
Send Orders for Reprints to reprints@benthamscience.ae

710 The Open Automation and Control Systems Journal, 2015, 7, 710-717

 1874-4443/15 2015 Bentham Open

Open Access

Method for Ultra-precision FPU Integration based on Fine-Grained
Control

Qing-yu Chen and Long-sheng Wu
*

Xi’an Microelectronics Technology Institute, Xi’an 710054, China

Abstract: In general, the FPU and processor are decoupled in the method for FPU integration, in which the communica-

tion between them requires software intervention and ultra-precision FPU is unsupported. To avoid this problem, a

method based on fine-grained control for integration of FPU into the RISC processor is proposed in this paper. In terms of

operand width of floating-point instructions, the method divides floating instructions into three categories: S, D and U,

and further subdivides the execution status of S, D and U. Then, it regards the execution status as basic granularity to gen-

erate the FPU control information and moves the control information needed by destination operands to the next pipeline

stage. Finally, segmentation of destination operands is achieved in different pipeline stages and the destination operand is

written to register file after segmentation with the pipeline. An 80-bit FPU is embedded into a SPARC V8 processor based

on the proposed method. The results of implementation and verification show that the critical path of floating instructions

decreases by 37.3%, hardware consumption reduces by 16.9% and the floating-point calculation efficiency increases 1.7

times. The proposed method can be used to apply the ultra-precision FPU embedded into the RISC processor, and to make

an efficient collaborative computing between them at low hardware overheads.

Keywords: Execution status, grain, FPU integration, collaboration computing, ultra-precision

1. INTRODUCTION

Various soft computing solutions can be further illus-
trated based on some particle swarm optimization (PSO) and
artificial neural network(ANN) models [1-4] which are com-
putationally time-consuming or may need parameter estima-
tion [5, 6]. In fact, in addition to model simulation, scientific
and real-life applications also have also more critical re-
quirements for the floating-point performance and data ac-
curacy of embedded processor [7]. Nowadays, although the
vast majority of processors integrate double precision hard-
ware float point unit (FPU) to improve floating-point per-
formance and data accuracy [8-11], which can hardly satisfy
the actual application.

Ultra-precision, an industrial standard developed by Intel
Corporation, which means floating-data precision exceeding
double precision, has the ability to meet the requirements in
data accuracy. However, the ultra-precision computing is
achieved by software in the contemporary embedded fields
[12], which dramatically reduces overall performance of
processor [13, 14]. As a result, the ultra-precision FPU inte-
gration in Reduced Instruction Set Computer (RISC) proces-
sor is an important ongoing research of processor design.

The ultra-precision FPU integration is very complicated
as the pipeline state of processor must be taken into consid-
eration. Several published methods for FPU integration

*Address correspondence to this author at the Xi’an Microelectronics Tech-

nology Institute, Xi’an 710054, China; Tel: +8602988609000-8758;

Fax: +8602988609000-8203; E-mail: chenqingyu2006@163.com

cannot be used to ultra-precision FPU integration and have
relatively low efficiency because these methods decouple the
communication between FPU and processor. Thus, software
intervention is needed in floating-point operation. Previous
work on FPU integration will be described in detail in sec-
tion II.

To solve the problem above, a fine-grained integration
method for ultra-precision FPU, which based on centralized
control and data segmentation, is proposed. The method con-
siders fully pipeline state of processor and makes FPU and
processor tightly coupled, which is implemented by appro-
priative hard modules. Meanwhile, it regards execution
status of floating-point instructions as basic granularity to
implement the precise control of FPU and to simplify the
design complexity. Compared with studies published else-
where, the main contributions of this paper are as follows:

 (1) For the first time, this paper discloses the integration
method of ultra-precision FPU into pipeline RISC processors
with no need to change the existing microprocessor module.
Based on the proposed method, an 80-bit FPU has been inte-
grated into the Scalable Processor Architecture version8
(SPARC V8) processor.

(2) The FPU execution efficiency based on the proposed
approach is very high as it is implemented by hardware and
there is no need for software intervention in floating-point
operation.

This paper is organized as follows. In Section II, related
work published is introduced.Moreover, in section III, the
ultra-precision FPU integration method based on centralized

RETRACTED ARTICLE

Method for Ultra-precision FPU Integration The Open Automation and Control Systems Journal, 2015, Volume 7 711

control and data segmentation is proposed, and is used to
apply an ultra-precision FPU (80 bits, Meiko interface and
compatible with Intel floating-point coprocessor) embedded
into the SPARC V8 LEON2 processor of five-stage pipe-
line[15]. In Section IV, implementation results of proposed
method will be contrasted with several published mecha-
nisms. Finally, in Section V, the conclusions will be pre-
sented.

2. RELATED WORK

The FPU integration methods have been described in a
number of literatures. Schwarz and Trong [16, 17] introduce
the implementation of high precision FPU, and Yong makes
an 80-bit FPU embedded into the X86 processor using the
micro-instruction code stored in the ROM [18]. The fetch of
micro-instruction code would consume processor execution
time, which reduces floating-point efficiency. And due to the
difference in processor architecture, it is infeasible for micro-
instruction code to apply to pipeline RISC processors.

Joven, Gajjar and Du [14, 19, 20] attenuate the degree of
coupling between FPU and processor in which FPU serves
as a slave unit of on-chip bus, and the calculation process of
FPU is controlled by st/ld instructions. The above schemes
need software intervention in floating-point operation and
increase the access conflicts of on-chip bus which causes
FPU efficiency extremely low. Although some effective
measures, FPU dedicated data bus and more effective inter-
active approach of processor and FPU, are taken to improve
the calculation efficiency and the result is still not ideal.

Brunelli [21] integrates a reconfigurable FPU into the
main processor core by aa universal I/O interface containing
data and control bus. This way is easy to implement, but not
to consider the processor pipeline status. IBM developed a
dedicated interface for FPU integration [22, 23], namely aux-
iliary processor unit interface APU). The APU connects into
the processor instruction pipeline and has the ability to nego-
tiate the transfer of particular instructions and data to FPU.
The IBM’s solution is very efficient but unsuitable for ultra-
precision FPU integration.

The proposed ultra-precision FPU integration method
considers fully instruction pipeline state of processor and
makes FPU and processor tightly coupled, where software
intervention is not needed. Thus, communication overheads
between FPU and processor can be ignored. At the same
time, the design based on fine-grained control can simplify
implementation of ultra-precision FPU integration. All that

can achieve a significant improvement on floating-point cal-
culation efficiency and play an important role in reducing the
hardware overheads.

3. CONTROL ALGORITHM AND ITS IMPLEMEN-
TATION

The implementation of the proposed method, only needs
to add control logics of FPU in different pipeline stages with
no changing the rest processor modules. The control algo-
rithm and its implementation of the proposed method will be
presented by taking a five-stage pipeline RISC processor
[24] for example, in which fine-grained centralized control is
implemented in instruction decoder stage(ID) whereas data
segmentation relates to execution(EX), memory ac-
cess(MA) and write back stages(WB).

3.1. Principles of Fine-grained Control

Floating-point instructions achieve the conversion and

operation of floating-point data. Its classification shown in

Table 1, the precision type of source and destination operand

is indicated with S and Q respectively and both include inte-

ger (I), single precision (S), double precision(D) and ultra-

precision (U). So SDDS refers to the instructions with source

and destination operands being double and single precision.

Depending on the precision, the 15 types of floating-point

instruction are divided into three types: S, D and U (Table 1

indicates with green, red and blue), and the operand width of

S, D and U is 32, 64 and 80 bits. The proposed method fur-

ther subdivides the execution status of D and U. By different

status, the wide operand writing to narrow floating-point
register file is achieved through pipeline.

The fine-grained control is implemented by state machine
analyzing floating-point instructions. As shown in Fig. (1),
there are four S states corresponding to three kinds of in-
struction: S, D and U, and X.S0 is a shared state by all three
kinds of instructions. In X.S0, three categories of instruc-
tions will be finely differentiated. If the S type of instruc-
tions or control hazard exists in X.S0 state, state machine
remains unchanged. While there are D or U instructions in
X.S0, state machine will move D.S1 or U.S1 respectively
when pipeline enable is active (hold=1). Others than X.S0,
PC update is prohibited to prevent new instructions from
getting into ID stage. Regarding the status of state machine
shown in Fig. (1) as fundamental granularity, Control algo-
rithm generates the FPU control information, and transfers
the control information needed by destination operand to the

Table 1. Precision type combination of floating-point operand.

 Destination

Source

Integer

Type

Single

Precision
Double Precision Ultra-Precision

Integer type SIDS SIDD SIDU

Single precision SSDI SSDS SSDD SSDU

Double precision SDDI SDDS SDDD SDDU

Ultra- precision SUDI SUDS SUDD SUDU

RETRACTED ARTICLE

712 The Open Automation and Control Systems Journal, 2015, Volume 7 Chen and Wu

next pipeline stage, which provides principle for segmenta-
tion of destination operands subsequently.

Control algorithm of source operand is shown in Fig.
(2a), regfile[rs] refers to the data in floating-point register
file specified by source address(rs). In X.S0 state, control
algorithm does not pass regfile[rs] to the least 32 bits of FPU
input(fpui.rs) until all hazards disappear. In S1(D.S1 or
U.S1), regfile[rs+1] will be assigned to the middle of the 32
bits of fpui.rs, while in the condition of S2 (U.S2), reg-
file[rs+2] will be connected to the most 16 bits of fpui.rs. At
the same time, once the source operand being ready accord-
ing to the source operand precision, FPU operation will be
start(fpui. Start = '1').

if(state=S0)

 if(any kind of hazard existing)

 wait;

 else

 fpui.start='0';

 when (SI |SS)=>fpui.rs[31:0]=regfile[rs];

 fpui.start='1';

 when (SD |SQ)=>fpui.rs[31:0]=regfile[rs];

 end if;

elseif(state=D.S1)

 fpui.start='0';

 when SD=>fpui.rs[63:32]=regfile[rs+1];

 fpui.start='1';

elseif(state=U.S1)

 fpui.start='0';

 when SD=>fpui.rs[63:32]=regfile[rs+1];

 fpui.start='1';

 when SQ=>fpui.rs[63:32]=regfile[rs+1];

 fpui.start='0';

elseif(state=U.S2)

 fpui.start='0';

 when SQ=>fpui.rs[79:64]=regfile[rs+2];

 fpui.start='1';

end if;

(a) Read control method for the source operand

if(state=S0)

 pipeline.state=“00”;

 if(the width of D the width of S)

 pipeline.rd=op.rd;

 pipeline.rd_wen='1';

 else --SDDI or SDDS or SQDI or SQDS or SQDD

 pipeline.rd=Zeros;

 pipeline.rd_wen='0';

 end if;

elseif(state=D.S1)

 pipeline.state=“01”;

 pipeline.rd_wen='1';

 if(the width of D the width of S)

 pipeline.rd=op.rd+1;

 else --SDDI or SDDS

 pipeline.rd=op.rd;

 end if;

elseif(state=U.S1)

 pipeline.state=“01”;

 pipeline.rd=op.rd+1;

 if(the width of D the width of S)

 pipeline.rd_wen='1';

 else --SQDI or SQDS or SQDD

 when SQDI | SQDS=>pipeline.rd_wen='0';

 pipeline.rd=Zeros;

 when SQDD =>pipeline.rd=op.rd;

 end if;

elseif(state=U.S2)

 pipeline.state=”10”;

 pipeline.rd_wen='1';

 if(the width of D the width of S)

 pipeline.rd=op.rd+2;

 else --SQDI or SQDS or SQDD

 when SQDI or SQDS=>pipeline.rd=op.rd;

 when SQDD => pipeline.rd=op.rd+1;

 end if;

(b) Control theory of the destination operand write-back.

Fig. (2). Fine-grained control mechanism based on execution status.

Control theory of destination operand is shown in
Fig. (2b), pipeline means the data structure of pipeline regis-
ters. Two rules are defined in this method: (1) the priority of
S2, S1 and S0 state decreases in turn; (2) use high priority
state to write the least data of FPU output. Compare the
width of source and destination operands in X.S0, D.S1,
U.S1 and U.S2. Then based on the comparison result gener-
ates write enable and write address of destination operands
needed by FPU output write-back, and transfers the control

Fig. (1). State machine based on Fine-grained control.

RETRACTED ARTICLE

Method for Ultra-precision FPU Integration The Open Automation and Control Systems Journal, 2015, Volume 7 713

information, write enable and write address to next pipeline
stage. Taking D.S1 for example, there are five kinds of in-
structions can enter the state as shown in Table 1 and only
SDDI and SDDS whose destination operand width is less
than the source operand. According to the principle (2): use
high priority state to write back the least data, So in the state
of D.S1, we set write enable valid(rd_wen=’1’) and gives
the correct write-back address(pipeline.rd).

3.2. Segmentation of Data

As soon as FPU completes calculation, the EX, MA and
WB stages of pipeline processor will register FPU output in
segmentation and then move to the next stage. Finally, the
registered data are written back to floating-point register file
through pipeline. The algorithm of processing in segmenta-
tion is further described in Fig. (3). Firstly, algorithm
estimates whether FPU output is normal or not. If there has
an abnormal output, write-back of FPU output will be abol-
ished and exception information will be submitted to the
exception handling module. Otherwise, FPU output is regis-
tered in segmentation on the basis of instruction type and
state information(pipeline.state), which makes one to one
correspondence with the control information, write enable
and write address, generated in Fig. (2b). Taking U instruc-
tions for example, according to the rules (2): use high

priority state to write back the least data of FPU output, EX

will register 32 bits output of FPU to pipeline register in

“10” state for SUDI and SUDS who only have 32 bits desti-

nation operand. Yet for SUDD whose valid output is 64 bits,

EX will register most 32 bits of FPU output to pipelined

register in “10” state, and meanwhile MA register least 32

bits of FPU output in “01” state. However, for the other U

kind of instructions owning 80 bits destination operand, EX

holds the least 16 bits of 80-bit FPU output in “10” state, MA

registers the middle of the 32 bits and WB stores the most 32

bits into pipelined registers in “00” state at the same time.

3.3. Implementation of FPU Integration Method

The SPARC V8 is only architecture that defines the
quadruple-precision instruction (ultra-precision) and is fully
open and non-proprietary [25]. Other RISC architectures,
achieving the ultra-precision floating operation through
software, don’t have ultra-precision floating-point instruc-
tions and need delegation of authority in the process of in-
dustrial application. Given all that, the SPARC V8 can make
a thorough evaluation for our method with the help of open
source implementations and open source simulator, and is
chose to further illustrate the implementation of FPU integra-
tion method in RISC pipeline processor.

Wait FPU

calculation

finish

exception?

abolish write-

back;

submit exception

Y

D

N

U

S

D width

S width?

In state 00 ,

EX registers 32

bits destination

operand of FPU

In state 00 ,

MA registers the

most 32 bits of 64

bits output of FPU;

In state 01 ,

MA registers the
least 32 bits of 64

bits output of FPU;

YY

N

In state 00", EX registers 32 bits

destination operand of FPU

D width

64 bits?

N

Y

N

instruction

kinds?

D width

S width?

In state 10", EX registers 32 bits

destination operand of FPU

In state 10", EX registers the least

32 bits of 64 bits output of FPU;

In state 01", EX registers the most

32 bits of 64 bits output of FPU;

In state 00 ,

WB registers the

most 32 bits of 80

bits output of FPU;

In state 01 ,

MA registers the
middle 32 bits of 80

bits output of FPU;

In state 10 ,

MA registers the

most 32 bits of 80

bits output of FPU;

Fig. (3). Flow chart of segment data processing.

RETRACTED ARTICLE

714 The Open Automation and Control Systems Journal, 2015, Volume 7 Chen and Wu

A tight coupling scheme of an ultra-precision
FPU(Meiko interface, 80 bits) with typical five-stage pipe-
line RISC is shown in Fig. (4). The fine-grained control
module (FDCM) in ID stage achieves control algorithm
mentioned in section 2.1 and moves the control information
needed by FPU output to the next stage through pipeline
register (pipeline). The data processing module (DPM) in
EX, MA and WB implement the destination operand seg-
mentation and write them to floating-point register file de-
pending on the flow shown in Fig. (3).

4. RESULTS OF IMPLEMENTATION AND TEST

Many verification methodologies can be used to verify
the proposed method and their most difference for users is
the programming language. In this case, the correctness and
timing diagram of the proposed method has been verified
based on Cadence’s e Reuse Methodology(eRM) which is
licensed by Cadence. Compared with TestFloat developed by
the Stanford, the floating-point results of processor are cor-
rect. The typical timing diagram of proposed method is
shown in Fig. (5) where (a) for SUDU floating-point instruc-
tions (both source and destination operands are ultra-
precision 80 bits), and (b) for SSDU floating-point instruc-
tions(source operand is single precision and destination op-
erand is ultra-precision). In Fig. (5a), ID stage takes three

states of X.S0, U.S1 and U.S2 to prepare 80 bits source op-
erand, and starts the FPU operation in U.S2. WB writes the
destination operand using state of “00”, “01” and “10”. In
Fig. (5b), ID stage prepares the 32 bits source operand and
starts the FPU operation in X.S0, and subsequently generates
the write enable and write address needed by destination
operand in corresponding U.S1 and U.S2. When the FPU
calculation is finished, the various pipeline stages(EX, MA,
WB) will register the 80 bits FPU output in segmentation
according to the information stored in pipeline registers and
finally WB stage writes the destination operands to floating-
point register file.

In order to carefully evaluate this method, some assump-
tions are made. (1) The design of FPU and timing constraint
are the same in other benchmarks as the one which is em-
ployed the proposed method. (2) No FPU exception happens
in the process of evaluating the floating-point efficiency. The
differences between timing constraints may result 20% de-
viation compared with results at typical corner. Whereas the
design and exception of FPU affect significantly results of
floating-point efficiency.

The comparison in this section can be divided into three
types: critical path delay, hardware overhead and floating-
point efficiency. However, the evaluation of the integration
method involves the design and implementation of float

Instruction

Fetch control

fpuo.exc

pip
elin

e

I-R
E

G FD-

CM

wen

addr

state

ID stage

FPU

fp
u

i

DPM

wen

state

pip
elin

e

addr

EX stage MA stage WB stage

fpuo.res
fpuo.rdy

IF stage

FIM

F
-R

F

DPM

wen

state

pip
elin

e
addr

DPM

wen

state

addr

Fig. (4). Coupling schematic diagram between ultra-precise FPU and CPU core.

The fetch of source

operand

Start operation

Write -back in pipeline

The fetch of source

operand

Start operation

Write- back in pipeline

(a) SUDU Timing Diagram (b) SSDU Timing Diagram.

Fig. (5). Timing Diagram of the proposed integrated method.

RETRACTED ARTICLE

Method for Ultra-precision FPU Integration The Open Automation and Control Systems Journal, 2015, Volume 7 715

point unit (FPU), which affects significantly comparison
results. So only the same form as the ultra-precision FPU,
based on Gaisler research’s intellectual property core [26], is
adopted as benchmark for fair and thorough comparison
[14, 18, 19].

The analysis of critical path delay is firstly presented. In
delay model, the critical path propagation delay is calculated
based on delay at typical corner(2.5V, typical process, room
temperature), derating factors of process, voltage and tem-
perature. However, the propagation delay varies greatly
from different derating factors of process, voltage and tem-
perature, as is depicted in Fig. (6). The derating factors, de-
fined as important parameters in delay module, illustrate
influence on propagation delay of the process, voltage and
temperature. The voltage and temperature derating fac-
tors(VDF and TDF) are chosen as the x and y coordinate
axes and z axis indicates propagation delay. Three paramet-
ric surfaces correspond with process derating factors of slow,
typical and fast. The derating factor at typical corner(KV,
KC) indicated with ‘1’ is constant and adopted as bench-
mark. With the rise of temperature and reduction in applied
voltage, the delay does increase and the fast process derating
factor has the minimal delay whereas the slow has maximal.
Although all those factors can affect the delay, the most seri-
ous type is process derating factor. On the condition of the
same typical process factor, the VDF and TDF make almost
18% variation on the propagation delay. In the same VDF
and TDF, the propagation delay is 0.804, 1 and 1.15 corre-
sponding to slow, typical and fast process factor.

The typical corner is standard application environment
and is adopted as benchmark for synthesis, at which the
critical path delay is only 3.7ns based on TSMC 0.25um li-
brary. The main reason is that the proposed method regards

execution status of instructions as basic granularity to gener-
ate the FPU control information, which simplifies signifi-
cantly the complexity of control logics. Compared with
scheme based on micro-instruction code, the delay decreases
by 37.3% at typical corner [18]. From Fig. (6) we can draw
similar conclusion based on other VDF and TDF. The pro-
posed on method can actually lead significant induction in
critical path delay.

Then, the evaluation of hardware overhead is done and

the synthesis results obtained using the same FPGA device

as Cortex-M1 integration is shown in Table 2. The overheads

of LUTs and Flip Flops are 3585 and 1594 respectively,

which declines by 16.9% compared with Cortex-M1[14].

The reason why hardware overhead uses less is that destina-

tion operand write-back in pipeline is adopted, which reuses

many hardware resources. However, LUTs and registers

consumption of the proposed method increased by 9.6% and

9% respectively compared with GRFPU LITE [19]. It

mainly contributes is that GRFPU LITE only support inte-

gration of the single and double precision FPU whereas the

proposed method is suitable for single, double and ultra-

precision FPU.

Finally, we evaluate the floating-point efficiency of the
proposed method and further compare the results with pub-
lish mechanisms elsewhere [14, 17, 26]. The results are
shown in Fig (7). It takes 173 clock cycles for the LEON3
FPU to finish single and double precision floating-point op-
eration as the LEON3 FPU is a slave unit of on chip bus, one
way of loose coupling, and software intervention is needed
in the operation.

The GRFPU and GRFPULITE of Gaisler research spend
closely 30 clock cycles to complete the single and double

0.85 0.9 0.95 1 1.05 1.1
0.95

1

1.05

1.1
0.7

0.8

0.9

1

1.1

1.2

1.3

TDF=1+KC*(T
-25)

VDF=1+KV*(V-2.5)

p
r
o
p
a
g
a
t
i
o
n

d
e
l
a
y

Fig. (6). Propagation delay with derating factors.

Table 2. Comparison of hardware overheads of various methods.

Device Xilinx xc5vlx85ff676

Design LEON3 [19] Cortex-M1 [14] The proposed method

LUTs 3241 4312 3585

Flip Flops 1450 1594

RETRACTED ARTICLE

716 The Open Automation and Control Systems Journal, 2015, Volume 7 Chen and Wu

precision operation. The improvement of efficiency is the
result of embedding FPU into processor core and implement-
ing tightly coupling between processor and FPU.

The Cortex-M1 needs about 15~30 clocks to finish the
execution of floating-point instructions by optimizing the
interaction way between FPU and processor. However, the
proposed method generates the FPU control information
based on execution status, which advances the execution
information to next pipeline stage during each clock and
embeds FPU into processor cores by hardware. Thus, com-
munication overheads between FPU and processor can be
ignored. As the result of all factors, the proposed just need
9~10 clocks finish single and double-precision floating point
instructions. The floating-point calculation efficiency in-
creases 1.7 times than Cortex-M1.

The ultra-precision floating point operation is addressed
by software imitating floating-point computing in main-
stream embedded processors, which spends thousand of
clock cycles. Fig. (7c) gives the ultra-precision floating point
clock overheads of V8 processor based on the proposed
method, and the efficiency is 20~100 times higher than soft-
ware ultra-precision floating-point emulation [14, 19].

CONCLUSION

This paper proposes a fine-grained integration method for
ultra-precision FPU, which based on centralized control and
data segmentation. The method generates the FPU control
information corresponding to execution status and writes
destination operands through pipeline, which can integrate
80-bit FPU to pipeline processor. The SPARC V8 processor
with 80-bit FPU based on the proposed mechanism has been
implemented, verified and analyzed. The results show that
the critical path of floating instructions decreases by 37.3%,
hardware consumption declines 16.9% and the floating-point
calculation efficiency increase 1.7 times. This method can be
used to embed ultra-high precision FPU to RISC processors.

Nevertheless, it is recognized that there are limitations in
the integration method for ultra-precision FPU. The efficient
floating-exception handling, structure of register file and
implementation in multi-core processor have not been con-
sidered here and there are some limitations in the assump-
tions used in this study. Therefore, improvement of the FPU

integration method based on the proposed mechanism is ac-
tually in progress in our study.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

The research work is supported by the National High-
Tech Research and Development Program of China(No.
2010ZX01021, No. 2009ZX01023).

REFERENCES

[1] K. W. Chau, “Application of a PSO-based neural network in analy-

sis of outcomes of construction claims”, Automation in Construc-
tion, vol.16, no.5, pp. 642-646, 2007.

[2] J. Zhang and K. W. Chau, "Multilayer ensemble pruning via novel
multi-sub-swarm particle swarm optimization", Journal of Univer-

sal Computer Science, vol.15, no.4, pp.840-858, 2009.
[3] C. T. Cheng, K. W. Chau, Y. G. Sun and J. Y. Lin, "Long-term

prediction of discharges in Manwan Reservoir using artificial neu-
ral network models", Advances in Neural Networks–ISNN 2005,

vol. 3498, Springer Berlin Heidelberg, 2005, pp.1040-1045.
[4] R. Taormina and K. W. Chau, "Neural network river forecasting

with multi-objective fully informed particle swarm optimization",
Journal of Hydroinformatics, vol.17, no.1, pp. 99-113, 2015.

[5] C. L. Wu, K. W. Chau and Y. S. Li. "River stage prediction based
on a distributed support vector regression", Journal of Hydrology,

vol. 358, no.1, pp. 96-111, 2008.
[6] Z. K. Huang and K. W. Chau, "A new image thresholding method

based on Gaussian mixture model", Applied Mathematics and
Computation, vol. 205, no.2, pp.899-907, 2008.

[7] D. H. Bailey, "High-precision floating-point arithmetic in scientific
computation", Computing in science & engineering, vol.7, no.3, pp.

54-61, 2005.
[8] C. Wang, Realization of adaptive floating-point multiplication,

division and square root unit for single, double and extended Pre-
cision, North China Electric Power University, Beijing, vol. 1, pp.

3-10, 2011.
[9] Aeroflex, UT699 LEON 3FT/SPARC V8 Microprocessor Func-

tional Manual, Aeroflex Inc, USA 2012.
[10] G. Kane and J. Heinrich, MIPS RISC architectures, Prentice-Hall,

Inc, 1992.
[11] M. Boersma, M. Kroner and C. Layer, "The POWER7 binary float-

ing-point unit", In: 20th IEEE Symposium on Computer Arithmetic
(ARITH), 2011, pp. 87-91.

clk

30 60 90 120 150 180

The proposed method

Cortex-M1

GRFPULITE

GRFPU

clk

30 60 90 120 150 180

Cortex-M1

GRFPULITE

GRFPU
Literature[12]

clk

30 45

add

sub

multiple

divid

The proposed method

Literature[12]

(a) (b) (c)

Fig. (7). Efficiency comparison of floating point computation (a) the number of clock needed by single-precision (b) the number of clock
needed by double-precision (c) the number of clock needed by ultra-precision in proposed method.

RETRACTED ARTICLE

Method for Ultra-precision FPU Integration The Open Automation and Control Systems Journal, 2015, Volume 7 717

[12] M. George, P. Elbro and J. Johnson, "Design of high-integration

controller”, IEEE Transactions on Consumer Electronics, vol.43,
no. 4, pp. 85-92, 1997.

[13] A. Ramakrishnan and J. M. Conrad, "Analysis of floating point
operations in microcontrollers", In: Proceedings of IEEE on South-

eastcon, 2011, pp. 97-100.
[14] J. Joven, P. Strict and D. R. Castells, "HW-SW implementation of a

decoupled FPU for ARM-based Cortex-M1 SoCs in FPGAs", In:
6th IEEE International Symposium on Industrial Embedded Systems

(SIES), pp.1-8, 2011.
[15] J. Gaisler, The LEON-2 Processor User’s Manual, Version, 1.0.10,

2003.
[16] E. M. Schwarz, M. Schmookler and S. D. Trong, "FPU implemen-

tations with denormalized numbers", IEEE Transactions on Com-
puters, vol.54, no.7, pp. 825-836, 2005.

[17] S. D. Trong, M. S. Schmookler and E. M. Schwarz, "P6 Binary
Floating-Point Unit", In: 2007 18th IEEE Symposium on Computer

Arithmetic(ARITH), pp.77-86, 2007.
[18] Y. Zhao, S. Zhang and D. Wang, “The Integration of floating point

IP in microprocessor design”, Microelectronics & Computer,
vol.23, no.7, pp.129-133, 2006.

[19] G. Nagendra, N. M. Devahsrayee and K. S. Dasgupta, "Scalable

LEON 3 based SoC for multiple floating point operations", In:
IEEE Nirma University International Conference on Engineering

(NUiCONE), 2011, pp.1-3.
[20] X. Du and X.Jin, “Design and verification of vector floating point

coprocessor VFP-A”, Microelectronics, vol.39, no.5, pp.597-601,
2009.

[21] C. Brunelli, F. Campi and J. Kylliainen, “A reconfigurable FPU as
IP component for SoCs”, In: IEEE International Symposium on

System-on-Chip, 2004, pp.103-106.
[22] P. J. Pingree, J. F. L. Blavier and G. C. Toon, "An fpga/soc ap-

proach to on-board data processing enabling new mars science with
smart payloads", In: IEEE Aerospace Conference, 2007, pp. 1-12.

[23] C. D. Wait, "IBM PowerPC 440 FPU with complex-arithmetic
extensions", IBM Journal of Research and Development, vol. 49,

no.2.3, pp. 249-254, 2005.
[24] J. L. Hennessy and A. P. David, Computer Architecture: a Quanti-

tative Approach, Elsevier, Amsterdam 2012.
[25] S. Internationa, The SPARC architecture manual Version 8,

SPARC International Inc, US 1998.
[26] J. Gaisler, GRLIB IP Core User’s Manual, Gaisler research, Swe-

den 2007.

Received: March 07, 2015 Revised: March 29, 2015 Accepted: May 20, 2015

© Chen and Wu; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

RETRACTED ARTICLE

