="44" Height="42" DataLine="11" ArrayDataLine="12" DataLineOut="0" maxValue="-1" Text="text"/>
<ControlSignalFFT ControlID="70010" X="611" Y="772" Width="45" Height="41" DataLine="-1" ArrayDataLine="-1" DataLineOut="0" maxValue="-1" Text="text"/>
<ControlSignalFFT ControlID="70011" X="667" Y="772" Width="43" Height="44" DataLine="5" ArrayDataLine="11" DataLineOut="0" maxValue="-1" Text="text"/>
<ControlPeakVal ControlID="70012" X="491" Y="770" Width="47" Height="42" DataLine="21" ArrayDataLine="22" DataLineOut="0" maxValue="-1" Text="text"/>
<ControlTextH ControlID="70013" X="0" Y="0" Width="0" Height="0" DataLine="-1" ArrayDataLine="0" DataLineOut="0" maxValue="-1" Text="Vibration Measurement and Analysis
for Fault Diagnosis"/>
<ControlTextH ControlID="70014" X="0" Y="0" Width="0" Height="0" DataLine="-1" ArrayDataLine="0" DataLineOut="0" maxValue="-1" Text="Vibration Acceleration Analysis"/>
<ControlTextH ControlID="70015" X="0" Y="0" Width="0" Height="0" DataLine="-1" ArrayDataLine="0" DataLineOut="0" maxValue="-1" Text="Vibration Velocity Analysis"/>
</XVICL>

Fig. (13). The instrumentation document.

1

5 6

11 21

11 21

12 22

Array data flow

ID
State
Line ID
Color
Size

ID
Line ID
Signal line
Signal line
DAQ
S.F
Color
Size

ID
Array Type
Max Value
Min Value
Y text
Color
Size

ID
Array Line
Freq Line
Color
Size

Attributes

Attributes

Attributes

Attributes

Color
Size

ID
Array Type

Attributes

70001
False

1
d2c0fe

120, 50

70005
1
5
6
2

5000
d2c0fe

48, 48

70002
5

1000
-1000

/G
d2c0fe

508, 208

ID
Array Type
Max Value
Min Value
Y text
Color
Size

Attributes
70002

5
100
0
/G

d2c0fe
508, 208

ID
Array Type
Max Value
Min Value
Y text
Color
Size

Attributes
70002

6
1000

-1000
/G

d2c0fe
508, 208

Attributes
ID
Signal line
Signal line
Color
Size

70006

5
11

d2c0fe
48, 48

Attributes
ID
Signal line
Signal line
Color
Size

70006

6
21

d2c0fe
48, 48

70007
11
12
d2c0fe

50, 40

ID
Array Line
Freq Line
Color
Size

Attributes
70007

21
22
d2c0fe

50, 40

70008
12

d2c0fe

500, 100

First peak
value

Second peak
value

Third peak
value

Fourth peak
value

Fifth peak
value

Amplitude

Frequency

57.7 56.2 49.752.1 49.4

20.03 30.05 40.06 87.64 150.23

First peak
value

Second peak
value

Third peak
value

Fourth peak
value

Fifth peak
value

Amplitude

Frequency

60.0 38.2 2.82.9 2.5

20.03 40.6 130.20 200.31 468.23
Color
Size

ID
Array Type

Attributes

70008
22

d2c0fe

500, 100

Single value data flow

Fig. (14). The reconfiguration process of instrumentation case and its data flow.

654 The Open Automation and Control Systems Journal, 2015, Volume 7 Zhang and Zhu

interfaces and output interfaces, the two components which
exchange data must have the same kind of data type. On the
other hand, the management module of the platform sched-
ules the data exchange among the components according to
the data bus line. When the instrumentation case is built, the
platform can finish the text document (XML) of the instru-
mentation which can be read and interpreted by the platform.
Fig. (13) is the total text document based on the XML lan-
guage.

The reconfiguration software instrumentation can acquire
the vibration signal from the production device; the signal
includes vibration acceleration data and vibration velocity
data. Based on the data bus, the value can be shown as wave,
and then the data can be processed by the FFT components
which can transfer the time-domain data into frequency do-
main. The characteristic parameters list is given in list com-
ponents. When the applied requirements of users are changed,
the reconfiguration can be easily achieved by modifying ap-
plication specification.

4. CONCLUSION

In this paper, we presented a kind of instrumentation ar-
chitecture based on software reconfiguration patterns for
constructing reconfigurable measurement system. Such in-
strumentation reconfiguration will enable adaptation to the
change of application requirements. In the architecture, re-
configurable software consists of communication compo-
nents that are modeled with a set of workflow based extern
interfaces, internal interfaces, data process logic and a series
of communication ports. Behaviors of software reconfigura-
tion platform are specified in application specification rout-
ing roles and reconfigurable workflow logic. Hierarchy
software data bus and composition component model are
addressed to achieve high-level reconfiguration and data
flow model is presented to realize data exchange of compo-
nents. Structure and behavior reconfigurations can be
achieved by changing the composition of components and
modifying the application specifications respectively. Recon-
figuration without structural changes inside the existing
components, does not require code regeneration and execut-
able code level reconfiguration can be easily achieved. A
series of measurement programs running on the instrumenta-
tion platform for testing engineering signal has been devel-
oped and can be reconfigured to meet the changing require-
ments of users, which show that such software is more flexi-
ble, reused and reconfigurable.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.
ACKNOWLEDGEMENTS

This work is supported by the National Science Founda-
tion of China (Grant No.50275061) and the National High
Technology Research and Development Program (Grant
No.2008AA04Z133).

REFERENCES
[1] M.G. Mehrabi, A. G. Ulsoy, and Y. Koren, "Reconfigurable manu-

facturing systems: Key to future manuf.," J. Intell. Manufac., vol.
11, no. 4, pp. 403-419, 2000.

[2] P. Spicer, and H. J. Carlo, "Integrating reconfiguration cost into the
design of multi-period scalable reconfigurable manufacturing sys-
tems," J. Manuf. Sci. Eng.-Trans. ASME, vol. 129, no. 1, pp. 202-
210, 2007.

[3] Q. P. Yang, and C. Butler, "An object-oriented model of measure-
ment systems," IEEE Trans. Instrum. Meas., vol. 47, no. 1, pp.
104-107, 1998.

[4] S. Kohout, J. Roos, and H. Keller, "Automated operation of a
homemade torque magnetometer using LabVIEW," Meas. Sci.
Technol., vol. 16, no. 11, pp. 2240-2246, 2005.

[5] D. Hyun, and J. Kim, "Study of external humidification method in
proton exchange membrane fuel cell," J. Power Sources, vol. 126,
no. 1-2, pp. 98-103, 2004.

[6] W. Kozaczynski, and G. Booch, "Component-based software engi-
neering," IEEE Softw., vol. 15, no. 5, pp. 34-36, 1998.

[7] W. M. P. van der Aalst, K. M. van Hee, and R. A. van der Toorn,
"Component-based software architectures: a framework based on
inheritance of behavior," Sci. Comput. Program., vol. 42, no. 2-3,
pp. 129-171, 2002.

[8] I. Gorton, and A. Liu, "Evaluating the performance of EJB compo-
nents," IEEE Internet Comput., vol. 7, no. 3, pp. 18-23, 2003.

[9] D. N. Gray, J. Hotchkiss, S. LaForge, A. Shalit, and T. Weinberg,
"Modern languages and Microsoft’s component object model,"
Commun. ACM, vol. 41, no. 5, pp. 55-65, 1998.

[10] T. F. Lunney, and A. J. McCaughey, "Component based distributed
systems - CORBA and EJB in context," Comput. Phys. Commun.,
vol. 127, no. 2-3, pp. 207-214, 2000.

[11] I. Crnkovic, and M. Larsson, "Challenges of component-based
development," J. Syst. Softw., vol. 61, no. 3, pp. 201-212, 2002.

[12] D. B. Stewart, R. A. Volpe, and P. K. Khosla, "Design of dynami-
cally reconfigurable real-time software using port-based objects,"
IEEE Trans. Softw. Eng., vol. 23, no. 12, pp. 759-776, 1997.

[13] M. Moallem, "Design and implementation of computer control
software," IEEE Control Syst. Mag., vol. 25, no. 1, pp. 26-29,
2005.

[14] S. G. Wang, and K. G. Shin, "Task construction for model-based
design of embedded control software," IEEE Trans. Softw. Eng.,
vol. 32, no. 4, pp. 254-264, 2006.

[15] L. He, and D. Zhang, "XVIML: an extensible virtual instrument
markup language," In: IEEE AUTOTESTCON 2005, Orlando, Flor-
ida, Sep 26-29, 2005, pp. 36-42.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Zhang and Zhu; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

